Race to Capture: Analyzing Semeai in GGo

Martin Muller
ETL Complex Games Lab
Tsukuba, Japan

mueller@etl.go.jp

September 10, 1999

Abstract

Skill in analyzing capturing races, or semeaz, is an
important component of Go playing strength for
both humans and computer programs. Techniques
for analyzing semeai have been developed centuries
ago, and passed on among Go players. A number
of informal descriptions of the basic methods are
available in Go books. This paper starts develop-
ing a formal theory of semeai, leading to an algo-
rithm for basic semeai classes that has been tested
successfully against top Go programs.

Q 00000
[39,

O®
00
000 ®

Figure 1: Class O semeai: one essential block each,
plain outside liberties, shared liberties

1 What is a Semeai?

Figure 1 shows two simple cases of a semeai. A
textbook-like definition is 7 A race to capture be-
tween two adjacent groups that cannot both live”.
Such a definition may be good enough for humans,
but 1t 18 not sufficiently precise for implementing
semeai in a computer program. This paper gives
both more narrow and more general definitions of
semeai. The narrower definitions cover cases which
can be detected and evaluated statically, without
search. The more general definitions are designed
to cover potential semeai, unclear situations which

might end up as a race to capture, and can be re-
solved by search. However, during the search it
might turn out that the situation i1s not really a
semeai, because one side can make life, leaving the
other side dead, or because both sides should de-
fend themselves instead of attacking the other.

While this paper deals mainly with static analy-
sis of semeai, it thereby also provides a foundation
for efficient search-based algorithms.

Section 1 clarifies the term semeai, and its re-
lation to other tasks such as proving the safety
of territories and solving Life-and-Death (tsumego)
problems. Section 2 describes the components of
semeai such as essential blocks, liberties, and eyes,
gives the outline of a general algorithm to solve
semeai, and classifies semeai into nine categories.
Section 3 deals with the static analysis of the two
simplest semeai classes, describes how to recognize
such semeai, and gives a complete solution in terms
of combinatorial game values. The section also de-
scribes restrictions on which semeai can be stati-
cally recognized, and motivates why these restric-
tions are necessary by examples. Section 4 very
briefly deals with semeai classes 2 and higher, and
Section 5 shows some results on full board semeai
problems.

1.1 Semeal and other Game Phases

Semeai often occur as subproblems of another task,
such as proving the safety of stones and territory, or
solving life and death problems. Examples include:
keep a territory safe by winning a semeai against
an intruder, rescue stones by cutting through a sur-
rounding wall and winning the semeai against some
part of the wall, connecting stones by setting up a

lack of liberties for the opponent.: if he or she tried
to cut, that would lead to a lost semeai.

Cases where blocks of both players have few lib-
erties can be handled reasonably well with existing
capture search techniques. The methods presented
here are most useful in situations where blocks have
many liberties and/or large eyes. Tn such cases
they are much more efficient than a purely tacti-
cal search.

2 Describing Semeai In-

stances

2.1 Finding Semeai

Perhaps surprisingly, identification of semeai in a
given (Go position requires the same preliminary
analysis as for the endgame [3, 5]: identification
of safe blocks and territories [4], followed by a par-
tition of the rest of the board into connected com-
ponents called local games. Each local game, con-
sisting of empty points, plus possibly unsafe stones
of either player, can potentially become a semeai.
This holds even if the area is currently completely
empty or contains stones of only one player.

To be able to evaluate semeai statically, much
more restrictive conditions must be satisfied. Such
conditions will be discussed in section 3.

2.2 Classification of Blocks and

Empty Points

Classification of points in a local game is a first
step in identifying semeai. In each local game, we
recognize the following types of blocks of stones and
empty points:

Essential block A block of black or white stones
which must be saved from capture. Captur-
ing an essential block immediately decides a
semeai.

Nonessential block Block which can be cap-
tured without losing the semeai. An example
of a nonessential block is a small block con-
tained in the opponent’s eye, such as the single
white stone in Figure 3.

Unknown block Contains all remaining blocks
that cannot be classified as either essential or

nonessential blocks. Saving or capturing such
blocks has some priority as a heuristic, but it
does not necessarily decide the semeai.

Outside liberty An empty point that is a liberty
of an essential block of one player, but not a
liberty of an essential opponent block. An out-
side liberty is called plain if it is also adjacent.
to a safe opponent block, so the opponent can
fill the liberty without making additional ap-
proach moves.

Shared liberty Common liberty of essential

blocks of both Black and White.

Eye An area completely surrounded by essential

blocks of one player. The area can contain
nonessential blocks of either player. A plain
eye has only one surrounding block, and all
empty points inside are adjacent to that block.
This definition is broader than the usual one,
and includes cases where the surrounded re-

gion will end up as more or less than one eye.

Unknown area Area that cannot be classified as
outside liberties, shared liberties, or eye.

2.3 Eye Status and Liberty Count

Q0O
O

OO

O

o000 QO
O

Q
Q Q
O O

Figure 2: Basic nakade shapes

An eye area is called a nakade if the opponent can
fill all but one of its points by one of the basic
nakade shapes shown in Figure 2.

In semeai, small eyes with size from 1 to 3 be-
have in the same way, while larger eyes are stronger
both in terms of providing more liberties than their
size and in having an advantage in semeai against
smaller eyes. We model this behavior by an eye
status. For each eye size, Table 1 shows the status

and the number of liberties. For 0 <m < n <7, a

Size 012|345 6 7
Status O]l 1] 1111415 6 7
Taberties | 0 | 1 23| 5|8 12 |17

Table 1: Eye status and liberties

n point nakade shape filled by m opponent stones is
equivalent to (77,2 —3n)/2+ 3 — m outside liberties.
A nakade shape is unsettled if it has not yet been
reduced to only one eye, and the defender can still
make two eyes there. Figure 4 shows an example.

2.4 Steps of a Semeai Algorithm

The following steps are a general outline of a semeai
solving algorithm. Some details are discussed in
later sections.

1 Board Partition Find safe blocks of stones and
territories. Partition the rest of the board into
connected components, called local games.

2 Semeai Identification Investigate which local
games are semeai candidates by the following
substeps.

2.1 Eye Recognition Subdivide each local game
into regions surrounded by stones of a single
player. Test each such region whether it is a

plain eye for that player.

2.2 Liberty Regions After finding blocks and
eye regions, divide the rest of a local game into
liberty regions surrounded by stones of both
players. Classify liberty regions as outside lib-

erties, shared liberties, or unknown.

2.3 Block Classification Classify blocks as es-
sential blocks, nonessential blocks, and un-

known blocks.

2.4 Semeai Safety Test For each color, deter-
mine if winning the semeai would ensure the

safety of all essential blocks.

2.5 Semeai Classification Determine which se-

meai class the local game belongs to.

3 Static Evaluation For semeai of classes (0 to 2,
statically evaluate the semeai to find 1ts status
and its combinatorial game evaluation.

4 Search For semeai of classes 3 or higher, use
search to find the outcome.

5 Move Generation for Semeai Play Using
the results of search or static evaluation,
generate moves to play each semeai on the
board. Use exact combinatorial game values
when available, and a heuristic temperature
estimate otherwise.

2.5 A Classification of Semeai

The following classification proceeds from simple
semeai that can be analyzed statically to cases with
less structure, which require more and more search
to solve.

Class 0 Exactly one essential block of each color,
only plain external and plain shared liberties,
no eyes.

Class 1 One essential block of each color, may
have one plain eye potentially containing one
opponent, nonessential block in a nakade shape.

Class 2 Tike class 1, but eyes include unsettled
nakade.

Class 3 Non-plain eyes and/or external liberties
which can be proven by search to be equivalent.
to some plain eye/liberty region.

Class 4 General eyes and/or liberty regions. More
complicated values of regions, for example re-
gions that allow to gain or lose more than 1
liberty by a move. Regions with unsettled

eye status: players can make or prevent eye(s)

there.

Class 5 Additional unsafe blocks in liberty re-
blocks
gain/reduce liberties. However, these blocks
are not adjacent to opponent’s essential block.

gions. Connect, cut these to

Class 6 More than one essential block per player,
but they form a chain. Cutting the chain wins
the semeai for the opponent.

Class 7 General semeai in completely surrounded
local game.

Class 8 Tl.ocal area not completely surrounded by
safe stones.

Figure 3: Class 1 semeai: plain eyes

Oa b? @

00O 000
000000 V00O
00000 0000e

Figure 4: Class 2 semeai: unsettled nakade

Figures 1 to 7 contain examples of each semeai
class. Figure 1 shows two class 0 semeai. On the
left, Black has one plain liberty region containing
three plain liberties, and White has two plain lib-
erty regions containing one liberty each. On the
right, White has one plain liberty, and there is one
shared liberty region containing 3 liberties.

In Figure 3 both Black and White have an eye.
Black’s eye includes a white stone. This stone is
nonessential: Black should not try to capture it,
and White can afford to lose it without losing the
semeai. During the course of the semeai the eye
area will be occupied by nonessential stones and
emptied by a capture several times.

Figure 4 shows an unsettled nakade shape. Black
must play in at ‘a’ to prevent White from making
two eyes. In Figure 5 on the left, the white lib-
erty region is not plain because the point ‘a’ is not
adjacent to a surrounding opponent block. How-
ever, in semeai the area behaves like a plain three
liberty area, a fact which can be proven by search.
The right side picture shows an eye area that is not
plain, since the corner point is not adjacent. to the
black block. Tn this case the number of liberties is
dramatically reduced from 7 to 3.

Figure 6 shows a class 5 semeai on the left, which
contains an additional white block. White can win
the semeai among the essential blocks going first,
but cannot save the marked block. Tn the class 6
semeai on the right side, Black has two essential
blocks which form a chain and can connect at ‘a’
or ‘b’. Black cannot give up either of the essential
blocks, in contrast to the situation in the previ-

®
a 00000
:‘00 OOO0®
® 0000

Figure b: Class 3 and 4 semeai: non-plain liberty
at ‘a’, non-plain eye space

@)
923999
QO0O® Yo,
Te 000
>0 00000
[1])

Figure 6: Class 5 and 6 semeai: unknown block,
more than one essential block

ous figure, where White could afford to give up one
block yet win the main fight. Figure 7 shows a gen-
eral semeai of class 7 on the left, which lacks any
of the special properties of classes 0-6. The semeai
area is still completely surrounded by safe blocks.
Finally, the right side shows a class 8 semeai which
does not have a complete surrounding wall. Tn such
a situation players must consider additional options
such as trying to break out to the outside, or coun-
terattacking against the wall. Fixing the boundary
of the semeai becomes somewhat arbitrary.

3 Static Semeai Analysis

3.1 Semeai Evaluation

The traditional liberty-counting methods for se-
meai evaluation are known to many Go players. [1]
provides a detailed introduction, while [2] contains
a more concise summary. In our classification, the
evaluation directly applies to semeai of class (0 and

1.

3.1.1 Who Wins, and by How Much?

To decide who wins a semeai, compute each player’s
liberty count, and eye status, as well as both players’
shared liberties.

A player’s liberty count, Lg or Ly, is the sum
of the number of outside liberties, plus the liberty

Figure 7: Class 7 and class 8 semeai: completely
surrounded and open-ended area

Figure 8: Counting liberties

count of the players eye (if there is one). For exam-
ple, in Figure 8 the black block has 0 outside lib-
erties plus 8 — 1 = 7 liberties from a five point eye
containing one opponent stone, so Lg = 04+7=17.
The white block has 6 outside liberties plus 5 lib-
erties from a four point eye containing 0 opponent,
stones, for a total of Ly = 6+5 = 11 own liberties.
The number of shared liberties S = 2.

If the eye status of players is different, then the
player with poorer eye status must be the attacker.
If both have equal eye status, and one player has a
surplus of own liberties, that player is the attacker.
If both eye status and liberty count are equal then
either player can be the attacker. Set A = Lg—Lw
if Black is the attacker and A = Ly — L g otherwise.
In the example, White is the attacker because of
poorer eye status (4 vs. 5),s0 A = Ly — Lg = 4.

The number of forced liberties F' is the number
of shared liberties that attacker has to fill to put
defender into atari. If defender has an eye, or there
are no shared liberties (S = 0), then FF = S. 1If
defender has no eye and S > 0, F =S5 — 1. In the
example Black has an eye, so F' =S5 = 2.

The semeai formula compares the attacker’s lib-
erty surplus to the number of forced liberties:

The semeai formula: Attacker succeeds if

A>F

Furthermore, attacker needs to play only if A =

F. If A > F, attacker is A — F moves ahead in the
semeai and need not play immediately. Tf attacker
fails, there are two cases: if the eye status of players
is different,, or the number of shared liberties is too
small, then attacker loses. Otherwise it is a seki,
in which the stronger side must play F — A moves
before it becomes unsettled. Tn the example, A >
F', so White wins and is A — F = 2 moves ahead
in the semeai.

The outcome of the semeai can be summed up by
two numbers: Semea: status measures how many
moves the winner is ahead in the fight. Positive
values are good for Black, negative values are good
for White. TIf the semeai status is 0, the outcome

Sekilevel 1s defined

only if semeai status is 0, and measures how many

is either unsettled, or seki.

consecutive moves the stronger side can make be-
fore the outcome changes from seki to unsettled.
If sekil.evel = 0, the outcome is unsettled, if
sekiLevel > 0 it is a seki. The following code frag-
ment computes semeai status and sekil.evel, deter-
mines whether the semeai is unsettled and com-
putes the winner.

// input: betterFEye, A, Agw = Lg — Lw, F
// output: semeaiStatus, sekil.evel, isUnsettled, winner

if (betterFye == none) // same eye status: may be seki
{ (A< R

{ semeaiStatus = 0; sekil.evel = F - A;

}

else

semeaiStatus = Agw + ((Apw > 0)? -F : F);

else // different eye status: never seki
{ semeaiStatus = Agw;

semeaiStatus += (betterEye == Black) ? F : -F;
isUnsettled = (sekil.evel == 0) && semeaiStatus == 0;
winner = (semeaiStatus == 0) ? none :

(semeaiStatus > 0) ? Black : White;

3.2 Semeai and the Safety of Stones
and Territories: When Winning
the Semeai Loses the Fight

3.2.1 Capture-Recapture Tactics

In some cases, being the first to capture the oppo-
nent. does not prevent the player’s stones from be-
ing captured later. Examples of snapback, oi-otoshi
and ishinoshita are shown in Figures 9 and 10. In
each of these examples, semeai analysis shows that
Black can capture White going first. However, this
capture fails to secure the black stones, and they

0000
.O%O
00000

00 |

000+
%@92%
00000 OO00O

Figure 9: Snapback and oi-otoshi

Figure 10: Tshinoshita

will be captured when White again plays into the
empty region of the original white stones.

O
Oa

Figure 11: Hidden nakade shape

3.2.2 Capture Does not Create Two Eyes

For determining whether a capture will guarantee
two eyes for a player, it is not enough to analyze the
current shape of the opponent’s stones. In Figure
11, the current shape of the white stones in the
corner is not a nakade, so Black might have some
hope of living. However, White can create nakade
at ‘a’ any time, and Black cannot prevent it, so
Black is dead with only one eye. Figure 12 shows
another example: Black connects at 1, expecting
White to make two eyes in the corner at ‘b’ so Black
can connect at ‘a’. However, White can play at ‘a’,
and it 1s useless for Black to ‘kill’ the corner. 1If
Black captures two stones, White recaptures and

Black

connects, leaving a 6 point nakade shape.

000000000000

Figure 13: 88 stone capture problem

has only one eye.

Figure 13 shows a classic problem composed by
Intetsu Akaboshi in the 18th century, in which
White captures a total of 88 black stones but still
dies. The problem starts off with a 16 stone capture
which leads to only one eye.

A related question is whether a nakade-like sit-
uation guarantees at least seki by two shared lib-
erties for the player on the outside. In Figure 14,
blocks ‘A’ are alive in seki, but blocks ‘B’ are dead.
A general classification procedure for eye shapes is
beyond the scope of this paper.

3.2.3 Two Rules for

Safety

Simple Ensuring

One of two simple static rules can often be ap-
plied to ensure that winning the semeai will lead to
safety. Rule 1 ensures safety by connection, Rule
2 by making a second eye for a group that already
has one eye. As the examples of Figures 11, 12 and
13 demonstrate, it may not be easy to come up with
good static rules for the third case: ensuring two
eyes by capturing.

Rule 1: A player’s essential block in semeai will
be safe after winning the semeai if there exist two
opponent stones which are adjacent to both the

e 880

Figure 14: Seki(A) and seki-like nakade shape(B)

block and a safe block of the same player.

Rule 2: A player’s essential block in semeai will
be safe after winning the semeai if it has one eye and
there exists another region containing an adjacent
opponent block which is f-vital [4] for the player.

3.3 Determining the Game Value

We will use Japanese rules for counting. Chinese
rules differs mainly in case of seki. The game value
for semeai of classes 0 and 1 is simple: if the win-
ner is decided, or if it’s a seki, the score is an in-
teger. Tf the semeai is unsettled, the score is a
switch. The game value can be computed using
two auxiliary functions returning an integer: Win-
nerScore(player) and SekiScore().

WinnerScore(player) is determined as follows:
every shared liberty and every opponent external
liberty counts as one point. Every opponent stone
counts as two points. From the sum of these values,
subtract the number of necessary defensive moves.
Finally, the sign of the total score is +1 for Black
and -1 for White.

|WinnerScore(player)| = shared + ext(opp)
+2 x stones(opp) — Defensive M oves(player)

The number of necessary defensive moves, De-
fensiveMouves(player), is a nonnegative value, the
minimum of two values: the number of moves re-
quired to capture the opponent, and the number of
moves the player has to make to remain ahead in
the semeai if the opponent, fills all outside liberties.

Defensive Moves(player) = maz(0,
min(ext(player) + 1 — |semeaiStatus|,

libs(opp) + shared))

SekiScore() is close to 0, but takes into account
the number of stones in an eye that can be cap-
tured. An eye of size 2 is worth one point, an eye
of size 3 three points. For example, a seki between
a black 2 point eye and a white 3 point eye has
score 1 —3 = —2.

The game value can now be computed as follows:

ComputeGameValue()
{
if (isUnsettled)
{ int bValue = CanWin(Black) ?
WinnerScore(Black) : SekiScore();
int wValue = CanWin(White) ?
WinnerScore(White) : SekiScore();
game = Switch(bValue, wValue);

else if (winner == none)
game = IntGame(SekiScore());
else

game = IntGame(WinnerScore(winner));
1 // ComputeGameValue

To get the exact combinatorial games, all scores
must be adjusted by * if an odd number of dame
points remains after resolving the semeai.

One special case must be handled differently: a
In this
case, the player should often move immediately

block with a big eye might be in atari.

even if the semeai status is not unsettled. How-
ever, 1f the player is losing the fight anyway, the in-
centive for moving might be only a small semedor:
value, the difference between the opponent winning
in one move and winning by filling a number of lib-
erties. The game value also changes accordingly.
We have implemented the necessary modifications
in our program, but lack space to show the details
here.

4 Solving Other Semeai

We have implemented static evaluation for class
2 semeai, and a search method for classes 3 and
higher. Again, because of a lack of space we must
postpone a detailed description of these methods to
a future technical report. A few examples of semeai
search and some preliminary results are contained
in a previous paper [6].

4.1 Class 2 Semeai: Unsettled Eye

Class 1 semeai are not ‘closed’ under play: during
play, if nakade stones are captured, an unsettled
eye shape such as the one in Figure 4 can result,

so the semeai classification changes to class 2 for
one move. A single player’s unsettled eye shape
can be handled similarly to the case of a group in
atari mentioned above. Further rare special cases
can occur: One player can be doubly unsettled:
the player’s group is in atari, and the opponent
can live in an unsettled eye shape. In this case
the player has lost without further moves (unless
the opponent is also in atari). Tf both players are
unsettled because of an unsettled eye and/or atari,
players must decide between attack and defense,
depending on the scores and outcomes that would

result.

8.0.0 O8OOQ @
dlauiiddasdds

Figure 15: Double sente play in class 2 semeai

In Figure 15 Black can make seki, while White
can live with 9 points against Black’s 5. The game
value is 38| x || — 4| — 45%, a 4 point double sente
play in classical endgame terminology.

5 Test Examples: Full Board
Semeai Problems

Figure 16: Full board semeai problems 1 and 2

The semeai evaluation method described here has
been integrated into our Go program FEzxplorer
[3]. For testing, we constructed two full board
Go positions that contain a large variety of se-
meai positions of classes 0-2, as shown in Fig-
ure 16. Starting from these positions, we played

Explorer against two of the recent world cham-
pion programs, Many Faces and Go 4++. Ex-
plorer won most test games by large margins, of-
ten gaining more than 100 points over the game-
theoretic outcome.
in [6].
SGF format are also accessible through the in-
ternet at http://www.etl.go.jp/etl /suiron/~muel-

Detailed results are given
The test positions and game records in

ler/cgo/semeai.html. From this experiment, it is
clear that our method is able to evaluate semeai
much earlier and much more precisely than the
other tested programs.

References

[1] R. Hunter. Counting liberties, How to win cap-
turing races. In R. Bozulich, editor, The Second
Book of Go, chapter 7,8. Kiseido, Tokyo, 1998.

[2] K.F. Lenz. Die Semeai-Formel. Deutsche Go-

Zeitung, 57(4), 1982.
[3] M. Miiller.

cal Games: An Application of Combinatorial
Game Theory. PhD thesis, ETH Zirich, 1995.
Diss.Nr.11.006.

Computer Go as a Sum of Lo-

[4] M. Miiller. Playing it safe: Recognizing secure
territories in Computer Go by using static rules
and search. Tn H. Matsubara, editor, Proceed-
ings of the Game Programming Workshop in
Japan 97, pages 80 86, Computer Shogi As-
sociation, Tokyo, Japan, 1997.

[6] M. Miiller. Decomposition search: A combina-
torial games approach to game tree search, with
applications to solving go endgames. In IJCAI-
99, volume 1, pages h78 583, 1999.

[6] M. Miiller. Partial order bounding: Using par-
tial order evaluation in game tree search. Tech-
nical Report TR-99-12, Electrotechnical TLabo-
ratory, Tsukuba, Japan, 1999.

