
Analyzing KataGo: A Comparative Evaluation Against
Perfect Play in the Game of Go

by

Asmaul Husna

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Asmaul Husna, 2024

Abstract

Research on board games focuses on playing at a superhuman level or finding

exact solutions. Recently, Artificial Intelligence (AI) has become really good

at playing complex games such as Go. Comparing AI systems to perfect play

helps us understand how advanced AI has become. This research explores the

performance of KataGo, an AlphaZero-like program, in the game of Go. Our

study investigates how different neural networks and search strategies impact

KataGo’s decision-making abilities when compared against perfect play. In our

research, we develop a larger Go endgame dataset labelled with perfect solu-

tions, and examine KataGo’s strengths and weaknesses through experiments

and analysis. We observe the effectiveness of strong policies in improving

move selection, the benefits and demerits of MCTS search enhancements, and

the challenges KataGo faces in competing against an exact solver. We fur-

ther analyse move choices by showing the changes of average action values,

lower confidence bound (lcb), winrate, and number of visited node according

to MCTS search in KataGo. KataGo has a 90.8% success rate while playing

matches against an exact solver in the perfect game dataset.

ii

Preface

This thesis entitled “Analyzing KataGo: A Comparative Evaluation Against

Perfect Play in the Game of Go” represents my original and unpublished re-

search work conducted under the supervision of Dr. Martin Müller. We plan to

submit a shorter version of this work in the Computers and Games conference

(CG 2024).

iii

Acknowledgements

First and foremost, I express my deepest gratitude to the Almighty for helping

me throughout this journey.

Then, I would like to thank my supervisor, Dr. Martin Müller, for his

incredible support and guidance. I am truly grateful for his kindness, help-

fulness, and valuable feedback on my thesis. I also want to acknowledge Dr.

Ting Han Wei for his insightful discussions and support.

I want to thank my parents, my sons, Afnan Habib Ayan and Awwab

Muhammad Habib, and all my family members and friends, whose love and

support have been crucial of my journey.

I am thankful to the University of Alberta, the Department of Computing

Science, Alberta Machine Intelligence Institute (Amii), and Digital Research

Alliance of Canada for providing the necessary resources and opportunities for

my research.

Lastly, I want to express my love and appreciation to my husband, Habibur

Rahman, for his continuous encouragement and unconditional support during

challenging times.

iv

Contents

1 Introduction 1
1.1 Motivation of the Research . 2
1.2 Research Questions . 3
1.3 Contribution of the Thesis . 3
1.4 Organization of the Thesis . 4

2 Literature Review 6
2.1 Game Tree Search . 6

2.1.1 Minimax and Alpha-Beta Search 7
2.1.2 Monte Carlo Tree Search 8
2.1.3 Solving Vs Playing a Game 11

2.2 AlphaGo and AlphaZero . 12
2.2.1 AlphaGo . 12
2.2.2 AlphaGo Zero and AlphaZero 14
2.2.3 KataGo . 17

2.3 Go Endgame Puzzles . 18
2.4 Exact Solver for Go . 18

2.4.1 Combinatorial Games 19
2.4.2 Decomposition Search 19

2.5 Related Work . 22

3 Experimental Setup 24
3.1 Datasets . 24

3.1.1 Extended Datasets . 25
3.1.2 Splitting the Dataset By Unique Incentives and By Endgame

Size . 29
3.2 Go Engine Settings . 30

3.2.1 GTP Configuration for KataGo 31
3.2.2 Choice of Neural Network 32

3.3 Computational Resources . 32

4 Experiments and Analysis 33
4.1 Experiment 1: Evaluating Network Policies with no Search . . 33
4.2 Experiment 2: Evaluating KataGo using both Neural Networks

and Search . 35
4.2.1 Comparing Strong and Weak Policies with Small Search 36
4.2.2 Scaling the Search . 37

4.3 Experiment 3: Evaluating KataGo By Unique Incentives and
By Endgame Size . 38
4.3.1 Evaluating KataGo By Unique Incentives 38
4.3.2 Evaluating KataGo By Endgame Size 39

4.4 Experiment 4: Playing Matches between Exact Solver and KataGo 43
4.5 Case Studies of Interesting Mistakes 45

v

4.5.1 Small and Longer Search Both Wrong 46
4.5.2 Small Search Correct but Longer Search Wrong 48

5 Conclusion and Future Work 51

References 53

List of Tables

3.1 Number of endgame problems in our datasets. 28

4.1 Total number of correct moves along with average success rate
by the weak and strong policy. 34

4.2 Total number of correct moves along with average success rate
and improvement by the weak and strong policies with MaxVis-
its = 100. 36

4.3 Total number of correct moves along with average success rate
by the weak and strong policy, and policies with 100 search for
DI test set, where there exists a single dominating incentive. . 40

4.4 Total number of correct moves along with average success rate
by the weak and strong policy, and policies with 100 search for
no-DI, where there is no single dominating incentive. 40

4.5 Total number of wins of KataGo and exact solver along with
success rate by the strong policy with 100 search. 43

vii

List of Figures

2.1 A two-ply game tree [18]. 8
2.2 Determining the minimax value using alpha-beta search [18]. . 9
2.3 One iteration of MCTS [8]. 10
2.4 An endgame position for playing matches between a solver and

a open-source Go bot [7]. 12
2.5 Two games between exact solver and KataGo from the starting

position in Figure 2.4. 13
2.6 A schematic representation of the neural network training in

AlphaGo [20]. 14
2.7 Monte Carlo Tree Search in AlphaGo [20]. 15
2.8 a) Self-play reinforcement learning in AlphaGo Zero. b) Neural

network training in AlphaGo Zero [22]. 16
2.9 Monte Carlo Tree Search in AlphaGo Zero [22]. 16
2.10 An endgame puzzle (left) with White to play and Komi -0.5.

The right figure shows an 11 move optimal solution. 18
2.11 A Nim position and its subgames [14]. 19
2.12 Safe stones and territories of a Go endgame position. 20
2.13 Identifying subgames and decomposing the Go board into the

subgames. 21
2.14 Local game tree from local combinatorial game search (LCGS)

with evaluation of terminal nodes. 21

3.1 An original endgame C.4 (left) and the modified version of C.4
(right). 25

3.2 Data generation from modified problem C.7. 26
3.3 Modified C.11 with 29 subgames represented by distinct letters.

Safe points are marked with a diamond symbol. 27
3.4 The subset A to E of C.11. All other subgames are changed to

safe territories. The five active endgames are marked with blue
circles. 28

3.5 An example of a board position with 20 unsafe points. 30

4.1 Policy probability difference between KataGo’s highest policy
move and the winning move with highest policy value on test
set M . 35

4.2 Examples of two endgames where the policy difference between
winning move and KataGo’s move is 0.49 and 0.34 for (a) and
(b), respectively. 36

4.3 Average number of mistakes for KataGo’s weak policy with dif-
ferent amounts of search. 37

4.4 Average number of mistakes for KataGo’s strong policy with
different amounts of search. 38

viii

4.5 Percentage of success in terms of total number of endgames
across different endgame sizes. The horizontal axis (x-axis)
shows the number of unsafe points, while the vertical axis (y-
axis) shows the percentage of success. 41

4.6 A small size (size 3) endgame where KataGo’s weak policy
makes mistake. Here, D7 is the only winning move where
KataGo’s move is G9. 42

4.7 Examples of a endgame position where KataGo loses as white
but exact solver wins as white. 44

4.8 Examples of an endgame position where KataGo loses one extra
point (b) as black. 45

4.9 The policy probability of KataGo’s suggested moves with red
circle and optimal move with blue circle in original problem C.3. 47

4.10 The change of winrate, lcb, utility, and number of visited nodes
during the search of original problem C.3 shown in Figure 4.9. 48

4.11 The policy probability of KataGo’s suggested moves with red
circles and winning moves with blue circles in modified problem
C.1. 49

4.12 The change of winrate, lcb, utility, and number of visited node
during the search of modified problem C.11 shown in Figure 4.11. 50

Chapter 1

Introduction

Board games are considered as a platform for exercising strategic thinking,

decision-making, and problem-solving skills. Humans can naturally play board

games and enjoy the intellectual challenge they provide. Players must analyze

the game’s current state, evaluate available options, and anticipate the po-

tential outcomes of their decisions. Humans generally rely on heuristics and

inference to make these types of decisions. Nowadays, Artificial Intelligence

has revolutionized the way board games are played.

The game of Go has been a fascinating subject of study for both human

and AI players. The complexity of the game, with its vast number of possi-

ble moves, has made it an excellent platform for testing the limits of human

and AI. With the advent of deep neural networks with tree search, in recent

years, AI has shown superhuman performance in playing Go, with DeepMind’s

AlphaGo [20] becoming the first AI program to defeat a top human profes-

sional player in 2016. After this success, DeepMind developed Alphazero [21],

a program which can master Go, chess, and shogi without human knowledge.

Despite their remarkable performance, these AlphaZero-like programs are not

perfect and can still make mistakes. We want to understand how these modern

programs learn to play the game of Go and explore the limits of their playing

abilities. In this work, we investigate the performance of the AlphaZero-like

program KataGo against perfect play using Go endgame puzzles [7], and ex-

tend these endgames puzzles to facilitate further exploration and analysis.

1

1.1 Motivation of the Research

AlphaZero surpassed the best human players, and even its predecessors, Al-

phaGo and AlphaGo Zero. Currently, AlphaZero-like programs dominate

board games by achieving remarkable performance without human knowledge.

The performance is measured by winning or losing games against opponent

players. The success of AlphaZero and its variants in Go has had a profound

impact on the field of artificial intelligence and game-playing algorithms. It

showcases the power of combining search and deep neural networks with rein-

forcement learning and self-play to achieve exceptional performance in complex

domains.

The potential applications of the AlphaZero algorithm extend beyond games.

In areas like self-driving cars, where even a tiny mistake can cause big prob-

lems, having accurate solutions is extremely important. However, it is still an

open question whether AlphaZero-like algorithms can be adapted to find exact

solutions. To address this question, it is essential to explore the learning pro-

cess of these modern programs. In games, exact solution of an endgame refers

to the theoretically optimal, perfect play result that each player can achieve.

Recently, Haque, Wei, and Müller analyzed how far a AlphaZero-like program

Leela Chess Zero (Lc0) is from perfect play, by comparing its decisions with

perfect ones from chess endgame tablebases [9]. They found some interesting

mistakes made by the algorithm. Their research motivates us to do a similar

analysis on the game of Go. We choose Go as it is the most challenging board

game, and unlike chess, the number of endgame positions is not reduced after

capturing. One of the main obstacles to doing this research on Go is that there

are no endgame tablebases for this game.

Therefore in this thesis, we solve endgame problems using an exact solver

[14] and compare an AlphaZero-like program KataGo in Go against perfect

play of these problems. We select the endgame puzzles from Berlekamp and

Wolfe[7] as the author demonstrated the effectiveness of his theory by setting

up a plausible endgame position from which he beat one of the Japanese

champions of the game, after which he set up the same position, reversed the

2

board, and beat the master a second time1. This analysis provides insights

into the strengths and limitations of KataGo in achieving exact solutions.

1.2 Research Questions

Our research aims to address the following questions:

• What are the differences in move selection between stronger and weaker

neural networks?

• How does the addition of a small search enhance move selection compared

to using raw neural networks?

• What is the impact of increasing the search budget on the overall per-

formance of the algorithm?

• How good is KataGo at finding the best incentive move compared to

finding minimax optimal move?

• How does KataGo perform depending on the size of the endgames?

• What is the performance of KataGo compared to an exact solver when

playing matches using endgame starting positions?

• Are there any cases where using deeper search adversely affects move

selection compared to using small search?

1.3 Contribution of the Thesis

Our work provides the following key contributions:

• We develop a larger dataset based on the endgame positions in [7] and

[13], analyze it, and evaluate the performance of KataGo [27] against

perfect play.

• We show how using a small search helps correct errors made by weak

and strong neural networks.

1Article is available at https : //celebratio.org/Berlekamp ER/article/730/

3

https://celebratio.org/Berlekamp_ER/article/730/

• We demonstrate the behaviour of KataGo from small to large number

of searching nodes and identify its strengths and weaknesses.

• We evaluate KataGo’s ability to select best incentive move compared to

select minimax optimal move. We also show the performance of KataGo

in endgames of different size.

• We show a scenario where KataGo loses against an exact solver in a

simple endgame.

• We investigate the cases where a small search correct but longer search

wrong, as well the cases which are not solved by KataGo’s policy and

search. We observe that the move with highest policy can be a least

favorable move for KataGo after the search.

Ultimately, this research contribute to our understanding of the capabilities

of modern programs like KataGo and their potential applicability in domains

where exact solutions are crucial. By gaining insights into their performance

relative to perfect play, we can evaluate the feasibility of employing AlphaZero-

like algorithms in fields such as drug design [10], [30] and safety-critical systems

like autonomous vehicles [16], where the cost of deviations from exact solutions

is high.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2. Literature Review: We review the basic concepts un-

derlying this research.

• Chapter 3. Experimental Setup: We describe our dataset and the

hardware and software setup along with the neural networks used. We

discuss the engine settings which ensure the reproducibility of our results.

• Chapter 4. Details of Experiments and Analysis: The details

of all experiments and the experimental results along with our analysis

are given in this chapter.

4

• Chapter 5. Conclusion and Future Work: Concluding remarks

about the research are stated and some future research directions based

on our findings are proposed.

We use grammarly2 and chatgpt3 to improve the writing.

2https://app.grammarly.com/
3https://chat.openai.com/

5

Chapter 2

Literature Review

This chapter gives an overview of the essential background material and related

work relevant to this thesis. We focus on two-player perfect information zero-

sum games such as Go. So all the terminology we use is for these types of

games.

2.1 Game Tree Search

Game tree search is a fundamental technique used in artificial intelligence to

make good, or even optimal, decisions in sequential games. It involves explor-

ing the possible moves and outcomes of a game by constructing a tree structure

known as a game tree. The game tree represents all possible game states and

the legal moves that can be taken at each state. Each node represents a spe-

cific game state, and the edges represent valid moves that transition from one

state to another.

A game tree starts with a root node which represents the initial game state.

The tree branches out to represent all possible sequences of moves that the

players can make. Each level of the tree corresponds to a player’s turn. Each

branch represents a different legal move, and the subsequent nodes represent

the resulting game states after the move is made, where it is the opponent’s

turn. Terminal nodes indicate the end of the game, and each has an associated

outcome; for example, win (+1) or loss (-1).

A search tree is a subset of the full game tree. A terminal node holds a

true game outcome and a non-terminal node can hold a heuristic value. If

6

we use +1 as evaluation for a win and -1 for a loss, the heuristic values are

in the range (-1, +1). Many algorithms, such as minimax and alpha-beta

pruning, can be employed to search a game tree and make decisions. These

algorithms evaluate the nodes in a search tree with the backed-up value from

search algorithms in interior nodes, and eventually in the root node. In the

following subsections, we review some of the most popular algorithms.

2.1.1 Minimax and Alpha-Beta Search

The minimax algorithm is commonly used for two-player, zero-sum games,

where the goal is to maximize the player’s outcome, which is the same as

minimizing the opponent’s outcome. It is a depth-first search, which assigns

values to the leaf nodes of the game tree and then propagates the values upward

through the tree. It evaluates each parent node by taking the maximum value

of the children when it is the player’s turn, and the minimum when it is the

opponent’s turn.

Figure 2.1 shows an example of minimax game tree search [18]. At the root

node of the game, MAX has three possible moves: a1, a2, and a3. In response

to a1, MIN can play: b1, b2, or b3. The game concludes after both MAX and

MIN have made one move each. This means the game tree is two moves deep,

also referred to as a ply. In this game, the terminal states have outcomes that

vary between 2 and 14. After analyzing the tree, we find that MAX’s optimal

move at the root is a1, as it leads to the state with the highest minimax value

of 3. MIN’s best response at node B is b1, as it leads to the state with the

lowest minimax value of 3.

The naive minimax algorithm performs a depth-first search that explores

the entire game tree. In a popular simple model, there are b legal moves at

each node, and search reaches a depth of d. As a result, the complexity of the

algorithm can be expressed as O(bd) [18]. However, for nontrivial games such

as Go or chess, this computational cost becomes impractically large as they

have a large branching factor and depth.

The alpha-beta search algorithm improves the efficiency of minimax, re-

ducing the complexity of the game tree traversal. In the best-case scenario, it

7

Figure 2.1: A two-ply game tree [18].

can cut the exponential complexity of the minimax game tree from O(bd) to

O(bd/2). The key idea is to keep lower and upper bounds (α, β) on the true

minimax value, and prune a position if its value v falls outside the window

• v < α: We will avoid it. We have a better alternative.

• v > β: Opponent will avoid it. They have a better alternative.

The algorithm can be easily understood with the example in Figure 2.2. In

this example, the algorithm determines the minimax value of the root node

without evaluating two of the terminal nodes. This illustrates how alpha-beta

search can identify and ignore branches that can not affect the final value of

the root.

2.1.2 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a popular algorithm used to make deci-

sions in games or other domains with high branching factors and uncertainty

[6], [8], [20]. It combines elements of random sampling (Monte Carlo) and

tree search to build a selective search tree that represents possible states and

actions in a given game or problem. The innovative combination of tree search

and Monte Carlo policy evaluation played a significant role in the remarkable

achievements of successful Go programs. MCTS with an enhanced move and

state evaluation algorithm is also used in AlphaGo and AlphaZero [23].

MCTS consists of four steps, repeated as long as there is time left:

8

Figure 2.2: Determining the minimax value using alpha-beta search [18].

• Selection: Each iteration of the MCTS algorithm starts by selecting a

leaf node in the current search tree. Starting from the root node that

represents the current state of the game, the algorithm selects successive

child nodes.

• Expansion: Expansion determines whether nodes should be added to

the tree. Unless the leaf node is terminal and gives the game’s outcome,

the algorithm expands it by adding one or more child nodes to the tree.

Each child node represents a state after a valid move.

• Simulation or Play-out: After expansion, the algorithm performs a

simulation from the newly added child node. The randomized simulation

selects actions until the game ends. A simulation is sometimes referred

to as a playout or rollout.

• Backpropagation: Once the simulation is complete, the results are

backpropagated through the tree. Starting from the expanded node, the

algorithm updates the statistics of all nodes along the path to the root.

Such statistics typically include the number of visits to the node and the

accumulated rewards, such as the number of wins.

9

These steps (selection, expansion, simulation, and backpropagation) are re-

peated until a termination condition such as time or number of simulations

is met. The algorithm gradually builds up knowledge about the game and in

the limit, converges towards a solution. Figure 2.3 shows one iteration of the

general MCTS approach [8]. By continuously expanding the search tree and

refining its estimates of the values of different actions, MCTS can make deci-

sions even in complex domains with large state spaces and uncertain outcomes,

such as the game of Go.

Figure 2.3: One iteration of MCTS [8].

For selecting a child node, the main difficulty is balancing exploration and

exploitation effectively. Upper Confidence Bounds for Trees (UCT) [11] is a

commonly used strategy within MCTS to achieve this balance. UCT is based

on the Upper Confidence Bound (UCB) policy proposed by [5] which is called

UCB1. The UCT algorithm assigns values to nodes in the search tree based on

a trade-off between two factors: the estimated value of the node (exploitation)

and the degree of exploration of less explored nodes. This balance allows the

algorithm to explore new possibilities while also prioritizing the exploitation

of promising branches.

The UCT formula calculates a value for each child node of a given parent

node. The value of child node v, denoted as UCT (v), is computed as:

UCT (v) = X(v) + C

√
ln(N(p))

N(v)
(2.1)

10

In this formula, X(v) represents the estimated value (average reward or

win rate) of the child node v, N(p) is the number of times the parent node

has been visited, N(v) is the number of times the child node has been visited,

and C is a constant that determines the balance between exploration and

exploitation. The term
√

ln(N(p))
N(v)

represents the exploration component, while

X(v) represents the exploitation component.

The exploration component in the UCT formula ensures that less explored

nodes are given a higher priority for selection, as the square root of the loga-

rithm of the parent’s visit count over the child’s visit count is large with less

exploration. The exploitation component X(v) is updated during the back-

propagation phase of MCTS, where the results of simulations are propagated

back up the tree.

2.1.3 Solving Vs Playing a Game

Solving a game refers to finding an optimal strategy that guarantees a win or,

in some cases, at least a draw, regardless of the opponent’s moves. This concept

is most applicable to games with perfect information, where all the game states

and possible moves are known to the players. The primary goal of solving a

game is to find a strategy that will lead to a victory. Achieving a solution

for a game typically involves using algorithms, mathematical techniques, and

computational power to explore possible moves and counter-moves until a

winning strategy is identified. However, it’s important to note that not all

games are solvable in practice, especially those with a large number of potential

positions and complex interactions. Games like Go fall into this category.

Figure 2.4 represents an endgame scenario in Go. We use this endgame

position to play matches between an exact solver [14], which can solve this

endgame position perfectly, and KataGo, a renowned open source Go program

inspired by AlphaZero’s approach. Figure 2.5 (a) shows a move sequence from

the starting position to the end of the match, where the exact solver plays

as white and KataGo with default settings plays as black. At the end of this

game, the exact solver wins by 0.5 points. Then in Figure 2.5 (b) we play

the match again after interchanging the color of the players. The exact player

11

beats KataGo by 0.5 points again.

Figure 2.4: An endgame position for playing matches between a solver and a
open-source Go bot [7].

2.2 AlphaGo and AlphaZero

AlphaGo, AlphaGo Zero and AlphaZero, and the open-source program KataGo

[27] are remarkable artificial intelligence systems that are really good at playing

strategic board games. This section explores all of them.

2.2.1 AlphaGo

AlphaGo [20] is the first program where the authors use deep convolutional

neural networks for effective move selection and position evaluation functions

for the game of Go. A novel combination of supervised and reinforcement

learning trains the neural networks. This program made history by defeating

Lee Sedol, one of the world’s top Go player in 2016.

The schematic representation of the neural network training process is

shown in Figure 2.6. Neural networks begin to learn from a training phase,

where a supervised learning (SL) policy network, pσ, is directly trained from

expert human moves. Additionally, a fast but less accurate rollout policy, pπ,

is also trained to select moves during rollout. The policy networks alternate

12

(a) Exact solver wins as white against
KataGo.

(b) KataGo loses as white against exact
player.

Figure 2.5: Two games between exact solver and KataGo from the starting
position in Figure 2.4.

between convolutional layers with weights and rectifier nonlinearities. The in-

put they receive is a basic representation of the game board, and they produce

a probability distribution of legal moves through a final softmax step.

In the second stage of training, a reinforcement learning (RL) policy net-

work, pρ, is initialized using the SL policy network’s weights. Through policy

gradient learning, this RL policy network is subsequently improved to maxi-

mize outcomes (winning more games) by playing games with randomly selected

previous versions of the policy network. This RL policy network is used to

generate a self-play dataset of games. Finally, a value network vθ is trained

by regression to predict the expected outcome in positions from the self-play

dataset.

With the combination of the policy and value networks in an MCTS algo-

rithm, AlphaGo selects actions by lookahead search. Each edge (s, a) of the

search tree stores an action value Q(s, a), a visit count N(s, a) and a prior

move probability P (s, a). A variant of UCT is used for selection. The tree is

traversed by simulation starting from the root state. At each time step t of

each simulation, an action at is selected from state st such that [20]:

13

Figure 2.6: A schematic representation of the neural network training in Al-
phaGo [20].

at = argmax
a

(Q(s, a) + u(s, a)) (2.2)

where

u(s, a) ∝ P (s, a)

1 +N(s, a)
,

Figure 2.7 shows the process of Monte Carlo Tree Search (MCTS) within

the context of AlphaGo [20]. For selection, it picks the edge with highest sum

of action value Q and bonus u(P) that depends on prior probability P stored

on that edge and is used for exploration. After expansion, the policy network

pσ processes the new node once and the output probabilities are stored as

prior probabilities P for each action. At the end of a simulation, the leaf is

evaluated using the value network vθ and running the fast rollout policy pπ.

Then the reward r is computed for the current player, +1 for winning and

−1 for losing. Finally action values Q are updated to keep tracking the mean

value of the rewards and expected outcomes in the subtree below that action.

2.2.2 AlphaGo Zero and AlphaZero

AlphaGo Zero [22] is the first AI model for the game of Go that learns entirely

from scratch, without any human-provided data or knowledge beyond game

14

Figure 2.7: Monte Carlo Tree Search in AlphaGo [20].

rules. It differs from AlphaGo in several important aspects. Unlike AlphaGo,

it uses only black and white stones from the board as input feature and it

has only one neural network, rather than two seperate networks for policy

and value. This approach makes the tree search simpler that relies upon only

this single neural network to evaluate positions and sample moves without

performing any Monte Carlo rollouts.

The neural network is trained using a self-play reinforcement learning al-

gorithm combined with MCTS for each move. Figure 2.8 shows the training

pipeline in AlphaGo Zero. During self-play, the program competes against

itself, moving through positions s1,, sT in a game. At each position, MCTS

in Figure 2.9 is employed with the most recent neural network fθ. MCTS is

similar to the one used in AlphaGo, except there is no rollout, just a single

value evaluation by the neural network. Moves are chosen based on the search

probabilities calculated by MCTS. When a terminal position sT is reached, the

outcome is determined according to the game’s rules, computing the winner z.

The neural network starts with a random weight initialization which receives

the raw board position as input and passes it through numerous convolutional

layers parameterized by θ. The outputs are both a vector pt, indicating a

probability distribution over moves, and a scalar value vt, representing the

probability of the current player winning in this position. The parameters θ

are adjusted to achieve two main objectives: enhancing the similarity between

the policy vector pt and the search probabilities πt, and minimizing the error

between the predicted winner vt and the game winner z.

15

Figure 2.8: a) Self-play reinforcement learning in AlphaGo Zero. b) Neural
network training in AlphaGo Zero [22].

Figure 2.9: Monte Carlo Tree Search in AlphaGo Zero [22].

16

The AlphaZero [21] algorithm is built upon the foundation of AlphaGo

Zero but its capabilities are expanded to achieve superhuman performance in

several challenging games. The AlphaZero algorithm differs from the AlphaGo

Zero algorithm. AlphaZero focuses on estimating and optimizing the expected

outcome rather than the probability of winning. During neural network train-

ing, a key difference is that AlphaZero updates the neural network continually

without waiting for an iteration to complete. Despite these differences, Alp-

haZero uses the identical convolutional network architecture found in AlphaGo

Zero for chess and shogi as well as Go. Only the input is adapted to each game.

2.2.3 KataGo

KataGo [27] is an open-source Go program which implements the AlphaZero

algorithm for the game of Go with several improvements to accelerate the self-

play learning. It uses some domain-specific features and optimizations but it

still starts from random play and makes no use of outside knowledge except

for the game rules.

KataGo makes two important contributions. First, it implements a variety

of domain-independent improvements that can be used in other learning meth-

ods like AlphaZero. These include techniques to balance data better, improve

training by focusing on important parts, and enhance the neural network by

adding global pooling layers at various points. Additionally, the authors find

the usefulness of adding some game-specific input features to improve learn-

ing. The program serves as a case study that there is still a big difference

in efficiency between AlphaZero’s methods and what can be achieved through

self-play. For this, it uses methods specific to Go, such as predicting ownership

and scores, which are very helpful.

After these improvements, KataGo surpasses ELF OpenGo’s final model,

an open-source AlphaZero-like Go project [24], after only 19 days training on

fewer than 30 GPUs while ELF required thousands of GPUs over two weeks.

It is also stronger than Leela Zero 0.17 [1], another AlphaZero-like open-source

Go bot.

17

2.3 Go Endgame Puzzles

In endgame puzzles in the game of Go, most of the board is filled up, and

players focus on small but important local battles to protect their territory

and reduce their opponent’s. At this stage, there are fewer opportunities for

large territorial gains, and the outcome of the game can be decided by just a

few points.

Figure 2.10 (left) shows an endgame puzzle from [7]. This puzzle is designed

for White to be the first player and if both players (Black and White) play

perfectly then White wins by 0.5 points. We use the exact solver [14] to get

a correct sequence of moves for this endgame. In Figure 2.10 (right) using

Japanese rules to count the score Black has 9 and White has 10. With Komi

−0.5, White wins by 0.5 points.

Figure 2.10: An endgame puzzle (left) with White to play and Komi -0.5. The
right figure shows an 11 move optimal solution.

2.4 Exact Solver for Go

An exact solver for the game of Go can accurately determine the optimal moves

and outcomes for a given Go position. Creating such a solver is a challenging

task due to the huge complexity of Go and the large number of possible moves

and positions. In our work, we use a solver [13] which can solve a restricted

18

class of endgame problems with solution lengths exceeding 60 moves. It uses

a method called decomposition search [14] for solving combinatorial games.

This approach is applied to Go endgame problems to find the optimal move.

2.4.1 Combinatorial Games

Combinatorial games are two-player games, where both players have full knowl-

edge of the game state and available moves. They are turn-based, with players

taking alternating turns. We consider only games that have a finite duration.

Combinatorial games are structured in a way that allows them to be broken

down into subgames, which can be analyzed independently. This decomposi-

tion is particularly useful for games that can be viewed as a sum of indepen-

dent subgames. Each move made by a player corresponds to a move within

one of the subgames while leaving all other subgames unchanged. The game

concludes when all subgames have reached their end, leading to the final out-

come. A well-known example is Nim which is played with several heaps of

tokens. At each move, the player takes any number of tokens from a single

heap. Whoever removes the last token overall is the winner. Figure 2.11 shows

an example of a Nim position with three heaps and its subgames [14]. Here,

each heap is treated as a separate subgame and the overall Nim game is the

sum of these three heaps/subgames.

Figure 2.11: A Nim position and its subgames [14].

2.4.2 Decomposition Search

Decomposition search is a game-solving framework that utilizes a local search

approach called Local Combinatorial Game Search (LCGS) [14]. It aims to

find the optimal play in a game that can be broken down into subgames.

19

At first, this approach identifies subgames within the main game. For

the game of Go, this requires game-specific knowledge to partition the game

effectively by recognizing safe stones and territories. Safe stones cannot be

captured by the opponent. These stones have sufficient sure liberties (adjacent

empty intersections that the opponent cannot fill) to ensure their safety. Safe

territories are areas on the board completely surrounded by safe stones of one

player (either black or white), where the opponent cannot live inside. They are

considered as finished subgames with an integer value. Figures 2.12 and 2.13

show the safe stones and territories, and the 7 subgames after decomposing

a Go endgame position. Here, the blue squares represent the safe stones and

territories, and the capital letters A,B,C,D,E, F,G indicate the subgames

which are the connected components of the remaining points of this Go board.

Figure 2.12: Safe stones and territories of a Go endgame position.

Next, decomposition search applies local combinatorial game search (LCGS)

seperately on each subgame to find its game graph. LCGS is the main information-

gathering step of decomposition search [14]. It constructs a game graph that

represents all relevant move sequences that can be played locally. Unlike min-

imax tree search, LCGS incorporates all possible local move sequences in its

analysis as the players can switch between subgames at each move. Therefore

all legal local moves are generated for both players until a terminal position

is reached. Termination rules determine when to stop the search process, fol-

20

Figure 2.13: Identifying subgames and decomposing the Go board into the
subgames.

lowed by local scoring using Japanese rules of all terminal positions. Figure

2.14 shows a local game tree after applying LCGS on subgame B in Figure

2.13. It generates moves for both black and white at the same position. It

terminates the search when it doesn’t find legal moves. At the last stage, it

scores the terminal position using Japanese rules, where a positive score is

good for black.

Figure 2.14: Local game tree from local combinatorial game search (LCGS)
with evaluation of terminal nodes.

21

After performing LCGS, the algorithm evaluates the combinatorial game

value C(p) of a local game graph using these pre-evaluated terminal nodes. If

Black can move to b1....bn and white can move to w1....wm from a local position

p, the evaluation C(p) is determined as follows [14]:

C(p) = C(b1),, C(bn)|C(w1),, C(wm) (2.3)

The last step of decomposition search is to find an optimal move. The

focus is on selecting a move that maximally improves the overall position. The

improvement is measured by a combinatorial game concept called incentive of

a move. To find the optimal move, the decomposition search calculates the

incentives for all possible moves in each smaller part of the game and chooses

the best incentive move.

It often becomes possible to identify a move that dominates all others,

thereby determining an optimal move. But sometimes, there are multiple

moves that seem equally good. In this case, an optimal move is found by a

more complex procedure involving minimax search, which is called minimax

optimal. This method considers how the opponent might respond to each move

and chooses the one that gives the best chance of winning. In our experiment,

we mostly consider incentive optimal. However, if we can’t find moves with

incentive, we then use the minimax optimal move from the exact solver.

2.5 Related Work

Our research is focused on deeply analysing an AlphaZero-like program in the

game of Go against perfect play. We use open-source KataGo as the program

[27].

Studies comparing AI systems and perfect play provide valuable insights

into the state of AI development. The work by Haque et al. [9] compares Leela

Chess Zero (lc0), an AlphaZero-like open source chess program, against perfect

play from chess endgame tablebases. The authors calculate move decision

errors for both an intermediate and a strong version of lc0’s neural network,

and for different amounts of MCTS-based search. They find some interesting

22

cases such as when a move given by the policy (neural network) is correct,

but MCTS with a small search gives a wrong move. They further investigate

these cases by looking at the changes of action values, and the upper confidence

bound of MCTS with increasing amounts of search. Sadmine et al. [19] extend

this work by comparing the performance of lc0 with Stockfish, an open source

chess program which is totally different than AlphaZero, against perfect play.

The authors evaluate the wrong play of both programs with 3, 4, and 5 pieces.

They study the Average Centipawn Loss (ACPL) to identify how much value

a player loses while playing a wrong move. They also investigate the behaviour

of these engines where there is only one black pawn and one or more stronger

white pieces as most of these types of positions give a higher error rate.

Romein and Bal [17] first solved the game of awari and set up a database

which contains the minimax values and perfect moves from all reachable po-

sitions. With the perfect knowledge from this database, they analyzed the

games played by world-champion-level programs: SOFTWARI and MARVIN.

The authors found that MARVIN played a correct move in 82% of the cases,

and SOFTWARI in 87% of the cases. This relatively high percentage of errors

surprised the community, who had assumed that these programs were almost

perfect.

Recently, Wang et al. [25] found the vulnerabilities in KataGo by train-

ing adversarial policies against it. The adversarial program wins > 99% of

the games against KataGo with no search and > 97% against KataGo with

enough search to be superhuman. These policies trick KataGo into making

serious blunders to lose the game instead of playing well. This research could

encourage the ML research community to develop more robust training and

adversarial defense techniques to produce models needed for safety-critical

systems.

23

Chapter 3

Experimental Setup

In this chapter, we provide our experimental design, including datasets, engine

settings, and computational resources. We first describe the datasets in Section

3.1. We discuss specific engine settings, including GTP configuration and

Neural Network choices in Section 3.2, and describe computational resources

in Section 3.3.

3.1 Datasets

We used the 22 endgame problems, C.1, C.2,, C.22, introduced by the book

“Mathematical Go: Chilling gets the last point” [7]. We call these problems

original problems. We also used the modified versions of these original

problems, which we call modified problems [14]. These modified problems

were introduced to create equivalent endgame regions separated by stones that

can be proven safe by a program. This makes it possible for an exact solver to

analyze each small local area independently [15]. Figure 3.1 shows an original

endgame C.4 (left) and the modified version of C.4 (right). The changes make

blocks alive and clearly separate the endgames for local search.

There are a few reasons why these problems are chosen:

• The problems are challenging. They require careful analysis and calcu-

lation and can be very satisfying to solve. The author of the original

problems also demonstrated the effectiveness of his theory by setting

up a plausible endgame position from which he beat one of the Japanese

24

Figure 3.1: An original endgame C.4 (left) and the modified version of C.4
(right).

champions of the game, after which he set up the same position, reversed

the colors, and beat the master a second time1.

• These problems are more practical than the adversarial perturbation set,

where the author creates this set by adding one or two meaningless stones

that cause KataGo to make serious mistakes. [12].

• These problems also cover various endgame situations, from simple to

complex, which allows testing a program on a range of difficulty levels.

Overall, endgame problems are an excellent choice for evaluating the play-

ing abilities of both machines and humans. Here, white is to play for every

problem, and all potential winning moves can be evaluated and determined

mathematically. These winning moves are all possible winning moves with

perfect play by both players, and we check if our Go engine can find one of

them. In Figure 3.1, the only winning move for both the original and the

modified problem is G1.

3.1.1 Extended Datasets

We use the exact solver to generate one perfect game starting from each state

in each modified problem. We adjust the komi when a stone is captured. To

1Article is available at https : //celebratio.org/Berlekamp ER/article/730/

25

https://celebratio.org/Berlekamp_ER/article/730/

validate each perfect game position, we play matches between the exact solver

and KataGo. If KataGo suggests any move outside the winning moves given

by the exact solver, we verify that it results in KataGo losing the game.

Figure 3.2 shows an example of how we generate the extended dataset from

an endgame position. Figure 3.2(a) represents the modified problem C.7 with

komi −0.5 and white to play. The letter A indicates one of the winning moves

of this board position. We play white A to get the next starting endgame

position in Figure 3.2(b) with black to play. As there is no captured stone,

komi isn’t changed here. Similarly we get the third starting position in Figure

3.2(c) by playing black A in Figure 3.2(b). We name this collection of data

perfect games since the moves follow an optimal line of play. To expand the

dataset, we use the modified problems C.1, C.2, C.3, C.6, C.7, C.8, C.9, C.10,

and C.21. Through these extensions, we add a total of 126 test positions to

the dataset.

Figure 3.2: Data generation from modified problem C.7.

We use GoGui [3] for this procedure. GoGui is a free software package that

provides a set of tools for playing Go, and for interacting with Go programs.

We attach the exact solver program in GoGui, generate winning moves through

the solver, and save the board position as an sgf file. If black captures a

white stone, we add −1 to the komi as the captured stone information is not

maintained otherwise. On the other hand, if a black stone is captured by

white, we add +1 to the komi.

To add more 19× 19 endgames to our dataset, we utilize modified versions

26

of problem C.11. This problem is particularly challenging, with 29 subgames.

Figure 3.3 displays the modified C.11 with all its subgames, each labeled with

a letter. We use an extension of the subsets of C.11 from [15]. As a series of

problems of increasing complexity, in these test positions, all other subgames

are changed into safe territories, except for the ones we’re interested in playing

[15]. For example, in the subset of C.11 A-E in Figure 3.4, all other original

subgames are made safe territories. We utilize a total of 21 subsets from A-A

to A-U.

Figure 3.3: Modified C.11 with 29 subgames represented by distinct letters.
Safe points are marked with a diamond symbol.

Following the procedure outlined above for extending the dataset with per-

fect games, we apply a similar approach to the subsets obtained from modified

versions of problem C.11. By utilizing these subsets, we generate additional

27

Figure 3.4: The subset A to E of C.11. All other subgames are changed to
safe territories. The five active endgames are marked with blue circles.

data. Through this process, we obtain a total of 371 endgames from these

subsets. We name these endgames C.11 subsets.

Table 3.1 shows the number of endgame problems for each dataset. In our

test set, we have endgames with board sizes of 9 × 9, 13 × 13, and 19 × 19.

All endgame problems are stored in Smart Game Format (SGF) [4], which is a

computer file format used for storing records of board games. It is a text-only,

tree-based format.

Name of Dataset Number of Endgames
Original 22
Modified 22

Perfect games 126
C.11 subsets 371

Table 3.1: Number of endgame problems in our datasets.

28

3.1.2 Splitting the Dataset By Unique Incentives and
By Endgame Size

We divide perfect games and C.11 subsets into categories. We employ two

concepts for splitting these test sets to evaluate KataGo’s decision-making

strength in selecting the best incentive move among all winning moves, and to

assess its accuracy across different endgame sizes.

Split based on existence of a dominating incentive

Our extended dataset is perfect games and C.11 subsets. We get the optimal

moves of these two test sets from an exact solver. It is possible that there is

no single dominating incentive in a board position. For this reason, we split

them into two sets.

• Set 1: This set consists of the positions where there exists a single dom-

inating incentive. This means that there is at least one move with that

incentive provided by the exact solver. We name this set DI.

• Set 2: This set includes positions where there is no single dominating in-

centive. In such cases, there are two or more non-dominating incentives,

and search must be used to find the best moves in terms of minimax

score. The exact solver returns an empty set of incentive optimal moves,

and only minimax optimal moves are considered as winning moves. We

call this set no-DI

We conduct different tests for DI and no-DI, which are discussed in detail

in Chapter 4.

Split based on number of unsafe points

The complexity of endgame problems varies based on the number of unsafe

points remaining on the board. A board with fewer such points is likely to

be simpler than one with many. We measure complexity by calculating the

number of points which are not considered safe by the exact solver. The

formula to calculate unsafe points is:

29

unsafe points = boardsize ∗ boardsize− safe points

Here, safe points is the number of points considered safe by the exact solver.

Figure 3.5 shows a board position with safe points marked by white and dark

grey shading. This position has 61 safe points according to the exact solver.

The number of unsafe points is 9 ∗ 9− 61 = 20.

Figure 3.5: An example of a board position with 20 unsafe points.

3.2 Go Engine Settings

We use KataGo version v1.12.4 to analyze our endgame dataset. The reasons

to select KataGo as our analysis tool are:

• Since 2021, KataGo has been the strongest open-source Go program

available online (available at https://github.com/lightvector/KataGo).

• KataGo is an AlphaZero-like [21] program with many enhancements and

improvements [27]. It supports setting the value of komi (including in-

30

https://github.com/lightvector/KataGo

teger values) and a wide variety of rules, including rules that match

Japanese rules in almost all common cases.

• KataGo outperforms other available AlphaZero-style open-source Go

bots [27]. It also has four backends - OpenCL (GPU), CUDA (GPU),

TensorRT (GPU), and Eigen (CPU). So, it can easily run on a wide

variety of GPU and CPU-based machines.

3.2.1 GTP Configuration for KataGo

The Go Text Protocol (GTP) [2] is a protocol used by most Go engines and

Go servers for playing games between programs. It is also used for the con-

figuration of KataGo’s setting [28]. For our experiment, we keep the default

values for most of them. The following changes have been made:

• Rules and Komi: KataGo sets Tromp-Taylor as its default rule to play

the game. We use Japanese rules to match our datasets, and adjust the

komi individually for each problem, such that each position is a win for

white with 0.5 points with perfect play.

• MaxVisits: The term ”Visits” refers to the count of search playouts

performed in each turn, including the searches conducted in previous

turns that are still relevant in the current turn. To illustrate, if KataGo

conducted a 200 node search in the previous turn and, after the oppo-

nent’s response, 50 nodes from that search tree are still valid, setting

a visit limit of 200 causes KataGo to explore 150 new nodes, resulting

in a final tree size of 200 nodes. We vary the“MaxVisits” parameter to

analyse how KataGo performs with both small and large searches. We

evaluate the Neural Network without search by setting “MaxVisits = 1”.

In this case, KataGo will make a decision after evaluating only the root

node, and its Neural Network policy, without expanding the tree.

• Policy Moves: We determine the policy distribution for the next move

of a board position from the Neural Network by using the GTP com-

mand “kata-raw-nn”. This command provides the output of a raw neural

31

network evaluation conducted by KataGo including the probability that

white wins, the probability that black wins, and the policy distribution

for the next move.

• Move Analysis: For search-based investigation of a generated move

from KataGo, we use the GTP command “kata-genmove analyze”. This

command returns information such as winrate, action values, and the

lower confidence bound (LCB) for a search.

3.2.2 Choice of Neural Network

The KataGo project has produced a wide variety of neural nets to play the

game [29]. In our experiment, to determine the best performance of KataGo,

we utilize one of the ‘strongest confidently-rated networks’, as of October,

2022, known as “kata1-b18c384nbt-s5832081920-d3223508649”. This network

has 18 blocks and 384 channels that are essential to detect the features. On the

other hand, as a weak network we choose a small size ”kata1-b6c96-s37368064-

d5536083” which has 6 blocks and 96 channels.

3.3 Computational Resources

We use one CPU core to process datasets, which involves turning problems

into perfect games and creating expanded datasets using GoGui and the exact

solver. To run KataGo program, we use OpenCL GPU as the computational

backend since this is the most general GPU version of KataGo and doesn’t

require a complicated install like CUDA does. Strong policy takes 64.1 seconds

to run perfect games (126 endgames) where weak policy takes only 1.2 seconds.

The search of KataGo program takes up the most time in our experiments. For

example, to run perfect games with MaxVisits = 102400 using strong policy

took nearly 5 hours.

32

Chapter 4

Experiments and Analysis

To measure the performance of an engine such as KataGo, we conduct two

types of evaluation: 1. using only the policies from weak and strong raw neural

networks without search, and 2. using both the policies and search. In both

tests, the engine makes one move for each endgame position. We compare this

move with all the optimal moves, both incentive optimal and minimax optimal

cases, for that position. If the move is not optimal, we consider it wrong. We

measure the success rate as the percentage of correct moves in the entire test

set. KataGo’s move decisions can vary from one run to another. Sometimes it

might provide different outputs compared to a previous run. To account for

this variability, we conduct each experiment five times and then calculate the

average results. As search of KataGo program takes a significant amount of

time (see Section 3.3), we couldn’t run it more than 5 times. After running

the experiments 5 times, we found that the success rate varied from 20% to

30%. Here, we present the average results, which provide a more accurate

performance assessment of KataGo compared to a single run result.

4.1 Experiment 1: Evaluating Network Poli-

cies with no Search

We start our experiment by evaluating KataGo’s weak and strong raw neural

networks mentioned in Section 3.2.2, without using any search to play. From

the neural network, KataGo gets the policy distribution for the next move of

a board position. It then plays the highest percentage policy move if there is

33

no search. Table 4.1 shows the total number of correct moves along with the

average success rate achieved by the weak and strong policy networks after 5

different runs.

Name of
Dataset

Number of
Endgames

Total Number of Correct Moves
with Avg Success Rate (%)

Weak policy Strong Policy
Original 22 8.8 (40%) 12.8 (58.2%)
Modified 22 7.8 (35.5%) 13.6 (61.8%)
Perfect games 126 98.8 (78.4%) 118.8 (94.3%)
C.11 subsets 371 355.6 (95.8%) 369.6 (99.6%)

Table 4.1: Total number of correct moves along with average success rate by
the weak and strong policy.

In general, the strong policy network demonstrates higher success rates

compared to the weak policy across all the dataset, indicating its effectiveness

in making optimal moves in the given endgames. We can also observe that

the success rate of perfect games and C.11 subsets is higher compared to

other datasets. One reason for this might be that the endgames in these

datasets have more ways to win, making it easier for KataGo to find a winning

move. For example, most original and modified problems have only one or two

winning moves, while perfect games and C.11 subsets often have between 4

and 10 winning moves. Another reason could be that the endgame size is

gradually reduced when creating these endgames by playing out the games,

as in Section 3.1.1. Smaller endgames are usually easier to solve than larger

ones.

Let D be the whole dataset, and M ≤ D be the set of positions where

KataGo makes a mistake. To know how much KataGo’s generated move dif-

fers from the winning moves, we compare the policy probability of the winning

move with highest policy value and KataGo’s move on M . We focus on posi-

tions in M because if KataGo gives a correct move, it means its highest policy

move is one of the winning moves. We only consider the strong network in

this test since it makes for fewer mistakes than the weak network. Figure 4.1

shows the data for M , sorted by the policy probability difference. We notice

34

a significant difference for a few problems, which is quite surprising. To inves-

tigate this surprising result further, we show two cases where the difference is

exceptionally high.

Figure 4.1: Policy probability difference between KataGo’s highest policy move
and the winning move with highest policy value on test set M .

The worst performance of KataGo was on the positions from modified

problems C.22 and C.4, with differences of 0.49 and 0.34 respectively. Figure

4.2 shows these two problems, indicating KataGo’s move and the winning move

along with their policy probabilities.

4.2 Experiment 2: Evaluating KataGo using

both Neural Networks and Search

This experiment investigates the impact of varying the search budget of KataGo

when solving the endgames in our whole dataset. We compare the results

obtained from the weak and strong raw policies, with a small search using

MaxVisits = 100 per move decision. Next, we scale the search budgets from

100 to 102400 to assess the impact of deeper searches on accuracy.

35

(a) White to play. KataGo’s move is E1
and the only winning move is D7.

(b) White to play. KataGo’s move is E3
and the only winning move is G1.

Figure 4.2: Examples of two endgames where the policy difference between
winning move and KataGo’s move is 0.49 and 0.34 for (a) and (b), respectively.

4.2.1 Comparing Strong and Weak Policies with Small
Search

Table 4.2 displays the average performance of KataGo using weak and strong

raw neural networks with MaxVisits = 100. It shows the number of correct

moves, success rate, and the improvement over the no-search versions indicated

by a ↑ sign. As original and modified problems are challenging, weak policy

with small search couldn’t improve much. But the search helps the strong

network to improve in a significant amount.

Name of
Dataset

Number
of
Endgames

Total Number of Correct Moves
with Avg Success Rate (%)

Weak policy +
MaxVisits = 100

Strong Policy +
MaxVisits = 100

Original 22 9.6(43.6%)↑3.6% 16.2(73.6%)↑15.6%
Modified 22 9(40.9%)↑5.4% 16.8(77.3%)↑14.6%
Perfect games 126 105.8(84%)↑5.6% 123.8(98.3%)↑4%
C.11 subsets 371 361.4(97.4%)↑1.6% 370(99.7%)↑0.1%

Table 4.2: Total number of correct moves along with average success rate and
improvement by the weak and strong policies with MaxVisits = 100.

36

4.2.2 Scaling the Search

We increase our search budget to see how deeper search affects the overall

accuracy. We start from MaxVisits = 100 and double it in each step, upto

102400. We utilize all the datasets. For C.11 subsets, we only use the one

endgame which was not solved by the strong policy in Table 4.2.

Figure 4.3 shows the results of the weak policy with search, across all

datasets, of five different runs. For original, modified, and perfect games, the

number of mistakes generally decreases. But it’s still struggling to improve

for the original and modified problems. Unexpectedly the average success rate

is only 60% after 102400 search. However, for the C.11 subsets, we didn’t

add the result in this figure because there’s only one endgame, and it is never

resolved.

Figure 4.3: Average number of mistakes for KataGo’s weak policy with differ-
ent amounts of search.

The result of the strong policy with search is quite surprising, as shown in

Figure 4.4. Initially, the number of mistakes decreases for original, modified,

and perfect games. But after reaching a certain point, it starts to rise again.

This suggests that for certain endgame scenarios, a shallower search is more

effective than a deeper one. We will delve into these interesting cases further

37

in Section 4.5. The outcome of the C.11 subsets is similar to the weak policy.

The only difference weak policy gives only one distinct move in every different

MaxVisits. For example, we consistently got G11 every time we increased the

search where the optimal move is P9. On the other hand, strong policy gives

4 different moves in different search. This indicates that the strong policy

explores more possibilities than the weak one.

Figure 4.4: Average number of mistakes for KataGo’s strong policy with dif-
ferent amounts of search.

4.3 Experiment 3: Evaluating KataGo By Unique

Incentives and By Endgame Size

We discussed in Section 3.1.2 how we split our dataset by existence of a unique

dominating incentive and by endgame size. In this section, we show the detail

experiments, for weak and strong policies, with and without a small search.

4.3.1 Evaluating KataGo By Unique Incentives

From Section 3.1.2 we get two set of data, DI and no-DI, when we split the

dataset based on existence of a dominating incentive. We have two different

test settings for these two sets.

38

For DI:

• Check if KataGo’s move has the best incentive or not.

• Check if KataGo’s move is minimax optimal.

For no-DI:

• Check move within minimax optimal or not as best incentive move is

empty here.

Table 4.3 shows the average results for DI with weak and strong policies,

and the same policies with a 100 node search. We utilize perfect games and

C.11 subsets here as we get the winning moves of these test sets from the in-

centive and minimax calculation of exact solver. From the results of Table 4.3,

we find that KataGo struggles more to identify best incentive moves compared

to minimax ones. This shows in the success rates of incentive and minimax

optimal, where we see a significant difference, ranging from 10 to 40 percent.

It seems that KataGo is more focused on finding a path that leads to a victory

rather than subtle differences in move strength. Interestingly, we also observe

that when we use search with our weak and strong policies, there is more im-

provement in performance for the weak policy compared to the strong one.

This suggests that search has a powerful role in finding the best moves.

We get very few endgames from perfect games and C.11 subsets where

there is no single dominating incentive. Table 4.4 shows the outcome for no-

DI test set. We observe that the results of policies and policies with search

are almost identical, except for one extra correct move with the strong policy

with search for perfect games. Upon examining the mistaken positions, we

find that there’s only one winning move in those positions. However, in other

positions, there are 6 to 9 winning moves, making those endgames easier to

win.

4.3.2 Evaluating KataGo By Endgame Size

We counted how many correct decisions KataGo made and how many endgames

there were in total for each endgame size. Then we measured the success rate.

39

Name
of
Dataset

Number
of
Endgames

Total Number of Correct Moves
with Avg Success Rate (%)

Weak policy Strong Policy
Incentive
optimal

Minimax
optimal

Incentive
optimal

Minimax
Optimal

Perfect
games

125 70.8(56.6%) 96.8(77.8%) 103(82.4%) 115.8(92.6%)

C.11
subsets

345 190(55.1%) 328.8(95.3%) 251.6(72.8%) 345(100%)

Weak policy +
search = 100

Strong Policy +
search = 100

Incentive
optimal

Minimax
optimal

Incentive
optimal

Minimax
Optimal

Perfect
games

125 89.2(71.4%) 106.2(85%) 106.2(85%) 122(97.6%)

C.11
subsets

345 235(68.1%) 333.8(96.8%) 254.6(73.8%) 345(100%)

Table 4.3: Total number of correct moves along with average success rate by
the weak and strong policy, and policies with 100 search for DI test set, where
there exists a single dominating incentive.

Name
of
Dataset

Number
of
Endgames

Total Number of Correct Moves
with Avg Success Rate (%)

Policy Policy with 100
search

Weak Strong Weak Strong
Perfect
games

8 6(75%) 6(75%) 6(75%) 7(87.5%)

C.11
subsets

26 25(96.2%) 25(96.2%) 25(96.2%) 25(96.2%)

Table 4.4: Total number of correct moves along with average success rate by
the weak and strong policy, and policies with 100 search for no-DI, where there
is no single dominating incentive.

40

Figure 4.5 displays KataGo’s performance using both raw policies and policies

with a maximum number of visits set to 500. In Figure 4.5 (a), we see that

the weak policy sometimes performs very poorly, even making mistakes in very

small endgames. On the other hand, the strong policy, shown in Figure 4.5

(b), only makes mistakes in larger endgames. After performing 100 searches

using the weak policy, some of the mistakes in small endgames disappear, as

seen in Figure 4.5 (c). The performance of KataGo’s strong policy with 100

search, displayed in 4.5 (d), is very strong. There are no mistakes in small

endgames, and only a few in large endgames.

(a) Performance of KataGo’s weak policy. (b) Performance of KataGo’s strong pol-
icy.

(c) Performance of KataGo’s weak policy
with MaxVisits = 100.

(d) Performance of KataGo’s strong pol-
icy with MaxVisits = 100.

Figure 4.5: Percentage of success in terms of total number of endgames across
different endgame sizes. The horizontal axis (x-axis) shows the number of
unsafe points, while the vertical axis (y-axis) shows the percentage of success.

Figure 4.6 shows a small size simple endgame where KataGo’s weak policy

makes mistake. The size of this endgame is only 3. It’s quite surprising that

weak policy could not figure out the winning move in this situation.

41

Figure 4.6: A small size (size 3) endgame where KataGo’s weak policy makes
mistake. Here, D7 is the only winning move where KataGo’s move is G9.

42

4.4 Experiment 4: Playing Matches between

Exact Solver and KataGo

We organize matches between the exact solver and KataGo to show the im-

portance of perfect play. We select the strong policy with MaxVisits = 100.

Since the exact solver can solve each state of perfect games and C.11 subsets,

we utilize these two sets for this experiment. We don’t consider endgames

with size less than 5.

Table 4.5 shows the results of playing matches between the exact solver and

KataGo. As expected, the exact solver achieves a winning rate of 100% on all

test sets. KataGo loses a few games in the perfect games dataset. However,

KataGo manages to win 100% of the matches in the C.11 subsets.

Name of
Dataset

Number of
Endgames

Total Number of Win
with Success Rate (%)

Exact Solver KataGo
Perfect games 120 120 (100%) 109 (90.8%)
C.11 subsets 333 333 (100%) 333 (100%)

Table 4.5: Total number of wins of KataGo and exact solver along with success
rate by the strong policy with 100 search.

Figure 4.7 (a) shows a simple 9× 9 board position where KataGo loses as

white, but the exact solver wins. If we have a close look on the move ordering

of 4.7 (b) and (c), we notice that the exact solver and KataGo have completely

different sequences of moves. This difference in move orderings suggests that

KataGo might get confused by long corridors on the board.

Although KataGo won all the games in C.11 subsets as white, it made a

mistake when playing as black in one board position. This error ended up

benefiting the exact solver, allowing it to win with an extra point. Figure 4.8

(a) shows this position from C.11 subsets A-R. In Figure 4.8 (b), we can see

the move sequence of the exact solver and KataGo, where exact solver wins

by 1.5 as white. Here, the first black move given by KataGo, F16, is not

optimal, which helps the exact solver to gain 1 more point. Conversely, the

exact solver’s first move, P9, shown in Figure 4.8 (c), was optimal, preventing

43

(a) A simple 9×9 perfect game from mod-
ified problem C.2.

(b) Exact solver wins as white against
KataGo.

(c) KataGo loses as white against exact
solver.

Figure 4.7: Examples of a endgame position where KataGo loses as white but
exact solver wins as white.

44

KataGo from securing a 1.5 point win.

(a) A 19 × 19 board position from C.11
subsets A-R.

(b) Exact solver wins as white against
KataGo by 1.5.

(c) KataGo wins as white against exact
solver by 0.5.

Figure 4.8: Examples of an endgame position where KataGo loses one extra
point (b) as black.

4.5 Case Studies of Interesting Mistakes

In our experiments, when a search makes a wrong move, it usually means that

the policy is also wrong. Moreover, when deeper search results are incorrect,

both the policy and smaller searches tend to be wrong too. Interestingly,

there are situations where the deeper search outcome is inaccurate while the

45

smaller search is correct. In Figure 4.4, we notice that sometimes the num-

ber of mistakes rises in larger searches. We also saw a few endgames that

remain unsolved even with deep search nodes. For further insights, we run

some endgames with more than 200k search and observe the changes of utility

(action value), lower confidence bound (lcb), winrate, and number of visited

nodes explored during the search process.

4.5.1 Small and Longer Search Both Wrong

We notice that the original problem C.3 is not solved by KataGo even with

deep search. In different searches, KataGo suggested three different moves:

J13, E5, and F11, while the optimal move is K1. In Figure 4.9, we can

see the policy probability of KataGo’s moves indicated by red circles, and the

policy probability of the optimal move marked with a blue circle. Interestingly,

the probability of choosing the optimal move is lower than for the other moves.

Sometimes the bad prediction of policy can be resolved by search. But in this

case, even with longer searches, KataGo couldn’t find the optimal move.

In Figure 4.10, we see the changes of winrate, lcb, utility and the number of

visited nodes during the search process. Initially, J13 seems like a promising

move based on its policy probability in Figure 4.9, but as the search progresses,

it turns out to be the least favorable move. On the contrary, F11 starts with

a low policy probability but improves during the search, eventually becoming

KataGo’s preferred move. Although the optimal move, K1 rises up initially,

later it goes down again. The win rate and lcb of all moves in Figure 4.10

(a) and (b), are below 0.4, indicating a low probability of winning (less than

40%). KataGo estimates that none of these moves are likely to win. It fails to

recognize the win with the optimal move, K1. All moves have negative utility

in Figure 4.10 (c) due to their low chance of winning. Figure 4.10 (d) shows a

surprising result. The exploration of all the moves remains low up to 25,600

search, after which only F11 shows an increase in the number of visited nodes.

This suggests that even after deep search, KataGo views F11 as the best move

and still overlooks K1.

46

Figure 4.9: The policy probability of KataGo’s suggested moves with red circle
and optimal move with blue circle in original problem C.3.

47

(a) Winrate. (b) Lower confidence bound (lcb).

(c) Utility (action value). (d) Number of visited nodes.

Figure 4.10: The change of winrate, lcb, utility, and number of visited nodes
during the search of original problem C.3 shown in Figure 4.9.

4.5.2 Small Search Correct but Longer Search Wrong

We find an interesting scenario with modified problem C.11, where KataGo

correctly identifies winning moves with a small search but makes a wrong move

after a larger search. The winning moves of this position are G13, L4, P9,

and Q17. However, KataGo also suggests the losing moves D11, F16, and C5

in different searches. In Figure 4.11, the policy probabilities of the winning

moves and KataGo’s suggested moves are quite similar.

We can observe the changes of winrate, lcb, utility and the number of

visited node in Figure 4.12. Initially, the winning moves are less favorable

compared to D11, F16, and C5. After Maxvisits = 1600, there is a significant

improvement in the case of P9 and KataGo starts selecting this winning move.

With deeper searches, the value for P9 decreases again, and the losing move C5

becomes KataGo’s preferred move. Even though the win rate of D11 is better

than C5 in Figure 4.12 (a), KataGo still chooses C5 because its decision is not

solely based on win rate but also on action value and lcb. Looking at Figure

48

Figure 4.11: The policy probability of KataGo’s suggested moves with red
circles and winning moves with blue circles in modified problem C.1.

49

4.12 (c), we see that C5 has the best utility. However, after a certain point,

the lcb of all moves becomes almost the same, as shown in Figure 4.12 (b).

The main issue here is that KataGo treats losing and winning moves equally.

Even though it picks different moves during different searches, the win rate,

utility, and lcb of all losing moves are high, which indicates KataGo’s wrong

understanding of this position. In Figure 4.12 (d), KataGo explores C5 more

in the longer search levels. This suggests that sometimes deep search can lead

KataGo to make incorrect decisions and to explore more in the wrong move.

(a) Winrate. (b) Lower confidence bound (lcb).

(c) Utility (action value). (d) Number of visited nodes.

Figure 4.12: The change of winrate, lcb, utility, and number of visited node
during the search of modified problem C.11 shown in Figure 4.11.

50

Chapter 5

Conclusion and Future Work

Through our research, we have gained valuable insights into the performance

of KataGo and its ability to play the game of Go at perfect level. We ad-

dressed several key questions regarding move selection, the impact of search,

and the overall performance of KataGo in different datasets. We observed that

the differences in move selection between weak and strong neural networks are

significant. However, the addition of a small search significantly improved

the performance of the weak and strong policy, highlighting the importance

of search algorithms. Increasing the search budget had a positive impact on

KataGo’s overall performance. However, we also noted cases where deeper

search led to incorrect move selections. Our experiments involving playing

matches between the exact solver and KataGo showed the importance of per-

fect play. While KataGo performed well in most cases, there were cases where

it made mistakes even in simple endgames, particularly in endgame positions

with long corridors that could confuse the algorithm. The network has not

learned the correct relative values of those moves, and often prefers simple

captures of lesser value. We investigated several interesting cases in detail and

found that KataGo faces difficulties balancing exploration and exploitation in

these longer searches.

Possible future works based on this study include:

• Develop more complex datasets with perfect solutions with a small num-

ber of winning moves.

51

• Figure out with a deep analysis why KataGo performs worse to find the

best incentive moves.

• Investigate and improve KataGo’s search algorithms further to improve

its decision-making accuracy against perfect play.

• Analyze the possibility to convert KataGo into a solver to solve the

endgames [26].

52

References

[1] -, “Leela Zero,” https://github.com/leela-zero/leela-zero, 2019.

[2] -, “Go Text Protocol (GTP),” https://www.gnu.org/software/gnugo/gnugo
19.html, accessed: 2022-10-11.

[3] -, “GoGui,” https://github.com/Remi-Coulom/gogui, accessed: 2022-09-
11.

[4] -, “Smart Game Format (SGF),” https://www.red-bean.com/sgf/go.html,
accessed: 2022-09-11.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, pp. 235–256,
2002.

[6] A. G. Barto, P. S. Thomas, and R. S. Sutton, “Some recent applica-
tions of reinforcement learning,” in Proceedings of the Eighteenth Yale
Workshop on Adaptive and Learning Systems, 2017.

[7] E. Berlekamp and D. Wolfe, Mathematical Go: Chilling gets the last
point. CRC Press, 1994.

[8] C. B. Browne, E. Powley, D. Whitehouse, et al., “A survey of Monte
Carlo tree search methods,” IEEE Transactions on Computational In-
telligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[9] R. Haque, T. H. Wei, and M. Müller, “On the Road to Perfection? Eval-
uating Leela Chess Zero Against Endgame Tablebases,” in Advances in
Computer Games: 17th International Conference, ACG 2021, Virtual
Event, November 23–25, 2021, Revised Selected Papers, Springer, 2022,
pp. 142–152.

[10] A. Heifets and I. Jurisica, “Construction of new medicines via game proof
search,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 26, 2012, pp. 1564–1570.

[11] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Machine Learning: ECML 2006: 17th European Conference on Ma-
chine Learning Berlin, Germany, September 18-22, 2006 Proceedings 17,
Springer, 2006, pp. 282–293.

53

[12] L.-C. Lan, H. Zhang, T.-R. Wu, M.-Y. Tsai, I. Wu, C.-J. Hsieh, et al.,
“Are alphazero-like agents robust to adversarial perturbations?” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 11 229–
11 240, 2022.

[13] M. Müller, “Computer Go as a sum of local games: an application of
combinatorial game theory,” Ph.D. dissertation, Verlag nicht ermittel-
bar, 1995.

[14] M. Müller, “Decomposition search: A combinatorial games approach to
game tree search, with applications to solving Go endgames,” in IJCAI,
1999, pp. 578–583.

[15] M. Müller, “Not like other games-why tree search in Go is different,”
in Proceedings of Fifth Joint Conference on Information Sciences (JCIS
2000), 2000.

[16] A. Riboni, A. Candelieri, and M. Borrotti, “Deep Autonomous Agents
Comparison for Self-driving Cars,” in International Conference on Ma-
chine Learning, Optimization, and Data Science, Springer, 2021, pp. 201–
213.

[17] J. W. Romein and H. E. Bal, “Awari is solved,” ICGA Journal, vol. 25,
no. 3, pp. 162–165, 2002.

[18] S. J. Russell, Artificial intelligence a modern approach. Pearson Educa-
tion, Inc., 2010.

[19] Q. A. Sadmine, A. Husna, and M. Müller, “Stockfish or Leela Chess
Zero? A Comparison Against Endgame Tablebases,” in Advances in
Computer Games, Springer, 2023, pp. 26–35.

[20] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go
with deep neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[21] D. Silver, T. Hubert, J. Schrittwieser, et al., “A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play,”
Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[22] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of
Go without human knowledge,” nature, vol. 550, no. 7676, pp. 354–359,
2017.

[23] G. Tesauro and G. Galperin, “On-line policy improvement using Monte-
Carlo search,” Advances in Neural Information Processing Systems, vol. 9,
1996.

[24] Y. Tian, J. Ma, Q. Gong, et al., “Elf opengo: An analysis and open
reimplementation of AlphaZero,” in International conference on machine
learning, PMLR, 2019, pp. 6244–6253.

[25] T. T. Wang, A. Gleave, T. Tseng, et al., “Adversarial Policies Beat
Superhuman Go AIs,” 2023.

54

[26] M. H. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo tree search
solver,” in Computers and Games: 6th International Conference, CG
2008, Beijing, China, September 29-October 1, 2008. Proceedings 6, Springer,
2008, pp. 25–36.

[27] D. J. Wu, “Accelerating self-play learning in Go,” arXiv preprint arXiv:1902.10565,
2019.

[28] D. J. Wu, “KataGo GTP Extensions,” https://github.com/lightvector/KataGo/blob
/master/docs/GTP Extensions.md, accessed: 2021-10-11.

[29] D. J. Wu, “KataGo Networks,” https://katagotraining.org/networks/kata1/,
accessed: 2022-11-04.

[30] X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, and K. Tsuda, “ChemTS:
an efficient python library for de novo molecular generation,” Science and
technology of advanced materials, vol. 18, no. 1, pp. 972–976, 2017.

55

	Introduction
	Motivation of the Research
	Research Questions
	Contribution of the Thesis
	Organization of the Thesis

	Literature Review
	Game Tree Search
	Minimax and Alpha-Beta Search
	Monte Carlo Tree Search
	Solving Vs Playing a Game

	AlphaGo and AlphaZero
	AlphaGo
	AlphaGo Zero and AlphaZero
	KataGo

	Go Endgame Puzzles
	Exact Solver for Go
	Combinatorial Games
	Decomposition Search

	Related Work

	Experimental Setup
	Datasets
	Extended Datasets
	Splitting the Dataset By Unique Incentives and By Endgame Size

	Go Engine Settings
	GTP Configuration for KataGo
	Choice of Neural Network

	Computational Resources

	Experiments and Analysis
	Experiment 1: Evaluating Network Policies with no Search
	Experiment 2: Evaluating KataGo using both Neural Networks and Search
	Comparing Strong and Weak Policies with Small Search
	Scaling the Search

	Experiment 3: Evaluating KataGo By Unique Incentives and By Endgame Size
	Evaluating KataGo By Unique Incentives
	Evaluating KataGo By Endgame Size

	Experiment 4: Playing Matches between Exact Solver and KataGo
	Case Studies of Interesting Mistakes
	Small and Longer Search Both Wrong
	Small Search Correct but Longer Search Wrong

	Conclusion and Future Work
	References

