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Abstract. In imperfect information games, the evaluation of a game
state not only depends on the observable world but also relies on hid-
den parts of the environment. As accessing the obstructed information
trivialises state evaluations, one approach to tackle such problems is to
estimate the value of the imperfect state as a combination of all states in
the information set, i.e., all possible states that are consistent with the
current imperfect information. In this work, the goal is to learn a func-
tion that maps from the imperfect game information state to its expected
value. However, constructing a perfect training set, i.e. an enumeration
of the whole information set for numerous imperfect states, is often in-
feasible. To compute the expected values for an imperfect information
game like Reconnaissance Blind Chess, one would need to evaluate thou-
sands of chess positions just to obtain the training target for a single
state. Still, the expected value of a state can already be approximated
with appropriate accuracy from a much smaller set of evaluations. Thus,
in this paper, we empirically investigate how a budget of perfect infor-
mation game evaluations should be distributed among training samples
to maximise the return. Our results show that sampling a small number
of states, in our experiments roughly 3, for a larger number of separate
positions is preferable over repeatedly sampling a smaller quantity of
states. Thus, we find that in our case, the quantity of different samples
seems to be more important than higher target quality.

Keywords: neural networks - imperfect information games

1 Introduction

Imperfect information games, which are characterised by unobservable aspects,
are an important part of Game Al research. In recent years, they have received
increased attention due to the inherent complexity of managing uncertainty.
This category encompasses a wide array of games, spanning from classical card
games like Poker and Bridge to adaptions of traditional board games such as
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Dark Hex and Reconnaissance Blind Chess and real-time video games like Star-
craft, Dota II and Counter-Strike. Thus, we see much interest — commercially
and scientifically — in mastering this category of games. However, methods that
conquered many classical perfect information games, e.g. AlphaZero [20], do not
easily carry over to imperfect information games [16]. In imperfect information
settings, decisions are typically based on a fusion of the public information and
an implicitly learned or directly computed expected value of the hidden informa-
tion. While there are several approaches to learning evaluations implicitly (see
Section , we here focus on learning them explicitly in a supervised fashion.

At every decision point of an imperfect information game, the set of all pos-
sible states from one observer’s perspective is called an information set. For
sequential games such as Poker and Reconnaissance Blind Chess, it is possible
to enumerate the states in the information set, thus allowing for approxima-
tion of the total evaluation of the imperfect information state as an aggregation
of the single evaluations in the set. However, a perfect enumeration of the set
can be vastly too costly. Thus, we aim to learn an evaluator which encapsu-
lates the relationship between an imperfect information state and its aggregated
target evaluation, enabling fast evaluation of states. In training, however, the
same problem persists; generating perfect target values for states requires an
unreasonable amount of evaluations. To reduce this load, we only use parts of
the information set for target generation and investigate how many individual
states are required for training.
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Fig. 1: Estimating the value of an imperfect information position (left) as the average
of the perfect information evaluations of all positions in the information set.

This setting is motivated by work in Reconnaissance Blind Chess (RBC),
a chess variant where parts of the board are not observable, and thus agents
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have to evaluate imperfect information game states. Many leading programs
approximate these values by evaluating the states in the information set with a
conventional perfect information chess engine and averaging the results. While
these averages can serve as training signals for a model, evaluating every single
board state in each information set is unreasonable. In this work, we question how
we can best invest a fixed budget of total game state evaluations; should they be
spread out to obtain inaccurate estimates for more training data or should they
provide more reliable training signals for fewer data points? We begin this work
by outlining the problem more formally (Section [2|) and give a brief overview of
related work and problems (Section . Subsequently, we empirically investigate
the problem in two different imperfect information games:

— Heads-Up Poker: Here we evaluate a 2-card hand without knowledge about
the community cards or the opponent’s cards, sampling from information sets
of possible completions to estimate the win rate of a hand.

— Reconnaissance Blind Chess (RBC) [7]: In this chess variant, the oppo-
nent’s moves are often uncertain because of limited information. We receive
an estimated evaluation of the imperfect information game state based on
possible perfect game evaluations obtained from a conventional chess engine.

We summarise our results in Section [f]and give an outlook on potential future
extensions in Section [Gl

2 Problem Statement

We formalise the problem as follows: Given is a dataset of examples D =
(xi,y;) C X x Y, where each label y; = f(x;,h;) is determined by a function
f, dependent not only on the observable information x;, but also on the hidden
information h;. Our goal is to find a function g(x) which approximates f(x,h),
such that Vi € {1,..,|D|} : g(x;) = f(x;,h;). This task is non-trivial, and such
a function g does not generally exist, as the same observable x can occur mul-
tiple times with different labels because, in general, f(%,h(1)) # f(x,h(?) for
h(M) £ h®@),

Our motivation for this problem originates from imperfect information games,
where the information set represents all possible game states given one player’s
information. In several such games, remarkable performance has been achieved
by basing the imperfect information gameplay, whether implicitly or explicitly,
on perfect information evaluations of states in an information set [3UII5]. For
example, the value of a player’s hand in Poker can be estimated as the expected
value of the hand over all possible variations of the community and opponent’s
cards. Similarly, many strong RBC' agents rely heavily on chess engines for eval-
uating conventional chess positions [7JI5I8] and approximate the imperfect in-
formation state with the expected values of the states in the information set.
Figure [I] illustrates this situation with a schematic 3 x 3 chess board where
only the white pieces are public and the evaluation of this board is obtained by
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Fig.2: Learning an imperfect information evaluation function from n examples, for
which the target evaluation is estimated from k position, using a constant budget of
N = n - k perfect information evaluations.

averaging the (hypothetical) evaluations of all possible configurations of black
pieces.

It is important to acknowledge the limitations of basing imperfect informa-
tion policy fully on perfect information evaluations, as it is trivial to construct
counterexamples where this fails. Despite its fundamental problems, the idea of
estimating the evaluations by sampling from information sets has been successful
in many algorithms. For example, using perfect information search on sampled
states has been used in games such as Bridge [9], Skat [I12] and Scrabble [19]. In
particular, Bliiml et al. [3] have noticed that perfect information evaluations for
imperfect information games perform surprisingly strongly. On a smaller scale,
one can also relate this concept to the central idea of Monte-Carlo Tree Search.
There, nodes in the game tree are evaluated based on stochastic rollouts, which
results in a noisy but still useful signal. Similarly to the problem at hand, one
can use more sophisticated, but also slower, rollout strategies to receive more
accurate signals or more frequent fast and noisy rollouts.
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The central objective of this work is to learn the function g which receives
the public information of a state x and approximates the expected value of that
state, without the need for its (potentially expensive) explicit computation by
iterating over the information set:

g(x) ~§ =) P(hlx)- f(x,h) (1)

Here, h € 7 are all possible configurations of private information that are part
of the information set Z, f is an evaluator of a perfect information state and
P is a function which gives the probability of each hidden state for the given
configuration x. In practice, P can be influenced by, among others, stochastic
environments or adversary’s (hidden) policies. In all cases, it is assumed to be
an unobservable and unalterable part of the domain. In our experiments, as
in Figure [I[] we assume that all possible determinations are equally likely, i.e.
P(h|x) = 1/jz(x)| but one could also directly learn meaningful weights for the
positions in the information set from past behaviour or observations [2].

A simple strategy to learn g is to collect samples of the form (x;,%;), i.e.,
to compute the exact value g; as in Equation for many training positions
x;, and to use supervised learning to learn the function §; = g(x;) from these
samples. However, this approach generally is too costly due to the potentially
large size of information sets, so obtaining a single ¢; can require thousands of
evaluations. Alternatively, ¢ can be approximated by randomly sampling only a
few of the possible h(), resulting in less accurate training signals ¢ at a lower
computational cost.

In our work, we aim to answer a fundamental question: Given a fixed budget
of N perfect information evaluations, how should we generate the training data
for the learner? Options range from generating N different training examples
x;, each evaluated with one random sample, over using a fixed number of k
evaluations to generate targets for n = N/k positions, up to exhausting the
budget with exactly computing ¢ for as many examples as possible. This trade-
off between the training set size n (the number of distinct x;) and label quality
(the number of evaluations k used to estimate the intended target values g; for
each x;) forms the core focus of this paper.

3 Related Work

The problem formulated in Section [2]is multifaceted and occurs in several learn-
ing paradigms, thus we can only give a brief overview of how it manifests in
practice.

Several learning settings may be viewed as special cases of this formula-
tion. Conventional supervised learning emerges when h; = (), Vi, i.e. when no
hidden information determines y;. Similarly, learning from noisy labels can be
formulated with a single hidden variable h;, which determines whether the orig-
inal label remains intact or is corrupted. Knowledge of this hidden information
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makes the underlying function f deterministic, but g does not have access to the
information about the corruption.

Our setting is also closely related to research in the area of noisy labels
[21U1T], which extends to crowdsourcing [I8I0] and aggregating labels from dif-
ferent labellers. It also shares commonalities with active learning [17], which in
our case is a problem of deciding whether to re-sample an existing example to
improve label quality or to obtain a new sample to increase overall training data
quantity. Importantly, most of this research aims to improve data distribution
to the labellers or to reduce bias post-sampling, which differs significantly from
choosing a sampling frequency a priori. In addition, noisy classification differs
substantially from noisy regression.

In the context of imperfect information games, numerous approaches exist to,
explicitly or implicitly, evaluate an information set. Techniques such as Perfect
Information Monte Carlo [I36] combine evaluations of different perfect informa-
tion searches into a policy for the imperfect information state and Information
Set Monte Carlo Tree Search [22] operates on information sets. Counterfactual
Regret Minimization [23], as well as its successors and ReBeL [4] learn the utility
of individual information sets through self-play. Recent work by Bliiml et al.[3]
samples individual world states and constructs imperfect information policies
based on their evaluations. In essence, most techniques for solving imperfect
information games involve estimating the value of information sets, further mo-
tivating the importance of the question which we aim to answer.

Finally, the general idea that sampling more states from information sets will
lead to a more accurate estimate of its overall value is simply an instance of the
law of large numbers and thus finds application in a variety of problems. This
trade-off between quantity and quality of evaluations is analogous to the choice
of rollout policy in classical Monte Carlo Tree Search [5], where one has to de-
cide between random rollouts (fast, and thus allowing a larger quantity, but less
informative) and more sophisticated rollout-policies (slower, thus limiting their
number, but better at approximating true behaviour). However, one has to con-
sider that MCTS differs slightly because UCB will over time re-visit promising
states, thus allowing the resampling of important ones.

4 Experiments

Here, we present a series of experiments designed to investigate the trade-off
between target quality and training data quantity. The learner has a limited
budget of total evaluations N and can decide how many evaluations k should
be spent on each training example. Each evaluation yields one value, which are
aggregated into a training target by averaging.

4.1 Texas Hold’em Poker

The first experiment aims at a real-world setting where we have to balance
the label accuracy with the number of total training examples seen. Here, the
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learner aims to estimate the win probability of a given 2-card hand of cards
in two-player heads-up poker. This is a direct implementation of the problem
outlined in Section [2] Pre-computed win-rate tables for any given hand exist, so
one should regard this as a proof-of-concept rather than a useful application.

1 samples 5 samples 50 samples
2 samples 10 samples mmm 100 samples
3 samples 25 samples 1000 samples

50% A

40%

30% A

20%

|

10% A

Percentage of evaluations in this range

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Difference between true evaluation of information set and average of sampled hands

Fig. 3: Monte-Carlo estimate of error in evaluating the change of winning with a given
hand pre-flop- in heads-up poker. Estimations are computed by averaging over n sam-
ples of possible opponent hands and rivers.

Setup In principle, for a given hand x, g(x) could be directly computed as
the average over all possible hidden contexts hy, but doing so requires a large
amount of computation. Without accounting for symmetry, a player can have
(522) = 1326 unique Poker hands. One would need to compute all possible ar-
rangements of the remaining cards into two opponent cards and five community
cards, i.e. (522) . (520) . (458) = 2,781,381,002,400 total combinations. For each
of these combinations, one needs to evaluate which player won the game and
average this for all configurations that pertain to the same player’s hand to es-
timate the overall winning probability of that hand. While public data for the
win-chances of a hand exists, such data is only available for the most popular
games and computing them is much costlier in other games with higher degrees
of uncertainty or more expensive state evaluations. Thus, we aim to decrease
the computational cost by only sampling parts of the information set instead
of enumerating it entirely, and thus allow for the extension of the concept to a

larger variety of applications.
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When training the learner, we sample k different configurations of cards for
the given hand, evaluate the result of each configuration (0, 1 or 0.5), and train
the network to predict the mean of all k£ samples. Sampling more combinations
leads to a smaller difference between the estimate and the ground truth, but
results in a smaller amount of total hands seen when equating by the total
number of evaluations.

Results As a first estimate, Figure [3| shows the discrepancy between an esti-
mated hand strength through evaluations and the mathematical true win chance.
Notable, with only a single sampled configuration, it is impossible to exactly re-
ceive the true win chance of most hands as the only possible results are 0, 0.5,
and 1, thus resulting in three error clusters for one sample.

—— 1 validation 5 validations —— 50 validations
—— 2validations ~—— 10 validations -~ 100 validations
3validations ~ —— 25 validations ~—— 1000 validations

Absolute difference between prediction and ground truth

0.00 T T T 0.00 T T T 1
100k pj 10M 40M  100M 10k 40k 100k 400k M
Total number of evaluations Total number of updates

Fig.4: Average training curves of learning to evaluate a poker hand with different
numbers of evaluations per training example. The x-axis is logarithmically scaled either
by the total number of hand evaluations (top) or by the total number of update steps
made (bottom).

The training process (Figure @) shows that training with fewer evaluations
per sample leads to much quicker progress when regarding the performance in
relation to the total number of evaluations, but when the examples have higher-
quality evaluations, each update is more meaningful. When comparing the best
versions (Figure [5)), we see that even when equating for the total number of
evaluations, using a single evaluation leads to worse peak results than using
two, three, five, and ten sampled evaluations. As it should be, equating train-
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ing updates makes more evaluations perform strictly better than less. All in all,
these results suggest that multiple samples are useful for this setting, but natu-
rally, spending too much computation on a single example degrades the overall
performance as the total training size diminishes.

Given 100 million evaluations Given 1 million updates

0.018

0.008 -
0.016 -

0.014 4
0.007
0.012 4
.010 1
0.006 0.010

0.008

0.005 0.006

0.004 +

Best average error achieved over 10 runs

1 23 5 10 25 50 100 1000 1 23 5 10 25 50 100 1000
Number of evaluations sampled per training example

Fig. 5: Average lowest received error for the different options of hand validations, given
a total budget of either 100M hand evaluations or 1M training updates.

We extend our experiments in the next section, where we regard a simi-
lar setting. For that, pre-computed evaluations do not exist and approximating
through sampling is a realistic setting.

4.2 Reconnaissance Blind Chess

Reconnaissance Blind Chessﬂ RBC is an imperfect information adaption of
chess, where players receive limited information about the opponent’s moves.
When training agents to play this game, it is highly useful to be able to eval-
uate a specific situation (i.e. the received observations at one point in time),
and evaluation functions for regular chess are readily available (e.g., from open-
source programs such as Stockﬁs}ﬂ Thus, computing the average evaluation of
all states in an information set is an intuitive approach, but doing so is largely
unfeasible due to the information set size.

Setup For this experiment, training data is created offline for each k, thus gen-
erating a fixed training set for each setting. Each learner has a fixed budget of
1 million state evaluations that can be arbitrarily distributed among different

4 |https:/ /rbe.jhuapl.edu/
® lhttps://stockfishchess.org/
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information sets. Based on the previous results, sensible values of k were chosen
as{1,2,3,5,10,25,50,100,1000}, thus resulting in datasets of approximately {1M,
500k, 333k, 200k, 100k, 40k, 20k, 10k, 1k} examples respectivelyﬁ Importantly,
the number of potential public-information states to get evaluated in this ex-
periment is much higher than in the previous Section For Poker, there are
only 1326 unique 2-card hands. However, in RBC, the number of potential ob-
servations which form one information set is estimated to be 1039 [14], much
larger than our training datasets, thus minimising the probability of overlap-
ping training example and increasing the importance of meaningful target value
estimations.

1 samples 5 samples 50 samples
2 samples 10 samples B 100 samples
3 samples 25 samples 1000 samples
J

100% A

50% A

20% A
10% 4

) i
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Difference between true evaluation of information set and average of sampled state

Percentage of evaluations in this range

Fig. 6: Monte-Carlo estimate of error in evaluating the odds of winning for a given
observation. Estimations are computed by averaging over k samples of possible board
states, true evaluation is defined as the average over the whole information set. Note
that the y-axis is in a logarithmic scale to improve readability.

Results Again approximating the sampling error through Monte-Carlo esti-
mates (Figure @, we receive the expected result: Sampling only a small number
of states can lead to a large discrepancy between the approximation and the
ground truth, but we see diminishing returns, such that sampling more than 50

5 The exact numbers vary slightly because the information set can consist of fewer
states than k, thus exhausting it completely.
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Fig. 7: Average lowest received error for training datasets created with a total budget
of 1M sampled boards. For each training example, k different boards are sampled from
the information set, leading to 1M/k different training examples.

positions only leads to slight improvements in the approximation. We thus ex-
pect efficiency increases with repeated sampling, but more than 50 states should
lead to meaningfully degrading performance.

This observation is confirmed by the results in Figures [7] and [§] The train-
ing curves of Figure [§ show that using singular samples results in poor overall
accuracy, but vast oversampling leads to too few total training examples. The
extreme choices of k (1 and 1000) perform poorly, but moderate sampling is
useful.

5 Summary and Conclusion

With this work, we provided experimental results on the influence of sampling
different numbers of states from an information set to learn an evaluation of
the whole set. For a given task, a total budget of N evaluations is given, which
can be distributed across information sets. Thus, we investigated the trade-off
between the overall number of training samples generated and the accuracy of
their associated training targets.

Firstly, the trade-off is influenced by the cost of generating evaluations and
the cost of making an update to the learner, so the choice of k£ needs to be
related to their balance. We find that in Heads Up Poker and Reconnaissance
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Fig. 8: Mean training progress of learning to evaluate imperfect information states with
different numbers of boards sampled per training example. The x-axis is scaled by the
total number of evaluations seen. Curves vary in length because the Neural Networks
are individually trained until no further improvements are seen.

Blind Chess (Sections and , multiple evaluations consistently improve
the performance and efficiency of the learner. In both domains, sampling two
evaluations per training example leads to the overall best results, and only using
one sample did not perform well in comparison. As the results for both tasks
were similar, we speculate that these findings will translate to more scenarios,
but more work is required to validate this.

6 Future Work

We see multiple intriguing lines of further work based on these findings. First,
we here assumed no agency over the process of sampling from the information
sets and no online variation in sample numbers. Removing either of those as-
sumptions will likely lead to better results, and some strategies have previously
been outlined by Sheng[I8] for categorical tasks. In addition, while our general
formulation holds for other distributions of states, we used a uniform distribu-
tion of states for our experiments. This is a sensible assumption for Poker, but
information sets do not follow a uniform distribution in RBC. Knowledge of this,
or even access to a proxy of such a distribution, would lead to more accurate
estimations in real-world tasks. Whether a non-uniform distribution changes the
best choice of sampled evaluations will be investigated in the future.
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