
Dynamic Decomposition Search: A Divide and Conquer Approach and its
Application to the One-Eye Problem in Go

Akihiro Kishimoto
Department of Computing Science

University of Alberta
Edmonton, Canada, T6G 2E8

kishi@cs.ualberta.ca

Martin Müller
Department of Computing Science

University of Alberta
Edmonton, Canada, T6G 2E8

mmueller@cs.ualberta.ca

Abstract- Decomposition search is a divide and conquer
approach that splits a game position into sub-positions
and computes the global outcome by combining results
of local searches. This approach has been shown to be
successful to play endgames in the game of Go. This pa-
per introduces dynamic decomposition search as a way of
splitting a problem dynamically during search. Our re-
sults in solving one-eye problems in the game of Go show
the promise of this approach. Additionally, we propose
relaxed decomposition, a more ambitious way of splitting
positions.

1 Introduction

In two-player games with perfect information, programs
typically employ lookahead search to determine which
move to play. Traditional brute-force search algorithms ex-
plore all possible moves as deeply as possible in order to
improve the strength of a program. Such approaches have
been very successful, enough to reach the strength of the
best human players in games such as chess and checkers
[2, 8]. However, the game of Go has been resistant to a
pure search-based approach because of its difficult position
evaluation and large search space. Current computer Go
programs use a combination of exact and heuristic rules in-
stead of brute-force search.

One clear defect of heuristic approximations is that they
sometimes fail. As a result, all current computer Go pro-
grams show weaknesses in assessing the life and death sta-
tus of groups, the so-called tsume-Go problem. In general,
search is the only way to reliably determine the life and
death status of stones. Therefore we need to find effective
ways to tackle the large branching factor of Go.

One approach to overcome the large search space is to di-
vide a position into independent subpositions and combine
the outcome of local searches. This way, we can not only
achieve a large reduction of the search space, but also guar-
antee correctness. Decomposition search is such a divide
and conquer approach for Go endgames [5]. Using this ap-
proach, programs can solve a much larger class of endgame
problems than with classical minimax-based solvers. How-
ever, in basic decomposition search a problem is split into
subproblems only at the root node of a search. There are no
further splits during the search, so the method fails for ex-
ample when there is just a single large undivided area in the
beginning. In applications such as tsume-Go, it seems nec-
essary to do decomposition dynamically within the search

A B C D E F G H J

4 4
5 5
6 6
7 7
8 8
9 9

Figure 1: Example of a one-eye problem (Black to live).

tree.
This paper presents a dynamic divide and conquer ap-

proach to the problem of making one eye in an enclosed re-
gion. Experimental results show that our approach achieves
better performance on average. Also, we introduce the no-
tion of relaxed decomposition, which achieves a more fine-
grained division into sub-problems.

The structure of the paper is as follows: Section 2 briefly
describes the one-eye problem in Go. Section 3 reviews pre-
vious work. Section 4 presents the dynamic decomposition
algorithm. Section 5 discusses empirical results. Section
6 introduces relaxed decomposition search, and Section 7
presents some conclusions and discusses future work.

2 The One-Eye Problem in Tsume-Go

The one-eye problem in Go is a special case of Life and
Death (tsume-Go). It addresses the question of whether a
player can create an eye connected to the player’s stones
in a given region. A problem can be investigated for ei-
ther player moving first. Although this problem is simpler
than full tsume-Go, which is concerned with making two
eyes, there are many similarities. For example, every tsume-
Go problem in which the group under attack has already
surrounded one eye in some region reduces to the one-eye
problem on the rest of the board.

A one-eye problem in a given Go position is defined by
the following input:

• The two players, called the defender and the attacker.
The defender tries to make an eye and the attacker
tries to prevent it.

• The region, a subset of the board. At each turn, a
player must either make a legal move within the re-
gion or pass.

• One or more blocks of crucial stones of the defender.
The defender wins a one-eye problem by creating an
eye connected to all the crucial stones inside the re-
gion. The attacker can win by either capturing at least
one crucial stone, or by preventing the defender from
creating a connected eye in the region.

• Safe attacker stones, which surround the region to-
gether with crucial defender stones.

In the remainder of this paper, whenever we briefly say
“make one eye” we mean “create an eye connected to all the
crucial stones inside the region”, as above.

Figure 1 shows an example of a one-eye problem. Black
is the defender and White is the attacker. Crucial stones are
marked by triangles and the region is marked by crosses.
Black must make an eye inside the region, while White tries
to prevent that. There are unsafe stones at C6, E7, and H6.
If these stones are captured, a player might play at such a
point later, so they are part of the region.

3 Related Work

3.1 Decomposition Search

In decomposition search, a position is split into subpo-
sitions, which are surrounded by safe stones [5]. Local
searches, based on combinatorial game theory [1], are then
used to analyze each subposition. If all subproblems have
loop-free values, then the combinatorial game values of the
subproblems can be combined to achieve globally optimal
play. As mentioned above, all decomposition happens at the
root and there is no further decomposition during search.

3.2 Previous Work on Our One-Eye Solver

The previous version of our one-eye solver is described in
[3]. It uses a modified version of Nagai’s depth-first proof-
number (df-pn) search algorithm [7] which can deal with ko
repetitions. The solver checks each point in a given region
to find all potential eye points. If a complete eye connected
to crucial stones is found, the defender wins. If no potential
eye point exists, the attacker wins. In all other cases, df-
pn search is performed. The basic solver generates all legal
moves including a pass. The solver therefore guarantees
correctness for enclosed positions. An improved version
adds some simple and correct Go-specific knowledge, such
as detecting connections to safe stones and forced moves
that safely prune other moves. Despite a relatively small
amount of Go-specific knowledge, this solver succeeded in
solving hard problems that are not solved by the best gen-
eral tsume-Go solvers in a reasonable time.

3.3 Related Work on Tsume-Go

Wolf’s GoTools is currently the best tsume-Go solver that
specializes in solving completely enclosed positions [10].
GoTools contains a sophisticated evaluation function that
includes look-ahead aspects, powerful rules for life and
death recognition, and learning dynamic move ordering
from the search [11]. Most competitive Go programs also

A B C D E F G H J

4 4
5 5
6 6
7 7
8 8
9 9

Figure 2: A position to which a divide and conquer ap-
proach is applicable. (Black to play.)

contain a tsume-Go module. The commercial database
Tsume-Go Goliath uses a proof-number search engine to
check the user’s inputs. Vilà and Cazenave presented a static
approach to detect large eye shapes [9]. Such eye shapes
guarantee life by either dividing it into two eyes or living in
seki.

4 Dynamic Decomposition Search for the One-
Eye Problem

4.1 Basic Idea

The basic idea of our divide and conquer approach is simple.
For example, assume that Black needs to make the second
eye in Figure 2. A naive algorithm would generate moves
at all marked points in its search. This is clearly inefficient,
since the marked region is already split into two separate
areas. With the exception of ko fights, no move played in
one area can affect the result of whether there is an eye in
the other area. Instead of performing a global search, a di-
vide and conquer approach performs two local searches that
can be combined into a global result. This approach can re-
duce the branching factor and depth of the search by a large
margin.

However, if ko fights are involved in a local solution, this
approach can change the ko status because formerly local ko
threats become non-local. Figure 3 presents such a case. In
this example, White can capture the ko first but Black has a
local ko threat at 2. White needs one external ko threat to
win. However, if the region is divided into two parts, and
the solver looks only for eyes, it will miss the ko threat at
2 in the other region, and the ko becomes one where Black
needs an external ko threat.

To fix this problem, the solver would need to be extended
to search for ko threats in all subregions whenever the result
of the one eye search is a ko. This is currently not imple-
mented. There are further complications, for example if two
or more subregions end up as some kind of complex multi-
step or multi-stage ko. For simplicity, in this paper we con-
centrate only on eyes for which the defender does not need
to fight ko. Our solver correctly deals with double ko etc.
as long as all ko are in the same region.

4.2 The Dynamic Decomposition Search Algorithm

Let R be the region at the root position, and Rw be the work-
ing region that the algorithm is currently searching in. At

E F G H J

1
2
3
4
5
6

E F G H J

1
2
3
4
5
6

1

2
3

4

5 pass 6 at 1

Figure 3: Interacting regions in ko with the divide and conquer approach.

the start, set Rw = R. Then dynamic decomposition search
(DDS) works as follows:

1. If there is an eye in Rw, the defender wins.

2. Otherwise, if no eye space remains in Rw, the at-
tacker wins in Rw.

3. Before generating moves, the region Rw is tested for
a possible split into subpositions. Both safe attacker
stones and crucial defender stones are used for split-
ting. This check is done at every newly encountered
nonterminal position.

4. Suppose that a position is already partitioned into sev-
eral subpositions R1 · · ·Rk. If the defender is to play
and a move in Ri is chosen by the search control (see
the next subsection), then the working region Rw is
restricted to Ri. Below this position, moves are gen-
erated only in Ri, or an even smaller region when fur-
ther decompositions occur. This reduces the number
of possible moves and the search depth to reach ter-
minal positions. If the defender finds an eye in one
of the subregions R1 · · ·Rn, the defender wins. If no
eye is found in any subregion, the attacker wins.

5. If the attacker is to play, all moves in Rw are tried.

4.3 Search Control

If there are several subregions, the defender must select one
to expand the search in. Df-pn with DDS selects the move
to play based on proof and disproof numbers. This dynami-
cally selects a most promising working region at each step.
Figure 4 shows an example. Let the defender be a player
to prove a position, and the numbers on the board be proof
numbers. In this figure, Black plays at B6, because it has
the smallest proof number. The working region is narrowed
to the left side. White answers only in the left subregion
after Black’s B6. Assume that the proof number at B6 is
changed to 5 after exploring positions below Black’s play at
B6. Then, Black plays at G6 because it becomes the small-
est proof number. The working region switches to the right
subregion.

4.4 Using the Transposition Table in DDS

In a normal transposition table, Zobrist hashing [12] maps
a full board position to its hash key. However, in DDS we

A B C D E F G H J

4 4
5 5
6 6
7 7
8 8
9 9

2
5
3 5

6 6 6 6
6 5

6 6 6 6 6

6
1

6
4
6 6

Black to play

Figure 4: Example of using proof numbers to select the
working region.

must distinguish between different working regions. For ex-
ample, if a position contains two subregions A and B, there
can be three cases for move generation: only in A, only in
B, and in both A and B. In order to differentiate these cases,
we encode the working region into the hash key as well.

5 Experimental Results

5.1 Setup of Experiments

Even though there is a large amount of literature on tsume-
Go, there are almost no specialized collections of one-eye
problems. Landman [4] has a collection of small examples.
We created our own test collection with more challenging
instances, available at http://www.cs.ualberta.
ca/˜games/go/oneeye/. Each test problem can be
solved for either color moving first. Some problems are
only interesting if one particular player goes first, and are
very easy for the other.

We used two test suites in the experiments. The first test
suite, the toy problem collection (TOY), contains 13 test po-
sitions (26 problems) that are already completely or mostly
split into independent problems at the root. Figure 5 illus-
trates an example of this kind of problem. These problems
were used mainly to verify that the decomposition approach
works. The second test suite is the standard problem collec-
tion (STANDARD), an extension of the test collection used
in [3]. It contains 81 test positions (162 problems). Some
problems are hard for our previous one-eye solver. Figure 6
shows a representative example.

We compare two versions of our solver, with and without
dynamic decomposition search (DDS). The version without
DDS, no-DDS, is based on the solver described in [3]. It

A B C D E F G H J K L M N O P Q

9
10
11
12
13
14
15
16
17
18
19

Figure 5: Example of a one-eye problem that is already split
(divide-conquer.12.sgf, Black to live by playing at O12).

A B C D E F G

1
2
3
4
5
6
7

Figure 6: Example of a hard problem (oneeyee.1.sgf, Black
lives with B2).

is improved by adding heuristic initialization of proof and
disproof numbers at leaf nodes. All experiments were per-
formed on an Athlon XP 2800+ with a 300 MB transposi-
tion table. The time limit was 5 minutes per problem.

5.2 Results

Tables 1 and 2 compare the solving abilities of DDS and
no-DDS. More positions are solved by using DDS in TOY.
Moreover, all problems solved by no-DDS were also solved
by DDS. On the other hand, both versions solved the
same subset of problems in STANDARD. The improvement
achieved by DDS is a factor of 66 in TOY and 1.2 in STAN-
DARD in total execution time. This indicates that DDS sur-
passes the abilities of our previous df-pn solver.

On average, DDS is about 13% slower in terms of node
expansions per second (see Table 2). However, sometimes

Table 1: Performance comparison for DDS and no-DDS in
TOY. All statistics are computed for 23 problems solved by
both program versions.

Number of Total Total Nodes
problems time nodes expanded

solved (sec) expanded per second

No-DDS 23 52 2,169,239 41,636
DDS 26 0.79 49,433 62,573

Total Problems 26 - - -

Table 2: Performance comparison for DDS and no-DDS in
STANDARD. All statistics are computed for 157 problems
solved by both program versions.

Number of Total Total Nodes
problems time nodes expanded

solved (sec) expanded per second

No-DDS 157 1,975 84,084,752 42,573
DDS 157 1,645 62,129,738 37,774

Total Problems 162 - - -

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

N
o-

D
D

S

DDS

Linear
Each problem

Figure 7: Node expansions for toy problems solved by both
versions.

DDS is faster, especially in TOY (see Table 1). In particular,
with decompositions at or near the root, DDS can concen-
trate on a smaller region, which speeds up basic operations
such as detecting potential eye points and move generation.

Figure 7 compares node expansions of both solvers for
each problem in TOY. The number of nodes explored by
DDS is plotted on the X-axis against no-DDS on the Y-axis
on logarithmic scales. In points above the diagonal DDS
performed better. Except for one problem DDS expanded
at most as many nodes as no-DDS, and often dramatically
less. The performance of DDS scales exponentially better
in the size of problems. For example, DDS solved the po-
sition in Figure 5 in 1,075 nodes, while no-DDS needed
334,718 nodes. This is not surprising, since all positions
in this set are ideal for DDS, while no-DDS suffers from
combinational explosion.

Figures 8 and 9 present the results for STANDARD. None
of these problems were designed with decomposition in
mind. In contrast to Figure 7, there are more problems
where DDS was slower. However, on average DDS explores
less nodes and needs less execution time. This is especially
true for the larger problems, so DDS seems to scale bet-
ter. DDS sometimes improves the performance by a large
margin. For example, DDS needed 360,163 nodes in 7.5
seconds for the position in Figure 6, whereas no-DDS ex-
plored 1,732,845 nodes in 35.6 seconds. In this position,
decompositions triggered by black crucial stones and white
safe stones reaching the borders of the board seem to occur
frequently.

 0.1

 1

 10

 100

 0.1 1 10 100

N
o-

D
D

S

DDS

Linear
Each problem

Figure 8: Execution time for standard problems solved by
both versions.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

N
o-

D
D

S

DDS

Linear
Each problem

Figure 9: Node expansion for standard problems solved by
both versions.

A B C D E F G H J K L

6 6
7 7
8 8
9 9

10 10
11 11

A
B

Figure 10: Relaxed decomposition.

In the hard problems of this set, the percentage of nodes
in which decompositions are possible varies from 16% to
50%. In Figure 6, DDS detected 127,479 (35.3%) decom-
positions.

6 A Relaxed Decomposition Model

DDS is limited in the way that splits are recognized. The
only points used to split positions are those occupied by safe
attacker and crucial defender stones. In this section we in-
troduce a less rigid decomposition that uses “almost safe”
attacker stones as well. Figure 10 shows an example. If
we assume that the two white stones marked by squares are
safe, then we can split the area into two subregions, a left
subregion marked by small grey squares and a right region
marked by crosses. The attacker can always make the two
marked white stones safe by following a simple miai con-
nection strategy: Whenever the defender plays either con-
nection point A or B, reply on the other point. In our re-
laxed decomposition model, we use such stones for splitting
a position. However, during the search we must handle the
case where a miai connection is attacked by the defender.

In this case, our approach extends the search to the union
of the affected subregions. We explain the algorithm in de-
tail with the help of Figure 10. In this figure, let region R1

consist of the empty point A and all points marked by filled
squares. Region R2 contains B and all points marked by
crosses. The connection points A and B together form a
miai connection from safe attacker stones to an almost safe
attacker block. Without loss of generality, assume that the
defender starts playing in R1. Then Relaxed Decomposi-
tion Search (RDS) defines the strategies of both players as
follows:

1. If both A and B are empty, both players are restricted
to play moves in R1.

2. If either A or B contains a stone of the attacker, the
relaxed decomposition has changed into a normal de-
composition. Both players keep playing in R1.

3. Otherwise, if at least one of A and B contains a stone
of the defender, and the other point is empty or also
occupied by the defender, the region is extended and
both players continue playing in R1 ∪ R2.

In RDS, as long as the defender does not play at A, both
players stick to play in R1. However, if the defender plays
at A and the attacker does not respond at B, then the de-
fender can invade R2. As in DDS, the defender can switch

between trying moves in R1 and R2 at the root. This process
is controlled by proof numbers.

The following lemma is needed to prove correctness of
RDS.
Lemma 6.1 Assume the following:

1. Position P contains region R which is split into two
subregions R1 and R2 by relaxed decomposition.

2. The attacker is to play in P .

3. Two connection points A in R1 and B in R2 are
empty.

4. If the attacker plays at A in P , the defender can still
create an eye unconditionally (without ko) in R1.

Then, the defender can create an eye in R1 unconditionally
for the position after the attacker plays a move in R2 for P .

We give a proof sketch for the case of a DAG. Let P1

be the node after the attacker plays a move at A for P , and
P2 be the node after the attacker plays a move in R2 for
P . We prove that the defender can make an eye for P2 by
following the winning strategy for P1. The lemma is proven
by induction on the maximum depth d of a terminal node in
the proof graph of P1.

Case 0: d = 0 If P1 is a terminal position, the same eye
exists in both P1 and P2.

Case 1: d = 1 The defender can create an eye by making
move m �= A in R1 for P1. Since P1 is identical to
P2 within R1−{A}, m is legal in P2 and also creates
an eye there.

Case 2: induction step Assume that Lemma 6.1 holds for
all d ≤ k. We prove that the lemma also holds for
d = k + 2. Let m ∈ R1 − {A} be the winning
defender move in P1, Q1 be P1’s child after play-
ing m for P1, and n1, n2, · · · , nl be Q1’s children.
Let n1 be the node after the attacker passes for Q1.
Since m ∈ R1 − {A}, m is legal for P2. Let Q2

be P2’s child by playing m, o1 be Q2’s child after
the attacker plays at A, o2 · · · op be Q2’s children af-
ter moves in R2, and op+1 · · · op+q be Q2’s children
from moves in R1. The defender can make an eye for
op+1 · · · op+q by the assumption of Lemma 6.1. R1

is completely separated from R2 in o1 and n1. More-
over, since o1 and n1 are identical positions in R1, the
defender can create an eye in o1. By induction, since
o1 has depth d ≤ k, the defender can create an eye
for o2 · · · op. Thus, the lemma is proven for the case
of k + 2.

The following theorem guarantees the correctness of
RDS in the case that an eye is found.
Theorem 6.1 Assume that R is split into two subregions R1

and R2 by RDS. If the result of RDS shows that the defender
can create an eye unconditionally (without ko) in either R1

or R2, then that eye can always be made against any at-
tacker strategy in R1 ∪ R2.

In the following, we call the proof graph created by RDS
the RDS proof graph, and a proof graph for the whole region
R1 ∪ R2 an original proof graph.

We present a proof sketch which shows that each RDS
proof graph can be converted into an original proof graph,
for the case where the RDS proof graph is a DAG. We use
induction on depth of a terminal node in the RDS proof
graph. We only explain the first case of RDS with the help of
Figure 10. The other two cases are trivial, because search-
ing either with completely separated subregions or with the
whole region is performed in those cases.

Assume without loss of generality that the first defender
move is in R1. As above, if the RDS graph contains only
a terminal node, an eye already exists and the RDS proof
graph also works as an original proof graph.

Otherwise, let n be the root of the RDS proof graph. As-
sume that by induction n’s descendants in the RDS graph
have been converted to original proof graphs.

• If n is an OR node, n’s move m leading to n’s child
nc in the RDS proof graph is also legal for search-
ing in R1 ∪ R2. nc’s RDS proof graph can be con-
verted to nc’s original proof graph by the induction
assumption. Hence, we can construct n’s original
proof graph by adding a branch m from n to nc’s
original proof graph.

• If n is an AND node, assume that n’s children
nc1 , · · · , nck

in R1 have proof graphs. Let nc1

be n’s child after the attacker plays a move at A,
nck+1 · · ·ncl

be n’s children by playing in R2. We
need to prove that nck+1 · · ·ncl

have original proof
graphs. nc1 guarantees that an eye can be made in R1,
since R1 is completely separated from R2. By apply-
ing Lemma 6.1 to nck+1 · · ·ncl

based on nc1’s proof
graph, the defender can make an eye for nck+1 · · ·ncl

.
Hence, nck+1 · · ·ncl

have original proof graphs.

We believe that our lemma and theorem also hold for
cyclic graphs in the case where the eye can be made uncon-
ditionally. However, we need a different approach to prove
our conjecture for cyclic graphs, because we use a property
of DAGs in proving the theorem by induction. The induc-
tion in our proof uses the fact that children have a depth that
is at least 1 smaller than their parents. This property does
not hold for cycles.

RDS can split positions more frequently than DDS. The
approach can be generalized to more than two relaxed split
subregions, as long as all the miai connections to safe at-
tacker stones are disjoint. However, the completeness of the
relaxed decomposition algorithm is not known yet. To prove
that no eye is possible, the worst case scenario might require
re-searches in the whole region. In this case, we must devise
an efficient way for re-searches.

7 Conclusions and Future Work

In this paper, we presented a method that dynamically de-
composes a position into sub-positions during search. The

results of this dynamic decomposition search are encour-
aging. In many problems, DDS is able to reduce the search
space by a large margin, thereby enabling the one-eye solver
to solve harder problems more quickly. However, there are
still a lot of unexplored topics such as:

• The current version of DDS is limited to dealing with
ko fights only in the same region. To overcome this
problem, we need to find a detailed ko status and
ko threat status of each divided region, and combine
them.

• Investigating relaxed decomposition search is a chal-
lenging topic from both the theoretical and practical
point of view. Furthermore, splitting a position in a
more aggressive way such as by using divider pat-
terns [6] is an interesting extension of this research
topic.

• Applying the ideas to other parts of Go, such as con-
nections, territories, and tsume-Go, or other games
such as Hex will be a challenging topic. In particu-
lar, tsume-Go is an interesting domain for further in-
vestigations. In tsume-Go, the decomposition will be
more complicated. Suppose that a region is split into
two completely separated rooms A and B. There are
several possibilities to be considered, such as making
(1) two eyes at A, (2) one eye at A and the other eye at
B, (3) two eyes at B, or (4) one eye either at A or at B
if one eye already exists. Local searches must distin-
guish between sente and gote. For example, the posi-
tion in Figure 11 has two subregions, a left subregion
R1 marked by small grey squares and a right subre-
gion R2 marked by crosses. Move B6 in R1 makes
one and a half eye and move D6 in R2 makes half an
eye. Black can live with B6, since White cannot play
both B4 and D6. To solve such a problem with two
separate searches in R1 and R2, return values such as
“1.5 eyes” or “0.5 eyes” [4] must be recognized by
the search.

• Incorporating DDS into a complete Go-playing pro-
gram is an important topic. We will probably have
to heuristically decompose positions, since many po-
sitions in the real games are not closed off by safe
attacker stones.

Acknowledgments

We would like to thank Adi Botea for reading drafts of the
paper and giving valuable comments. Financial support was
provided by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Alberta Informatics
Circle of Research Excellence (iCORE).

Bibliography

[1] E. Berlekamp, J. Conway, and R. Guy. Winning Ways.
Academic Press, 1982.

A

A

B

B

C

C

D

D

E

E

F

F

1
2
3
4
5
6
7
8

Figure 11: Decomposition for tsume-Go.

[2] M. Campbell, A. Joseph Hoane Jr., and F.-h. Hsu.
Deep Blue. Artificial Intelligence, 134(1-2):57–83,
2002.

[3] A. Kishimoto and M. Müller. Df-pn in Go: Applica-
tion to the one-eye problem. In Advances in Computer
Games. Many Games, Many Challenges, pages 125–
141. Kluwer Academic Publishers, 2003.

[4] H. Landman. Eyespace values in Go. In
R. Nowakowski, editor, Games of No Chance, pages
227–257. Cambridge University Press, 1996.

[5] M. Müller. Decomposition search: A combinatorial
games approach to game tree search, with applications
to solving go endgames. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI’99), volume 1, pages 578–583, 1999.

[6] M. Müller. Computer Go. Artificial Intelligence,
134:145–179, 2002.

[7] Ayumu Nagai. Df-pn Algorithm for Searching
AND/OR Trees and Its Applications. PhD thesis, De-
partment of Information Science, University of Tokyo,
2002.

[8] J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer-Verlag, 1997.

[9] R. Vilà and T. Cazenave. When one eye is sufficient:
A static approach classification. In Advances in Com-
puter Games. Many Games, Many Challenges, pages
109–124, 2003.

[10] T. Wolf. The program GoTools and its computer-
generated tsume Go database. In Hitoshi Matsubara,
editor, Game Programming Workshop (GPW), pages
84–96. Computer Shogi Association, 1994.

[11] T. Wolf. Forwarded pruning and other heuristic
search techniques in tsume go. Information Sciences,
122(1):59–76, 2000.

[12] A. L. Zobrist. A new hashing method with applica-
tions for game playing. Technical report, Department
of Computer Science, University of Wisconsin, Madi-
son, 1970.

