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Format of Talk

Informal talk, much is 
unpublished, work in 
progress 

I have more questions 
than answers… 

I use our Fuego program 
as an example



Many Types of Knowledge in 
Go

Rules, if-then-else… 

Patterns 

Deep neural networks 

Search control knowledge 

Exact knowledge, e.g. proven wins 

And more…
Credits: sciencedaily.com 

http://sciencedaily.com


About Fuego
Fuego is: 

A Game-independent  
MCTS framework 

A Go program 

Open source 

Mostly developed at University of Alberta 

Many other programs use Fuego as basis (e.g. MoHex) 

Many researchers have used Fuego for experiments



 
Developed since 2008, based on older Go program Explorer 

Uses Monte Carlo Tree Search (MCTS), RAVE, prior knowledge 

MoGo-style rule-based simulations (+ some changes) 

Lock-free multithreading 

In 2009, won 9x9 game on even vs Chou Chun-Hsun 

Won the 2009 Computer Olympiad 9x9 and 2010 UEC Cup (19x19) 

MP-Fuego: massively parallel version (TDS-df-UCT, Yoshizoe) uses 
up to 2000 cores 

Strength: Fuego on good PC about 1 dan, MP-Fuego maybe 3 dan

The Fuego Go Program



Types of Knowledge in Fuego
Part 1: Simulations (very short here) 

Part 2: In-tree knowledge (a lot) 

Rules, features, “Greenpeep” patterns 

Part 3: “Slow” knowledge (some) 

DCNN 

Tactical search 

[Part 4: Exact knowledge - not today]



Part 1: Simulations
Fuego: Rule-based, as in MoGo 

Select move from highest-ranked rule that 
produces at least one move 

Alternative: probability-based, as in Crazy Stone 

Weight map over all legal moves 

Used to select the next move to play in simulation 

Speed about 1,000,000 moves/second/core



Research Questions
What works in simulations? 

Right now, we still mostly use trial-and-
error 

How to design an effective playout policy? 

How to evaluate a policy? (without playing 
thousands of test games) 

What distinguishes a good from a bad 
policy?



Part 2: In-Tree Knowledge
Evaluated for each node in 
the game tree 

Used in UCT formula to 
select best child in tree 

Big influence on shape of tree 

Speed goal: about 1000 
nodes/second/core



Using In-Tree Knowledge
Assume you have some knowledge. What do 
you do with it? 

Three main approaches in the literature 

Two are used in Fuego 

Initialize playout statistics with “fake” wins 
and losses 

Add a third term to the UCB formula: 
mean + exploration + knowledge



Third Way: Iterative Widening

Consider only N best moves 

Increase N over time  

Never tried in Fuego



Fuego’s In-Tree Knowledge

1. Oldest: hand-coded rules, 
“fake” wins and losses 

2. Next: “Greenpeep” patterns, 
additive knowledge 

3. Recent: Feature learning using 
Latent Factor Ranking



1. Handcoded Rules
Simple, crude rules (from 2008) 

Bonus for moves in corner and on 3rd line 

Bonus for moves in low-liberty situations 
(e.g. ladders) 

Bonus for moves from the simulation policy 

Weights (number of wins/losses) tuned 
manually



2. “Greenpeep” Patterns
Greenpeep was the name of a Go program by Chris 
Rosin 

Greenpeep used 12 point diamond-shaped 
patterns with extra knowledge (liberty counts) 

Chris developed a machine learning technique 
based on self play to train weights 

“Additive” knowledge in Fuego, about 130 Elo 
improvement (about 2010) 

Theory: C. Rosin, Multi-armed bandits with episode 
context, ISAIM 2010



3. Feature Learning Using 
Latent Factor Ranking

Work on feature learning 

Remi Coulom, Computing Elo Ratings of 
Move Patterns in the Game of Go, 2007 

Later improved by Coulom and Aja Huang 

Wistuba and Schmidt-Thieme,  
Move Prediction in Go – Modelling Feature 
Interactions Using Latent Factors, KI 2013



From Coulom to Wistuba

Main change: 

Model pairwise interactions between features 

Example: A and B may be OK features by 
themselves, but A and B together is really 
good



Main Ideas in Feature 
Learning

Moves are described by a set of 
features, e.g. pattern, tactics, 
location, distance 

Assign Weights to features to 
maximize “move prediction”: 

Try to guess which move was played 
by a strong human player



Feature Details
features_move O3 

FE_EXTENSION_NOT_LADDER 

FE_LINE_3 

FE_DIST_PREV_3 

FE_GOUCT_ATARI_DEFEND 

FE_GOUCT_PATTERN 

FE_POS_6 

FE_GAME_PHASE_3 

FE_CFG_DISTANCE_LAST_2 

FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE 

FE_SAVE_STONES_1 

WBW 

EEE 

BBB

features_move K2 

FE_ATARI_LADDER 

FE_LINE_2 

FE_DIST_PREV_10 

FE_POS_10 

FE_GAME_PHASE_3 

FE_CFG_DISTANCE_LAST_4_OR_MORE 

FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE 

FE_KILL_STONES_2 

EEE 

EEE 

BWW 



Example in Fuego

Simple features  
+ 3x3 patterns 

Trained weights with 
20000 master games 

blue = good 

green = bad



Current Work  
on Features in Fuego

By Chenjun Xiao 

Add large patterns, not just 3x3 

Almost done… 

New algorithm for training 

(Slightly) better results than Wistuba 

Produces probabilities for moves 
being best, not just “some numbers”



Part 3: Slow Knowledge

Too slow to compute at every node in 
the search 

Can still be useful 

Two Examples:  

Deep neural network 

Tactical search



Deep Convolutional  
Neural Networks (DCNN)

Introduced for Go in two recent publications 

Clark and Storkey, JMLR 2015 

Maddison, Huang, Sutskever and Silver, ICLR 2015 

Very strong move prediction rates, 55.2% (Maddison et al) 

Slow to train and use (even with GPU)

…



DCNN in Fuego

We use networks 
trained by Storkey and 
Henrion (Storkey’s new 
student) 

Integrated in Fuego by 
Andrew Jacobsen (my 
student)



Features vs DCNN

Feature Knowledge DCNN Evaluation



Some Examples of Bad 
DCNN Moves



Research Questions
How to learn when: 

Move is usually bad, but good here  
(e.g. empty triangle example) 

Move is usually good, but bad here  
(e.g. cut example) 

Training based on statistics of “similar” examples 
cannot help - unless definition of “similar” is 
extremely good 

How to catch these cases by exploration in MCTS



How to use Slow 
Knowledge?

Solution in Fuego 

Threshold N, e.g. N=200 

Call slow knowledge for all nodes 
that reach N simulations 

For large N, this is a very small 
percentage of all nodes 

Can do something expensive



Discussion
Problem: knowledge is only called after 
many simulations 

MCTS may not be changed much 

How to balance? 

Better call right away? But for which 
nodes? 

Our DCNN-Fuego prototype calls DCNN 
first, but only at root



Tactical Search
Observation: Fuego often makes simple tactical 
mistakes 

Example: “geta”, capture by net 

Can be solved by a small tactical search 

Our old program Explorer contains such a search 

Use as slow knowledge, give bonus to moves that 
save or capture 

About 70-80 Elo improvement for simple 
implementation



Other Ideas for Knowledge

(not implemented in Fuego) 

Local Life and Death search 

Semeai (capturing races) 

Prove safety, or invade/defend territories 

Local searches to filter which moves 
make sense locally



Discussion

Many kinds of knowledge used in Go 

Old programs were mostly about encoding 
knowledge 

First MCTS programs used very little,  
but it is all coming back 

Want to use machine learning to deal with 
large amounts of knowledge 

Self-play or learn from human master games



Discussion (2)

Simulation policies are still “magic” 

Probably the biggest differences between 
top programs and open source programs 
are in this area 

Need scientific principles to design better 
policies



Discussion (3)

Integrating “slow” knowledge is a big 
challenge 

How to “mix” it with a MCTS? 

We have only crude solutions (threshold, 
root-only) 

Can we predict which nodes are 
important, so we can call slow 
knowledge immediately?



Summary
Reviewed knowledge in MCTS Go programs, 
especially Fuego 

Many imperfect, incomplete solutions 

Many different but overlapping approaches 

Can we unify them based on a good theory? 

Still much work to be done to understand 
and improve 

What we do in Go can help other applications


