Using
Domain-specific Knowledge for
Monte Carlo Tree Search in Go

Martin Muller
University: of Alberta
NCTU, August 2015




Contents

» |ntroduction - why use
domain knowledge”?

® Many kinds of
knowledge in Go

® How to acquire
= How to use

» Research problems



Format of lalk

» |nformal talk, much is
unpublished, work In
Progress

® | have more guestions
than answers...

® | use our Fuego program
as an example



Many lypes of Knowledge In
GO

x Rules, if-then-else... 17 (noveatue > 0
if (largest > tinyEps)
n Pa't'terns value = 0.5 * (1 + moveValue / largest);

® Deep neural networks

® Search control knowledge
x [xact knowledge, e.g. proven wins

x And more...

Credits: sciencedaily.com



http://sciencedaily.com

About FUego

= FUego IS:

BoOx

®x A Game-independent
MCTS framework

aaaaaaaaaa

x A GO program

= Open source
n Mostly developed at University of Alberta
x Many other programs use Fuego as basis (e.g. MoHex)

®x Many researchers have used Fuego for experiments



The Fuego Go Program

®x Developed since 2008, based on older Go program Explorer
x Uses Monte Carlo Tree Search (MCTS), BAVE, prior knowledge
®x MoGo-style rule-based simulations (+ some changes)
= | ock-free multithreading
x [N 2009, won 9x9 game on even vs Chou Chun-Hsun
x \on the 2009 Computer Olympiad 9x9 and 2010 UEC Cup (19x19)

® MP-Fuego: massively parallel version (TDS-df-UCT, Yoshizoe) uses
up to 2000 cores

® Strength; Fuego on good PC about 1 dan, MP-Fuego maybe 3 dan



Types of Knowledge in Fuego

®x Part 1: Simulations (very short here)
®x Part 2: In-tree knowledge (a lot)

® Rules, features, "Greenpeep” patterns
x Part 3; “Slow” knowledge (some)

x DCNN

® [actical search

x [Part 4: Exact knowledge - not today]



Part 1: Simulations

®x Fuego: Rule-based, as in MoGo

x Select move from highest-ranked rule that
produces at least one move

» Alternative: probabillity-based, as in Crazy Stone
x \Veight map over all legal moves
® Used to select the next move to play in simulation

= Speed about 1,000,000 moves/second/core



Research Questions

x \\Vhat works in simulations?

= Right now, we still mostly use trial-and-
error

®x How to design an effective playout policy?

®x How to evaluate a policy”? (without playing
thousands of test games)

® \Vhat distinguishes a good from a bad
policy?



Part 2. In- lree Knowledge

» [Fvaluated for each node In
the game tree

x Used in UCT formula to
select best child Iin tree

® Big Influence on shape of tree

®x Speed goal: about 1000
nodes/second/core



Using In- Iree Knowledge

®x Assume you have some knowledge. VWhat do
you do with it?

= [hree main approaches in the literature
= [wo are used in Fuego

x [nitialize playout statistics with “fake” wins
and losses

x Add a third term to the UCB formula:
mean + exploration + knowledge



Third Way: lterative Widening

® Consider only N best moves
® |ncrease N over time

x Never tried in Fuego



Fuego's In- lree Knowledge

1. Oldest: hand-coded rules,
“fake” wins and losses

2. Next: “Greenpeep” patterns,
additive knowledge

3. Recent: Feature learning using
Latent Factor Ranking



1. Handcoded Rules

= Simple, crude rules (from 2008)
. Bonus for moves in corner and on 3rd line

® Bonus for moves in low-liberty situations
(e.g. ladders)

® Bonus for moves from the simulation policy

x \Neights (number of wins/losses) tuned
manually



2. "Greenpeep’ Patterns

Greenpeep was the name of a Go program by Chris
Rosin

Greenpeep used 12 point diamond-shaped
patterns with extra knowledge (liberty counts)

Chris developed a machine learning technique
based on self play to train weights

“Additive” knowledge in Fuego, about 130 Elo
improvement (about 2010)

Theory: C. Rosin, Multi-armed bandits with episode
context, ISAIM 2010



3. Feature Learning Using
| atent Factor Ranking

x \Nork on feature learning

x Remi Coulom, Computing Elo Ratings of
Move Patterns in the Game of Go, 2007

x | ater improved by Coulom and Aja Huang

x \Nistuba and Schmidt-Thieme,
Move Prediction in Go — Modelling Feature
Interactions Using Latent Factors, Kl 2013



From Coulom to Wistuba

® Main change:
® Model pairwise interactions between features

x Example: A and B may be OK features by
themselves, but A and B together Is really
good



Main ldeas In Feature
Werldallale

» Moves are described by a set of
features, e.g. pattern, tactics,
location, distance

® Assign Weights to features to
maximize “move prediction’:

= [ry to guess which move was played
by a strong human player



Feature Detalls

features_move 03 features move K2
FE_EXTENSION_NOT_LADDER FE_ATARI_LADDER

FE_LINE_3 FE_LINE_2

FE_DIST_PREV_3 FE_DIST PREV_10
FE_GOUCT_ATARI_DEFEND FE_POS_10

FE_GOUCT_PATTERN FE_GAME_PHASE_3

FE_POS_6 FE_CFG_DISTANCE _LAST_4 OR_MORE
FE_GAME_PHASE_3 FE_CFG_DISTANCE_LAST_OWN_4_ OR_MORE
FE_CFG_DISTANCE LAST_2 FE_KILL_STONES_ 2

FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE

FE_SAVE_STONES_1 I EEE
WBW EEE
EEE I'l.|II BWww

BBB




Example In Fuego

®x Simple features
+ 3X3 patterns

x [rained weights with
20000 master games

= plue = good

® green = bad




Current Work
on reatures In FUego

x By Chenjun Xiao
® Add large patterns, not just 3x3
x Almost done...
x New algorithm for training
x (Slightly) better results than Wistulba

» Produces probabilities for moves
being best, not just “some numbers”



Part 3: Slow Knowledge

® [00 slow to compute at every node In
the search

®x Can still be useful
® WO Examples:
® Deep neural network

® [actical search



Deep Convolutional
Neural Networks (DCNN)

® |ntroduced for Go in two recent publications
x Clark and Storkey, JMLR 2015
x Maddison, Huang, Sutskever and Silver, ICLR 2015
® \ery strong move prediction rates, 55.2% (Maddison et al)

= Slow to train and use (even with GPU)



DCNN in Fuego

= \\Ne use networks
trained by Storkey and
Henrion (Storkey’s new
student)

x |[ntegrated in Fuego by
Andrew Jacolbsen (my
student)




Features vs DCNN

Feature Knowledge

DCNN

—valuation



Some Examples of Bad
DCNN Moves




Research Questions

x How to learn when:

= Move Is usually bad, but good here
(e.g. empty triangle example)

= Move Is usually good, but bad here
(e.g. cut example)

x [raining based on statistics of "similar” examples

cannot help - unless definition of “similar” is
extremely good

= How to catch these cases by exploration in MCTS



How to use Slow
Knowledge’?

® Solution in Fuego
= [hreshold N, e.g. N=200

x (Call slow knowledge for all nodes
that reach N simulations

x [or large N, this is a very small
percentage of all nodes

x (Can do something expensive



DISCUSSION

x Problem: knowledge is only called after
many simulations

x MCIS may not be changed much
®x How to balance?

x Better call ight away? But for which
nodes?

= Our DCNN-Fuego prototype calls DCNN
first, but only at root



Tactical Search

x Observation: Fuego often makes simple tactical
mistakes

®x Example: “geta’;, capture by n

= (Can be solved by a small tactical search
® Qur old program Explorer contains such a search

®x Use as slow knowledge, give bonus to moves that
save or capture

= About 70-80 Elo improvement for simple
Implementation



Other Ideas for Knowledge

(not implemented in Fuego)

® | ocal Life and Death search

® Semeal (capturing races)

® Prove safety, or invade/defend territories

® | ocal searches to filter which moves
make sense locally



DISCUSSION

= Many kinds of knowledge used in Go

®x Old programs were mostly about encoding
knowledge

x First MC TS programs used very little,
out it Is all coming lback

x \Vant to use machine learning to deal with
large amounts of knowledge

® Self-play or learn from human master games



Discussion (2)

®x Simulation policies are still “magic’

® Probably the biggest differences between

top programs and open source programs
are in this area

x Need scientific principles to design better
policies



Discussion (3)

x |ntegrating “slow” knowledge is a big
challenge

x How to "mix” it with a MCTS?

= Ve have only crude solutions (threshold,
root-only)

= Can we predict which nodes are
important, so we can call slow
kKnowledge immediately?



Summary

x Reviewed knowledge in MCTS Go programs,
especially Fuego

x Many imperfect, incomplete solutions
» Many different but overlapping approaches
®x Can we unify them lbased on a good theory?

x Still much work to be done to understand
and improve

= \What we do In Go can help other applications



