
A Lock-free Multithreaded Monte-Carlo Tree Search
Algorithm

Markus Enzenberger and Martin Müller

Department of Computing Science, University of Alberta
Corresponding author: mmueller@cs.ualberta.ca

Abstract. With the recent success of Monte-Carlo tree search algorithms in Go
and other games, and the increasing number of cores in standard CPUs, the ef-
ficient parallelization of the search has become an important issue. We present
a new lock-free parallel algorithm for Monte-Carlo tree search which takes ad-
vantage of the memory model of the IA-32 and Intel-64 CPU architectures and
intentionally ignores rare faulty updates of node values. We show that this algo-
rithm significantly improves the scalability of the Fuego Go program.

1 Introduction

1.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has proved to be a successful search method in two-
player board games for which it is difficult to create a good heuristic evaluation func-
tion. In the game of Go, it was first used by the programs Crazy Stone [1] and MoGo
[2], and has led to programs that for the first time have reached human master level,
especially on smaller board sizes.

In MCTS, a search tree is stored in memory and expanded incrementally. Each
simulated game starts with an in-tree phase, in which moves are selected following a
sequence of nodes from the root node and choosing a child in each node based on the
current value of the child and potentially additional exploration bonuses. After a node
with no children is reached, it is expanded, and the game is finished using a playout
phase in which moves are generated by a more or less randomized move generation
policy. After the playout, there is an update phase, in which the values of the nodes
used in the game are updated with the game result, such that they store the average
result of all games in which the move was chosen. The simulation process is repeated
until a resource limit is exceeded, for example the number of simulations, time used, or
memory.

1.2 Parallel Monte-Carlo Tree Search

MCTS has the additional advantage that it is easier to parallelize than traditional pro-
grams based on alpha-beta search [3–7]. The most common methods have been clas-
sified by Chaslot et al. [5] as leaf parallelization, root parallelization, and tree paral-
lelization. On shared memory systems, tree parallelization is the natural method that

takes full advantage of the available bandwidth for communicating game results. In this
method, several threads run simulations in parallel and share a common tree in memory.
Usually, a global mutex is used for protecting access and modification of the tree during
the in-tree and the update phase, whereas the playout phase proceeds independently in
each thread and does not require locking. How well tree parallelization scales with the
number of threads depends, among other things, on the ratio of the time spent in the
unlocked playout phase to the total time for a game.

Chaslot et al. [5] have shown that in their Go program Mango, tree parallelization
only scales well up to four threads. Their experiments were done in 9× 9 Go, in which
the playout phase is shorter and the in-tree phase longer than in 19× 19 Go. They also
tried a more fine-grained locking algorithm, which reduced the overhead of the global
mutex at the price of increasing the node size in the tree by adding a local mutex to each
node. The problem here is that, due to the selectivity of MCTS, usually a large number
of nodes are shared in the in-tree move sequences of the different threads; at least one
node, the root node, is always shared. Therefore using local mutexes is not necessarily
an improvement. However, they showed that the addition of a virtual loss improved the
scaling of tree parallelization in Mango.

In messages to the Computer Go mailing list [8], Coulom reports strong results
with a lock-free transposition table in Crazy Stone. Another possible approach, also
implemented in Crazy Stone, uses spinlocks [8], which are a form of busy waiting.
Spinlocks avoid the overhead of other locking approaches. For a relatively small num-
ber of threads, the speed of spinlocks might be comparable to the lock-free approach
presented here. However, an extra variable per node is needed to hold the spinlock.

1.3 The Fuego Go Program

Fuego is an open-source Go program developed by the Computer Go group at the Uni-
versity of Alberta [9]. On the Bayes-Elo ranking of the Computer Go Server [10] from
January 15 2009 (16:03 UCT for 19 × 19; 18:19 UCT for 9 × 9), it is ranked as
the 3rd-strongest program ever on 9 × 9 with a rating of 2664 Elo. On 19 × 19 it is
the 2nd-strongest program ever with a rating of 2290 Elo. The program is written in
C++ and separated into different libraries. The MCTS implementation is in the game-
independent SmartGame library and is also used by external projects for other games,
such as MoHex, a Hex program by the Games Group at the University of Alberta [11].

The main Go player in Fuego uses full-board MCTS with a number of common
enhancements to the basic MCTS algorithm. Move generation in the playout phase
is similar to the one originally used by MoGo; it uses patterns, liberty and locality
heuristics. In the in-tree phase, children are selected based on the Rapid Action Value
Estimation (RAVE) heuristic [2], which combines the current value of a move with
the average value of this move in the subtree of the corresponding node. When a node
is expanded, the values and counts of new children are initialized based on a static
heuristic evaluation. Parallel search is supported using tree parallelization.

2 Lock-free Multithreaded MCTS

The basic idea of Fuego’s lock-free multithreaded MCTS algorithm is to share a tree
between multiple threads without using any locks. Because of specific requirements on
the memory model of the hardware platform, this lock-free mode is an optional feature
of the base MCTS class in Fuego and needs to be enabled explicitly.

2.1 Modifying the Tree Structure

The first change to make the lock-free search work is in the handling of concurrent
changes to the structure of the tree. Fuego never deletes nodes during a search; new
nodes are created in a pre-allocated memory array. In the lock-free algorithm, each
thread has its own memory array for creating new nodes. Only after the nodes are fully
created and initialized, are they linked to the parent node. This can cause some memory
overhead, because if several threads expand the same node only the children created by
the last thread will be used in future simulations. It can also happen that some of the
children that are lost already received value updates; these updates will be lost.

The child information of a node consists of two variables: a pointer to the first
child in the array, and the number of children. To avoid that another thread sees an
inconsistent state of these variables, all threads assume that the number of children is
valid if the pointer to the first child is not null. Linking a parent to a new set of children
requires first writing the number of children, then the pointer to the first child. The
compiler is prevented from reordering the writes by declaring these variables using the
C++ type qualifier volatile.

2.2 Updating Values

The move and RAVE values are stored in the nodes as counts and mean values. The
mean values are updated using an incremental algorithm. Updating them without pro-
tection by a mutex can cause updates of the mean to be lost with or without increment
of the count, as well as updates of the mean occurring without increment of the count.
It could also happen that one thread reads the count and mean while they are written by
another thread, and the first thread sees an erroneous state that exists only temporarily.
In practice, these faulty updates occur with a low probability and will have only a small
effect on the counts and mean values. They are intentionally ignored.

The only problematic case is if a count is zero, because the mean value is undefined
if the count is zero, and this case has a special meaning at several places in the search.
For example, the computation of the values for the selection of children in the in-tree
phase distinguishes three cases: if the move count and RAVE count is non-zero, the
value will be computed as a weighted linear combination of both mean values, if the
move count is zero, only the RAVE mean is used, and if both counts are zero, a config-
urable constant value, the first play urgency, is used. To avoid this problem, all threads
assume that a mean value is only valid if the corresponding count is non-zero. Updating
a value requires first writing the new mean value, then the new count. Again, volatile is
used to protect the order of writes.

2.3 Platform Requirements

There are some requirements on the memory model of the platform to make the lock-
free search algorithm work. Writes of the basic types size t, int, float and pointer must
be atomic. Writes by one thread must be seen by other threads in the same order. The IA-
32 and Intel-64 CPU architectures, which are used in most modern standard computers,
guarantee these assumptions. They also synchronize CPU caches after writes [12].

3 Experiments

The experiments compare how well locked and lock-free searches scale with the num-
ber of threads in Fuego in 9 × 9 and 19 × 19 Go. The comparison is against the ideal
case represented by running the singlethreaded program n times longer.

3.1 Setup

The version of Fuego was 0.3, which was released on 17 December 2008. The hardware
was an Intel Xeon E5420 2.5 GHz dual quadcore system with 8 GB main memory and
a 64-bit version of the GNU/Linux operating system. On this hardware, Fuego achieves
about 11,400 simulations per second per core if a search is started on an empty 9 × 9
board. About 53 percent of the simulation time is spent in the playout phase. On 19×19,
the program achieves 2750 simulations on an empty board and spends about 69 percent
of the simulation time in playouts. The maximum tree size was set to 20,000,000 nodes.
Although Fuego implements the virtual loss enhancement [5] as an option, it is disabled
by default and was not used in the experiment.

The self-play experiments were performed against a fixed opponent, the singlethreaded
version set to 1 sec per move. Three series of runs measured the percentage of wins
against the standard version using a single-threaded version with n times more time per
move, as well as locked and lock-free multithreaded versions with 1 sec per move and
n threads. A total of 1000 games with Chinese rules and alternating player colors were
played for each data point. The opening book was disabled. The games were played us-
ing the gogui-twogtp program included in the GoGui distribution [13]. GNU Go version
3.6 [14] was used as a referee for determining the result of a game.

3.2 Results

The results of the experiment are shown in Fig. 1. The error bars in the figure correspond
to one standard error.

The version using a global mutex does not scale beyond two threads on 9 × 9 and
three on 19 × 19. On 9 × 9, this is even less than what was reported by Chaslot et al.
for their program Mango, which still showed an improvement in playing strength with
up to four threads.

The lock-free version scales up to seven threads on both board sizes. The playing
strength with eight threads is slightly less than with seven, although one cannot say with
high confidence whether this is a real effect given the statistical error of the experiment.

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

w
in

s

Number threads / time multiplier

9 x 9

singlethreaded
lock-free

locked

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

w
in

s

Number threads / time multiplier

19 x 19

singlethreaded
lock-free

locked

Fig. 1. Self-play performance of locked and lock-free multithreading in comparison to a single-
threaded search (1 s per move)

4 Conclusion and Future Work

A lock-free multithreaded algorithm for MCTS can significantly improve the scaling of
MCTS in 9 × 9 and 19 × 19 Go. Future experiments should investigate scaling with
more than eight cores, and applications to other games.

Modifications of the algorithm are possible that allow it to be used on more CPU
architectures. If an architecture does not guarantee that writes by one thread are seen by
other threads in the same order and caches are synchronized after writes, then it might
still be better to use explicit memory barriers at the places with write order dependencies
than to use a global mutex for the whole in-tree and update phases.

References

1. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
J. van den Herik, P. Ciancarini, and H. Donkers, editors, Proceedings of the 5th International
Conference on Computer and Games, volume 4630/2007 of Lecture Notes in Computer Sci-
ence, pages 72–83, Turin, Italy, June 2006. Springer.

2. S. Gelly. A Contribution to Reinforcement Learning; Application to Computer-Go. PhD
thesis, Université Paris-Sud, 2007.

3. T. Cazenave and N. Jouandeau. A parallel Monte-Carlo tree search algorithm. In J. van den
Herik, X. Xu, Z. Ma, and M. Winands, editors, Computers and Games, volume 5131 of
Lecture Notes in Computer Science, pages 72–80. Springer, 2008.

4. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Computer Games Work-
shop, pages 93–101, Amsterdam, 2007.

5. G. Chaslot, M. Winands, and J. van den Herik. Parallel Monte-Carlo tree search. In Proceed-
ings of the 6th International Conference on Computer and Games, volume 5131 of Lecture
Notes in Computer Science, pages 60–71. Springer, 2008.

6. S. Gelly, J. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian. On the parallelization of
Monte-Carlo planning. In Icinco, pages 198–203, Madeira, Portugal, 2008.

7. H. Kato and I. Takeuchi. Parallel Monte-Carlo Tree Search with simulation servers. In 13th
Game Programming Workshop (GPW-08), 2008.

8. R. Coulom. Lockless hash table and other parallel search ideas. http://computer-go.
org/pipermail/computer-go/2008-March/014537.html and http://
computer-go.org/pipermail/computer-go/2008-March/014547.html,
2008. Date retrieved: April 28, 2009.

9. M. Enzenberger and M. Müller. Fuego – an open-source framework for board games and go
engine based on monte-carlo tree search. Technical Report TR09-08, University of Alberta,
Edmonton, 2009. 16 pages.

10. D. Dailey. Computer Go Server. http://cgos.boardspace.net/, 2008. Date re-
trieved: January 19, 2009.

11. B. Arneson, R. Hayward, and P. Henderson. Wolve wins Hex tournament. http:
//www.cs.ualberta.ca/∼hayward/papers/rptBeijing.pdf, 2008. To ap-
pear in ICGA Journal.

12. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual – Volume
3A: System Programming Guide, Part 1, 2008. Order Number: 253668-029US.

13. M. Enzenberger. GoGui. http://gogui.sf.net/, 2009. Date retrieved: January 2,
2009.

14. Free Software Foundation. GNU Go. http://www.gnu.org/software/gnugo/,
2009. Date retrieved: January 2, 2009.

