Three-Head Neural Network Architecture for Monte Carlo Tree Search

Chao Gao, Martin Müller, Ryan Hayward
University of Alberta
Deep Neural Net Architectures for MCTS

- Move prediction in Go (Clark+Storkey 2015, Maddison et al 2015):
 Single deep convolutional net, “policy net”

- Early AlphaGo (Silver et al 2016):
 Two separate policy and value nets

- AlphaGo Zero (Silver et al 2017), Alpha Zero (Silver et al 2017): Single residual net with two heads - policy and value

- In this work: add a third head
 - One-step value predictions (Q-values) for all moves
Two Head Architecture

- f .. Deep net with parameters θ
- Input: Go position
- $(p,v) = f_\theta$
- Output (p,v)
- $p =$ a-priori probability of each move being best
- $v =$ evaluation of current state
Third Head for Q-Values

Third output $q(s, a)$:
after-state evaluation
after each legal move a

Main advantage:

- Estimated value of children immediately available...
- ...before evaluating them
Use in MCTS

• **2-head**: backup value v of s
 - No value estimate of children

• **3-head**: backup value v of s
 - Also backup q-value of children
Relation Between v and q

- v .. evaluation from current player’s point of view
- q .. evaluation from opponent’s view

Best move for us:

- minimize among all q values
- negate to change point of view to us

Minimax consistency:

\[v(s) = - \min q(s,a_i) \]

or \[v(s) + \min q(s,a_i) = 0 \]

- Use for learning consistent v and q estimates
Training of 2 Head Network

• Minimize loss function over labeled training data \((s,a,z_s)\)

• State \(s\), action \(a\) played,
 \(z_s\) game result from current player’s view

 • \(z_s = +1\): win

 • \(z_s = -1\): loss

• 2 head loss function (with parameters \(w\) and \(c\))

\[
\hat{L}(\hat{f}_0; \mathcal{D}) = \sum_{(s,a,z_s) \in \mathcal{D}} \left(w(z_s - v(s))^2 - \log p(a|s) + c||\theta||^2 \right)
\]
Training of 3 Head Network

• Three changes to loss function:

1. Replace v-loss with average of v- and q-loss

\[
(z_s - v(s))^2 \rightarrow \frac{1}{2}(z_s - v(s))^2 + \frac{1}{2}(z_s + q(s, a))^2
\]

2. Add AND constraint: if s is loss, all actions lose

\[
L_Q(f_\theta; D) = \sum_{(s, a, z_s) \in D} \frac{\max(-z_s, 0)}{|A(s)|} \sum_{a' \in A(s)} (z_s + q(s, a'))^2
\]

3. Add minimax consistency loss

\[
L_P(f_\theta; D) = \sum_{(s, a, z_s) \in D} (\min_{a'} q(s, a') + v(s))^2
\]
Game of Hex

- Classic abstract board game, invented in 1940’s
- Goal: connect your two sides
- Theorem: exactly one player will connect
- Some similarities to Go
 - Simpler rules
- Deep, difficult game
Neural Net for Hex

- Input: 13x13 Hex board padded with extra borders
- Residual net, 10 blocks
- 3 heads for \(p, q, v \)
- Compare with 2 head network - without the q head
Hex Training Data

- Self-play 13x13 Hex games
 - From previous strongest program MoHex 2.0
 - About 10^6 positions
- Labeled by game outcomes z
- Data augmentation: for lost positions, all actions lose
Test Errors 2 vs 3 Heads

- q error comparable to v error - very good news!
 1-step predictions as good as direct evaluation

- v errors comparable with 2 and 3 heads
Policy Move Prediction

- Top-1 move prediction of policy head
 - Is the highest probability move the same as in test data?
- Again, 2 and 3 head nets are very similar
Play against Previous
Mohex-CNN

- Integrated new nets with MoHex’ Monte Carlo Tree Search
- Played against last year’s MoHexCNN
- Iterate over all opening moves - many are very lopsided
 - 73.5% is a large score in this test

<table>
<thead>
<tr>
<th>Player</th>
<th>Player as black</th>
<th>Player as white</th>
<th>Overall winrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoHex-3HNN</td>
<td>76.5%</td>
<td>70.6%</td>
<td>73.5%</td>
</tr>
<tr>
<td>MoHex-2HNN threshold 0</td>
<td>65.9%</td>
<td>57.6%</td>
<td>61.8%</td>
</tr>
<tr>
<td>MoHex-2HNN default threshold</td>
<td>69.4%</td>
<td>56.5%</td>
<td>62.9%</td>
</tr>
</tbody>
</table>
2 vs 3 Heads

- 64.1% wins for 3 heads against strongest version of 2 head
Combining q and v

- Idea: v and q estimate for different but closely related states

- Use minimax consistency arguments
 - Combine v and q into a single estimate v’

- Two versions of this idea in the paper

- Both win 55-58% against plain v
Advantages of Three Heads

• **Many more state evaluations** *in the same time* due to q-values

• Slightly stronger evaluation by combining v and q

• Some advantages during learning - see paper
Alpha Zero Style Training

• Early result, not in paper

• 3 head architecture also works well with Alpha Zero approach

• Continuously improve p, q, v by self-play

• Warm start with best version above

• After 400,000 training games, “significantly stronger”

• Why not train from zero knowledge? Practical reasons
2018 Computer Olympiad

- Two strong Hex entries this year, MoHexCNN (Gao/Ualberta), EzoCNN (Takada)
 - MoHexCNN: 3-head plus Alpha Zero style training
 - EzoCNN: CNN, trained 4-5 months by selfplay, 10 million games
- Both win over 80% against MoHex 2.0
- Two board sizes: 11x11 and 13x13
- MoHexCNN won both matches 5-0

Kei Takada (Ezo), Chao Gao (MoHex), Ryan Hayward (MoHex)
Summary

• 3 head architecture, learns q-values as well

• Game-independent idea, applied to Hex

• More data efficient, sees one step further “for free”

• Also works well with Alpha Zero self-play training

• Far surpasses previous best Hex programs