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Computer Go Research

= Brief history

= Recent progress ‘

®x Challenges :

x QOutlook




Computer Go

Ear‘y H |S'|:O ry Winter 1986-87

x Early work in the 1960s
and 1970s, e.g. Reitman
and Wilcox

® [ournaments start in mid
1980s when personal
computers become
avallable

® Big sponsor in Taiwan:
Ing foundation

An international bulletin devoted to the
generation and exchange of ideas about
Computer Go




Farly Go Programs

» Used patterns, often
hand-made

» | imited tactical search,
ladders

= | ttle or no global-level
search

® | ost with 17 handicap
stones against humans

ICGC 1988, Talwan,
Dragon (W) vs Explorer (B)



Progress vs Humans?

Ing Cup winning programs -
wins against humans (1985 - 2000):

17 stones - Goliath wins 1991 A /

15 stones - Handtalk wins 1995 bt
13 stones - Handtalk wins 1995
11 stones - Handtalk wins 1997
But: Two test games in 1998

17 stones - Handtalk loses to Gailly 5 kyu

29 stones - Many Faces of Go loses  Chen Zhixing (Handtalk)
Credits: M. Reiss



Martin Muller vs Many Faces of Go
29 handicap (1998)
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279 moves, White wins by 6 points



Monte Carlo Tree Search

x About 10 years ago,
French researchers revive
the idea of random
simulations for Go

x KOCSIS and Szepesvari
develop UCT

x Soon Crazy Stone and
MoGo lbecome strong and
start the MCTS revolution source: acm.org



http://acm.org

Some MCTS Go Mllestone Wlns
oML

x 2008 Mogo vs Kim 8p, 8
handicap

® 2008 Crazy Stone vs

Aoba 4p, 7 stones Olivier Teytaud (Mogo) Remi Coulom (Crazy Stone)
and Ishida 9p

= 2009 MoGo vs Chou 9p,
[ stones

x 2009 Fuego vs Chou 9p,
9x9even

Credits: http://www.computer-go.info,
gogameguru.com



http://www.computer-go.info
http://gogameguru.com

Current Strength

» Programs etten
sometimes win with 4
handicap against pro

FroIn

® | 0se with 3

® Yesterday, Chou 9p and
Yu 1p beat Zen with 4

, Cho Chikun vs Crazy Stone,
handicap 3 handicap, Densel-sen 2015
Credit: http://www.go-baduk-weiqgi.de



State of the Art in Gomputer
GO

hree main ingredients:

1. Iree Search
2. Simulation

3. Knowledge

Credits: visualbots.com,
sciencedaily.com,



http://sciencedaily.com

1. Tree Search

® \ery selective search

= Driven by two main
factors

n Statistics on outcome
of simulation

x Prior knowledge “bias’

on

3/5

n



Highly Selective Search

Snapshot from Fuego

18000 simulations,
of which more than 14000
OoNn one move

Most moves are not expanded
due to knowledge bias

Deep search: average 13.5
ply, maximum 31 ply




2. Simulation

® Play complete game

» Start at a leaf node in
the tree

» [Fast randomized policy
generates moves

= Store only win/loss
result of games in tree




Large Variance: Five More Simulations
From Same Starting Position
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Average Outcome

®x Single simulation
outcomes look almost
random

x Average of 100
simulations looks good!

» Statistics over “almost
random’” outcomes are
useful!




3. Go Knowledge for MCITS

1. SImple Features
2. Patterns

3. Deep Convolutional

Neural Networks
(B[N

® [rst question:
why use knowledge?




Using Knowledge

x Knowledge and simulations have different strengths

® Use for moves that are difficult to recognize with
simulation

» Use as evaluation function
» [Describes which moves are expected to be good or bad
» Use as initial bias in search

®x [UJse when no time to search



Knowledge

® | ocation - line, corner

» Distance -
to stones of both players,
to last move(s)

» Basic tactics -
capture, escape,
extend/reduce liberties
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Source: Stern et al, ICML 2006



Using Patterns

® Small patterns (3x3) used in fast
playouts

= Multi-scale patterns used in tree

® \Neights set by supervised learning



3.3 Deep Convolutional
Neural Networks, DCNN

S O 128 o convl
el s | Convolution| [~ ] (ReLU)

® |ntroduced for Go in two recent publications
x Clark and Storkey, JMLR 2015
x Maddison, Huang, Sutskever and Silver, ICLR 2015
® \ery strong move prediction rates, 55.2% (Maddison et al)

® Slow to train and use (even with GPU)



DCNN Move Prediction

x Network provided by
Storkey and Henrion

®x Added to Fuego

x Often strong focus on
one favorite move

x Often predicts longer
seguences of moves
correctly, but...




DCNN Are Not Always




More Knowledge...

» [actical search

x Solving Life and Death (Kishimoto and
Muller 2005)

» Proving safety of territories (Niu and Muller
2004)

® Special cases such as seki (coexistence),
nakade (large dead eye shapes), bent four,
complex ko



Challenges for Computer Go

x How to improve?

®x How to make progress?

x \Nhat should we work on?

= My personal list only,
NO broad consensus

®x Format;
1 slide to introduce a problem,
1 slide to discuss



Challenge: Strengthen the

Reainigy

1Y \ "7.
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x Many progra/r’nl authors do not talk/publish enough

= No coordinated effort to builld a top program



Research Questions

®x Can we combine research results without duplicating
effort”

®x Can we use a common software platform?

x Can we share detailed results, including testing and
negative results?
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Types of Go Knowledge

= Many kinds of knowledge

Challenge
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®  Simulation policy
® |n-free kKnowledge
= Neural Networks
® [actical search
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Source: usgo.org

= How to make them all fit together in MC TS



http://usgo.org

Research Questions

® [S there a ‘common currency’ for comparing different
knowledge (e.g. “fake” wins/losses in simulation)

®x How does the quality of MGCTS evaluation improve over
time, with more search?

» \\hat are the tradeofts between more, faster
simulations or fewer, smarter simulations (e.g. Zen)?



Challenge: Parallel Search

= Can scale up to 2000 cores

(Yoshizoe et al, MP-Fuego at UEC Cup
2014/2015)

x New parallel MCTS algorithms suc
TDS-df-UCT (Yoshizoe et al 2011) |

x Controlling huge search trees Is
difficult

®x [heoretical limits (Segal 2011)

. TSUBAME2.5 %t

Credits: V\;eétgrid.ca, titech.ac.jp



Research Questions

®x How to best use large parallel hardware??

x Adapt to changes in network, memory, CPU speed

®x Make search fault-tolerant (hardware/software does fail)
x How to test and debug such programs?

x Further improve parallel MCTS algorithms



Challenge: integrate MCITS
and DCNN Technologies

= DCNN with no search plays
“much nicer looking” Go than
Fuego

= DCNN makes a few blunders per
game

® Example: analyzed game at
http://webdocs.cs.ualberta.ca/
~mmueller/fuego/Convolutional-
Neural-Network.html



http://webdocs.cs.ualberta.ca/~mmueller/fuego/Convolutional-Neural-Network.html

Research Questions

®x How to add “slow but strong” evaluation
from DCNN to MCTS?

= How to set up the search to overcome blunders
and “holes” in knowledge??

= How to use faster DCNN implementations,
e.g. on GPU hardware?

= Can we predict for which nodes In tree
DCNN evaluation is most useful?



Challenge: Adapt
Simulations at Runtime

x Simulations are designed to work “on fe
average” ‘

piti
el LEE S

x Can we make them work better for a
specific situation? e w

x Use reinforcement learning - (Silver et
al ICML 2008), (Graf and Platzner,
ACG 20195)

x Use BAVE values -
(Rimmel et al, CG 2010)

c) Adaptive Playouts, Testcases 1-9

Source: Graf and Platzner 2015



Research Questions

x How to learn exceptions from general rules at runtime?
= How to analyze simulations-so-far?

® How to use the analysis to adapt simulations on the
fly"?



Challenge: Deep Search -
Both Locally and Globally

2012, professionals win 6-0 Vs
Zen on 9x9 boaro

® Reason: they can search critical
ines more deeply

x Huang and Muller (CG 2013):
MOost programs can resolve one
ife and death fight, but not two at
the same time

Source: asahi.com



http://asahi.com

Research Questions

x \What is “local search™?
x \\Vhere does it start and stop”? What is the goal?
x How to combine local with global search?
x Example: use local search as a filter
x \Vhich parts of the board are currently not interesting?

x \\Vhich local moves make sense ?



Challenge: use Exact
Methods

x Monte Carlo Simulations
INntroduce noise Iin evaluation

x Kato: 99% is not enough
(when humans are 100% correct)

®x (GO has a large body of exact theory

® Safety of territory,
combinatorial game theory for endgames

= Can we play “tractable” positions
with 100% precision?




Research Questions

® Extend exact methods from puzzles and late endgames
(Berlekamp and Wolfe 1994, Muller 1995, 1999) to

earlier positions

» Jse exact methods on parts of the board, such as
corners, territories (Niu and Muller 2004)

® Extend temperature theory from combinatorial games to

analyze more difficult earlier positions
(Kao et al, ICGA 2012), (Zhang and Muller AAAl 2015)



Challenge: Win a Match
Against lop Human Players

= \When will it happen
in Go?

®x Simon Lucas: <10 years

= Your prediction?

Y ; : Bl T
1. e4'c62;:d4 d5 3, Ne3 dxed

= Wil it happen at all?
It might not.

(Eg ShOgi, Chinese Deep Blue vs Kasparov
Chess) Source: http://cdn.theatlantic.com



http://cdn.theatlantic.com

Research Questions

= How to make programs strong enough to challenge
humans??

= How to design now for future hardware?

= How to create positions that are difficult for humans?

®x Maybe create complete chaos???

® How to avoid positions where programs are relatively weak?

x \\here humans can read extremely deeply and accurately



Summary of lTalk

®x Computer Go has come a long way in the last 50 years

x MCITS has given a big boost in improvement

® e are getting closer to best humans, but gap still large
® See yesterday’s games

®x Much research remains to be done

x \Nant more information? See my AAAI-14 tutorial
https://webdocs.cs.ualberta.ca/~mmueller/courses/2014-
AAAI-games-tutorial/index.html



https://webdocs.cs.ualberta.ca/~mmueller/courses/2014-AAAI-games-tutorial/index.html
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