Partial Order Evaluation in Game Tree Search, and its Application to
Analyzing Semeai in the Game of Go

Martin Muller
ETL Complex Games Lab
Tsukuba, Japan
mueller@etl.go.jp

Abstract

We revisit the problem of constructing an evaluation
function for game tree search. While the standard
model assumes a numeric evaluation function, partial
orders have some desirable properties for constructing
a more meaningful evaluation. However, previous par-
tial order tree search algorithms have been quite com-
plex. We introduce partial order bounding (POB), a
simple new method that uses partial order evaluations
in game tree search. We also discuss the use of par-
tial order move evaluation for move ordering and for
pruning dominated moves during search. We show an
application of the method to capturing races called se-
meai iIn Go. We show that liberty and eye counts of
blocks in a semeai can be used to construct a partial or-
der evaluation. In experiments, we show the resulting
speedups compared to standard minimax search meth-

ods.

Evaluation in Game Tree Search

Position evaluation in game tree search is usually com-
puted as a weighted sum of feature values, v = > w;v;.

The main drawback of this approach is that it loses
information: it adds and compares features for which
the weighted addition and comparison might not make
much sense.

For example, a simple, stable position and a highly
dynamic, unstable one might end up with the same
static evaluation, though they look very different to a
human player. The traditional remedy is to not evalu-
ate unstable positions and perform a quiescence search
to try to reach a stable position. Stable positions are
considered ‘easy’ to evaluate, while unstable ones are
considered ‘hard’.

The loss of information is severe in positions that
can ‘almost’ be evaluated statically, where some distin-
guished features exist that allow a strong focusing of
the search. Standard evaluation methods cannot use
such partial information. This was our motivation to
look for a different approach.

The structure of this paper is as follows: We survey
previous search methods that use partially ordered eval-
uation, and then introduce a simple new method called
partial order bounding (POB) for search in game trees

using partial order evaluations. As a second applica-
tion of partial order evaluations, we discuss exact and
heuristic pruning and move ordering.

We show an application of partial order evaluation
methods to the problem of analyzing semeai in Go. Af-
ter a brief explanation of the problem, we introduce a
partial order evaluation of semeai using the number of
liberties and the eye status of stones. In the exper-
iments, we show the resulting speedups compared to
traditional alpha-beta search, and test the performance
of the evaluation method against leading Go programs
in full board semeai problems.

A final section on future work discusses development
of similar methods in A*-like search, and possible ap-
plications to other games or other phases of Go.

Multiobjective Search Methods

All the literature on search with partial ordered evalua-
tion that I was able to find stems from the same origin in
multiobjective search. In the multiobjective approach
to decision making, multiple potentially conflicting and
noncommensurate objectives are investigated simulta-
neously. Each objective is evaluated by a scalar, and all
evaluations are aggregated into a vector instead of com-
bining them into a single scalar-valued evaluation. The
first multiobjective search method, multiobjective A*
(MOA¥*), was developed by Stewart and White (Stew-
art and White 1991). In MOA*, evaluation is a m-
dimensional vector of scalar values. For minimization
problems, a partial order on these vectors is defined by

y<y ey <y viel, . .. m

Given an OR graph with such vector-valued edge
costs, MOA* finds all nondominated paths from a start
node to a given set of goal nodes.

Harikumar and Kumar introduced an iterative deep-
ening version called IDMOA* (Harikumar and Kumar
1996). Dasgupta, Chakrabarti and DeSarkar defined
multiobjective heuristic search in AND/OR, graphs and
partial order game tree search (Dasgupta et al. 1996b;
1996a). All these algorithms were developed only for
the special partial orders of vector dominance defined
above, not for general partial orders.

Partial Order Game Tree Search

A game tree search method using a partial order eval-
uation was developed by (Dasgupta et al. 1996b). The
method generalizes traditional game tree search by al-
lowing leaf node evaluations from a partially ordered
set, in contrast to the usual scalar values.

The main problem with partially ordered evaluations
is that min- and max-expressions involving such val-
ues are much more complex than on a totally ordered
domain. A totally ordered domain such as the inte-
gers or reals is closed under the application of the min
and max operators: if xq,...,x, are values from a to-
tally ordered domain 7', then both min(zy,...,#,) and
max(x1, ..., #,) are also elements of T'. For values from
a partially ordered set this no longer holds.

To keep the complexity of solutions under some con-
trol, the method of (Dasgupta et al. 1996b) crucially re-
lies on the use of players’ private preferences. A player’s
preference ¢ is a many-to-one mapping from the par-
tially ordered domain P to a number, which preserves
the partial order on P. Sets of possible outcomes which
are incomparable in P are compared using the following
procedure:

Compare(Sy, 52, ¢)
To compare sets of outcomes 51 and S
on the basis of preferences ¢
1. If only S, is empty, declare S5 as better.
Likewise, if only S5 is empty, declare S; as better.
If both S; and S5 are empty then
select S; or Sz randomly and declare it to be better
2. let £; be the worst outcome in S; and
x3 be the worst outcome in S5 based on ¢.
3. if #1 and z2 are of equal preference then
3.1 Drop all outcomes from S; and S2 that are of
equal preference to o1
3.2 Goto [Step 1]
4. If &, is better than z based on ¢, then declare S as better
else declare S5 as better.

When using partially ordered evaluations, search can-
not return a single value only. In general, the minimax
backup of values results in a potentially very large set
of non-inferior sets of outcomes.

It is easy to see that the approach using player’s pref-
erences ¢ only works when a reasonably strong ordering
is provided by ¢. If too many values are mapped to the
same preference the comparison breaks down. In the ex-
treme (but relevant) case where no a priori preferences
between incomparable values in the partial order can be
made by a player, a Compare() of any two nonempty
sets of outcomes degenerates to the final line of step 1:
random selection.

Partial Order Bounding: A New Approach
to Partial Order Search

As we have seen, existing partial order search meth-
ods are burdened with restrictions on the type of par-
tial order, and with complexity problems when the size
of non-inferior sets of outcomes backed up through the
search tree is large. Our new, simple approach to partial

Failure set {A,B,C,D,F}

Figure 1: Antichains in partial order bounding

order evaluation in search is based on Pearl’s SCOUT
method (Pearl 1984), which seeks to establish an in-
equality between a given bound and the unknown eval-
uation. In the case of a partially ordered set P, a
bound B C P can be given by an antichain in P that
describes the minimal outcomes we want to achieve.
Each bound B partitions P into two sets: The success
set S(B) = {x € P:3b € B :x > b} is the set of
‘good enough’ values, the failure set F(B) = P — S(B)
contains all other values. We use search to decide the
following: can we achieve a result € S(B), or can the
opponent prevent this from happening? Figure 1 shows
a partially ordered set {A, B, ..., K}, an antichain con-
sisting of the two elements £ and G and the resulting
partition into success and failure sets.

Search with partially ordered evaluation works as fol-
lows: in each leaf node, a partial order evaluation 1is
attempted. If the node can be statically evaluated, the
outcome 18 win or loss depending on whether the eval-
uation lies in the success set or failure set. If the node
cannot be evaluated, the outcome is unknown. This ap-
proach completely separates the comparison of partially
ordered values from the tree backup. Only the three val-
ues win, loss and unknown are backed up through the
tree. This makes it possible to use partial order eval-
uations in conjunction with any minimax-based search
method, such as alpha-beta or proof number search (Al-

lis 1994).

To summarize, the following are the main differences
between POB and (Dasgupta et al. 1996b):

e POB allows any partial order as an evaluation, not
just ones based on vector dominance.

e Comparison of partial order evaluations occurs only
at leaf nodes. The evaluation, if it exists, 1s compared
to a prespecified bound, resulting in one of three out-
comes: win, loss and unknown.

e POB needs an input parameter: a bound in the form
of an antichain in P that divides the acceptable out-
comes, called the success set, from the unacceptable
ones, the failure set.

The selection of a suitable bound depends on both
the application domain and the specific problem. In
some applications such as the semeai we will discuss
later, a single bound is sufficient to solve a problem.
In other, less constrained circumstances, an iterative
process could be used to test different bounds.

Application to Adversarial Planning

An adversarial planning problem with many subgoals
naturally defines a partial ordering of possible out-
comes. As an example, Figure 2 shows an ordering
of three incomparable subgoals A, B and C' as well as
the simplest conjunctions and disjunctions of these sub-
goals. Figure 3 shows a stronger order in the case where
achieving subgoal C' dominates achieving both subgoals

A and B.

AvC

Figure 2: Partial ordering of subgoals

Figure 3: C' dominates AA B

Partial Orders for Move Ordering and
Pruning

From experts commenting on their own games, one can
frequently hear judgments such as the following:

Whatever happens next, ‘a’is the only move in this
kind of position.

Such a comment seems to indicate a situation in
which the expert does not search to resolve the out-
come, but is nevertheless certain about the right way
to play. Partial orders for move evaluation can cap-
ture this kind of knowledge. As an example, Figure
4 shows such a partial move ordering for semeai. For
move ordering, a partial order can be extended to a
total order consistent with it. For example, in the fig-
ure the two top values ‘make 2 eyes’ and ‘capture’ are
incomparable. However, for move ordering capturing

capture

make
2 eyes

other eye
or lib

escape

take
2nd eye

plain lib

other own
or shared

plain eye

pass

plain
shared

own plain

Figure 4: Partial move ordering in semeai

moves should probably rank higher, since capturing of-
ten leads to a quicker overall decision.

In highly constrained game situations, it may be pos-
sible to construct an exact partial move ordering, which
can be used for pruning. If a move with a certain value
exists, then all moves with dominated value can be
pruned. Furthermore, if the value completely specifies
the effect of the move, all but one move with this value
can be pruned as well.

Application of POB and Partial Move
Ordering to Semeai in Go

Q 0000

Q 0000
OO0 00)
b@c @

000 0000

Figure 6: Complex semeai with big eyes and many lib-
erties

Remark: for the benefit of readers who are not so fa-
miliar with Go terminology, the emphasized technical
terms are explained in the appendix.

A semeatis arace to capture between non-alive stones
of both players. Figure 5 shows a semeai where Black
has three liberties marked ‘a’, and White has two lib-
erties in different regions of the board marked ‘b’ and
‘c’ respectively. Figure 6 shows a more complex semeai
where both players have one large eye. Figure 7 shows
a semeai at an earlier stage, where the eye status of the
involved stones is not yet clear.

0

STEeS
000000000
slelo/elelolele

Figure 7: Earlier stage of semeai

Semeai Evaluation: Liberty and Eye Count

The contribution of a region to the strength of a block in
a semeail can be measured by the liberty and eye count.

Definition: given a block b and an adjacent region r,
the liberty and eye count of b in r 1s an ordered pair
({,€), where [is the number of liberties of b in r, and e
is the eye status of r.

Two Eyes

810 /
6,0 4,4—"=
o ?3 4—"1°
4,0

(31
30/)/

1/14
20/11
1,0

0,0

Figure 8: Partial order evaluation of (liberty, eye) pairs

In simple cases, the liberty and eye count can be eval-
uated statically. In general, a unique count need not
exist. The leftmost picture in Figure 9 shows an exam-
ple where Black has surrounded two empty points. In
this region, the large black block can achieve an evalu-
ation of either (2,0) or (1,1). The other two pictures in
the figure show situations where one option is successful
while the other optlon would lose. Since (2 0) and (1 1)
are incomparable, it is not possible to assign a unique

Q00 L 4408
0000 o0
o Q o0
Q 000000
0000 [050,
00O 000 000

Figure 9: Liberty and eye count (2,0) or (1,1)

liberty and eye count to the original position. In such
cases POB can be used to efficiently search the semeai.

For more details on the Go-specific aspects of semeai
evaluation and the mapping of semeai to an instance of
POB, we refer the reader to our forthcoming technical
report (Miiller 1999).

Experimental Results
Comparison with Alpha-beta

We measure the performance of POB and partial order
pruning by comparing four kinds of search: Plain alpha-
beta (abbreviated a3 in the table) uses partial ordering
for move ordering only, and evaluates wins and losses
only by capture. Alpha-beta search with partial order
pruning (a3Y9F) uses knowledge about partial order-
ing to prune moves. Non-pruning POB (POB™) uses
partial order leaf evaluation but no pruning. Full POB
uses both partial order leaf evaluation and partial or-
der pruning. However, all four types of search apply
the pruning rule of using only one of several equivalent
moves, such as outside liberties. Without this rule, the
non-pruning variants would be much worse.

1558 $eeed .
i S R 5%
@ @ [| (0000

A B C

o .O. .O o0 9000
oo ...OOOO 00000000

D E F

Figure 10: Semeai test problems

Figure 10 shows six test problems, and Table 1 the
number of nodes expanded by a3, 7P POB~ and
POB on these problems. In this and the following ta-
ble, the column BW indicates whether Black or White
moved first from the starting position.

Test Against Other Programs

The partial order semeai evaluation module has been
integrated into our Go program Ezplorer (Miiller 1995).

BW | POB | POB~ | aBP9F | ap
A B)) 20 | 50
AW 1 1 20| 50
B|B 1 1 210 | 441
B|W 1 1 250 | 358
C|B 20 26 23| 33
C|w 6 21 12 21
D|B 18 27 433 | 1443
D| W 18 27 134 | 284
E|B 304 333 1339 | 1523
E| W 208 333 993 | 1367
F|B 18 27 1066 | 4199
F| W 18 27 272 | 662

Table 1: Comparison of POB and alpha-beta

Probl. | Opponent BW | Result Gain
Full 1 | Explorer B B+36 -
Full 1 | Many Faces (B) | B W+103 | +139
Full 1 | Many Faces (W) | B B+53 +17
Full 1 | Go 44+ (B) B W+40 +76
Full 1 | Go 4++ (W) B B+116 +80
Full 1 | Explorer W B+6 -
Full 1 | Many Faces (B) | W W85 +91
Full 1 | Many Faces (W) | W B+117 | 4111
Full 1 | Go 44+ (B) W | W+40 +46
Full 1 | Go 4++ (W) W B+129 | +123
Full 2 | Explorer B W+9 -
Full 2 | Many Faces (B) | B W+93 +84
Full 2 | Many Faces (W) | B B+95 +104
Full 2 | Go 44+ (B) B W+499 +90
Full 2 | Go 4++ (W) B B+55 +64
Full 2 | Explorer W W+69 -
Full 2 | Many Faces (B) | W W+73 +4
Full 2 | Many Faces (W) | W B+139 | 4208
Full 2 | Go 44+ (B) W | W+99 +30
Full 2 | Go 4++ (W) A B+51 +120

Table 2: Results of full board semeal tests

Figure 12: Full board semeai 2

For testing, we constructed two full board Go posi-
tions that contain a large variety of semeai positions,
as shown in Figures 11 and 12. Starting from these po-
sitions, we played Explorer against two of the leading
Go programs: current world champion Many Faces and
many times runner-up Go 4++. Explorer won most
test games by large margins. Detailed results, includ-
ing the game-theoretic result determined by self-play,
are listed in Table 2. The test positions and game
records in SGF format are accessible through the inter-
net at http://www.etl.go.jp/etl/suiron/~mueller/cgo/
semeal.html.

From this experiment, it 1s clear that the partial order
evaluation is able to evaluate semeai much earlier than
the standard numerical alpha-beta searches used by the
other programs. While static partial order evaluation
is possible only for a restricted class of semeai, such as
those shown in Figures 11 and 12, search using POB
will allow a much broader class of semeai to be han-
dled correctly as part of Explorer’s position evaluation.
Integration of POB in Explorer is currently underway.

Conclusion and Future Work

We have defined a simple but powerful new partial or-
der search method called POB, which applies Pearl’s
SCOUT idea for testing if a ‘good enough’ evaluation

can be achieved, in domains with partially ordered val-
ues. We also discussed the use of partial orders for move
ordering and pruning.

We used POB to solve semeai problems in Go and
validated the method using a comparison to standard
alpha-beta search. We also tested a partial order semeai
evaluation against two of the world’s top Go programs,
with excellent results.

There are many open questions indicating promising
directions for future work: Can our approach be used
for algorithms similar to IDMOA*, to make this kind
of search methods work for arbitrary partial orders?
Can work on evaluation function learning be extended
to learn partial order evaluations? How can POB be
applied to other games, especially with a heuristic par-
tial order evaluation? Is it effective in games with less
structure and fewer decomposition opportunities than
Go? What are good partial order evaluations for other
phases of a Go game? In semeai, can stronger partial
orders be developed, for example for semeai where one
player has split the opponent’s stones into two parts?

References

L.V. Allis. Searching for Solutions in Games and Arti-
ficial Intelligence. PhD thesis; University of Limburg,
Maastricht, 1994.

P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Multi-
objective heuristic search in AND/OR, graphs. Journal
of Algorithms, 20(2):282-311, 1996.

P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Search-
ing game trees under a partial order. Artificial Intel-
ligence, 82(1-2):237-257, 1996.

S. Harikumar and S. Kumar. Iterative deepening
multiobjective A*. Information Processing Letters,
58(1):11-15, 1996.

M. Muller. Computer Go as a Sum of Local Games:
An Application of Combinatorial Game Theory. PhD
thesis, ETH Zurich, 1995. Diss.Nr.11.006.

M. Miller. A program for fighting semeai in Go. Tech-
nical report, Electrotechnical Laboratory, Tsukuba,
Japan, 1999. to appear.

J. Pearl. Heuristics: Intelligent search strategies for
computer problem solving. Addison-Wesley Publishing
Company, 1984.

B. Stewart and C. White. Multiobjective A*. Journal
of the ACM, 38(4):775-814, 1991.

Appendix: Go Terms used in this Paper

Block A connected component of stones of the same
color. Blocks have liberties, which can be distributed
over several regions. A block that loses 1ts last liberty
is captured. In Figure 5 there is a black block and
a white block consisting of 3 stones each. The black
block has three liberties marked ‘a’, while the white
block has two liberties in two different regions of the
board (one in each) marked ‘b’ and ‘c’ respectively.

Liberty An empty point adjacent to a stone is a lib-
erty for the block containing that stone. In semeai,
liberties can be classified into outside liberties, eye
space and common liberties. See the semea: entry
for some examples.

Region An area surrounded by stones of one or both
colors. In Figure 5 there are three regions marked
‘a’, ‘b’ and ‘c’.

Eye A small area surrounded by stones of one color,
possibly containing some opponent stones.

Eye status A measure of the strength of an eye in
semeal, depending on the size of the eye. The eye
status is 0 for regions which are not eyes, 1 for ‘small’
eyes of size 1, 2 or 3, and n for ‘large’ eyes of size
n,4<n<7.

Semeai A race to capture between non-alive stones of
both players. Figure 5 shows a simple semeai between
three black and three white stones. Figure 6 shows
a semeal where black has a five point eye containing
one white stone. White has a four point eye, and six
external liberties distributed over two regions. There
are two shared liberties between the black and white
stones.

