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Abstract. Much of the research on board games focuses on strong play
and on solving games exactly. Recently, programs such as AlphaZero have
reached superhuman level in board games such as chess and Go. We study
the gap between such AI systems and perfect play, in order to deepen
our understanding of their current strengths and limitations. Our study
uses Go endgame puzzles with special combinatorial sum game struc-
ture, for which an optimal solver is available. We develop an extended
Go endgame dataset labelled with exact scores and optimal moves. We
evaluateKataGo, the strongest open source AlphaZero-derived program
for the game of Go, on these puzzles. We study how the training of dif-
ferent neural networks and the amount of search used affect KataGo’s
ability to play perfectly. We observe improved move selection with strong
policies, and measure the effect of different MCTS search settings, as well
as the challenges KataGo faces in competing against an exact solver.
We further analyse move choices in terms of changes of average action
value, lower confidence bound, winrate, and number of visited nodes in
the MCTS search of KataGo. On our perfect game dataset, KataGo
achieves a 90.8% success rate in matches against the exact solver.

Keywords: Performance Evaluation · Safety-Critical Systems ·
AlphaZero · KataGo · Exact Solver

1 Introduction

DeepMind’s AlphaZero (AZ) program [12] has greatly advanced the state of
the art in playing two player board games. It convincingly beat top human
players and previous programs by learning from scratch. Search methods inspired
by AZ have been applied to many problems beyond games [4]. There is much
interest in further applications in safety-critical systems, such as autonomous
driving, where even a tiny mistake can cause big problems, and having accurate
solutions is extremely important. Autonomous driving includes a wide range of
tasks, including lane keeping [5], overtaking [6], and making higher-level driving
decisions [3].

Can AlphaZero-based algorithms find exact solutions? We explore KataGo,
a strong AlphaZero-derived open source Go program [14]. We test how well
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this program plays Go endgame puzzles compared to perfect play. We aim to
better understand the learning process of KataGo and its limits. We study
its behavior in several scenarios: when using either a strong or a weak neural
network, and with different amounts of search as well as without search. We use
endgame puzzles from the literature [1,7], and create a larger dataset that is
labeled with perfect solutions by using an exact endgame solver [8]. We design a
methodology with experiments and analysis in order to investigate the following
research questions:

– What are the differences in move selection between stronger and weaker neural
networks?

– How does the addition of a small MCTS search enhance move selection com-
pared to using only a neural network?

– What is the impact of increasing the search budget on the overall perfor-
mance?

– How good is KataGo at finding a best incentive move in the sense of combi-
natorial game theory, compared to “just” finding a minimax optimal move?

– How often can KataGo win games against an exact solver in matches from
endgame starting positions?

– Are there any cases where using deeper search adversely affects move selection
compared to using a small search?

2 Related Work

Comparing a heuristic search-based algorithm against a perfect solution offers
important insights into its quality. In related games research, Haque et al. [2]
compare Leela Chess Zero (lc0), an open-source chess program derived from
AlphaZero, against perfect chess endgame play. They find that more training
and deeper search are both very effective for increasing the number of optimal
moves found. However, they also identify some cases where a neural network
suggests the correct move, but a small search using MCTS (Monte Carlo Tree
Search) switches to the wrong move. They also find that some difficult 5-piece
endgames are far beyond the current abilities of even the strongest available
network combined with deep search. Sadmine et al. [11] extend this study by
comparing lc0 and Stockfish, another strong open source chess engine which uses
a very different neural network architecture. They use an Average Centipawn
Loss (ACPL) measure to quantify how much value is lost by wrong moves,
and focus on difficult situations where errors are more common, which include
imbalanced positions with one extra black pawn against a stronger extra white
piece.

Romein and Bal [10] analyse the game of Awari using a perfect-play database.
They find that the top programs Marvin and Softwari, which were previously
assumed to be almost perfect, played a correct move in only 82% and 87% of
the cases, respectively.
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Wang et al. [13] train adversarial policies which can exploit specific weak-
nesses in KataGo and win over 99% of games against KataGo using no search,
and more than 97% against KataGo with some search.

3 Background

3.1 Solving Go Endgame Puzzles

Solving a game means finding an optimal strategy that guarantees the game-
theoretical best outcome, such as a win or a draw for a player, no matter how
the opponent plays. In two-player games of perfect information, all of the game
state is known to both players. However, many game positions are too complex to
be solved in practice. In Go endgame puzzles, most of the board has already been
secured by one of the players, and they focus on small but crucial battles on the
rest of the board, in order to increase their territory and reduce their opponent’s.
Figure 1 shows the safe stones and territories of a Go endgame position.

Fig. 1. Safe stones and territories of a Go endgame position.

3.2 Exact Solver for Go

An exact solver for Go can find the best moves and outcomes for a given Go
position. Due to the game’s complexity and large number of possible moves,
such solvers only exist for special cases: small boards, and endgame puzzles with
extra structure such as the one in Fig. 1. In our work, we use a solver [7] that
can handle endgame puzzles with solution lengths exceeding 60 moves. It uses
a technique called decomposition search [8] to find the outcome and the best
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moves. The solver first finds safe stones and territories, then identifies inde-
pendent local subgames, and performs local combinatorial game search (LCGS)
in each subgame. Next, the algorithm evaluates the combinatorial game value
for each subgame, and tries to find a move with the highest incentive overall.
Incentive is a combinatorial game concept that measures the improvement to
a game position made by a move. Incentives are only partially ordered. If one
incentive dominates all others, as often happens in Go endgames, then a move
with this incentive is optimal and can be played without further search. If several
incentives are incomparable in the partial order, then an optimised minimax
search among the corresponding candidate moves is used to find their minimax
score, and a minimax-optimal move. In our experiment, we study both cases:
positions where a unique best incentive exists, and those with two or more
nondominated incentives. We study minimax-optimal play, as well as whether a
policy network can identify best incentive moves and separate them from locally
weaker ones.

3.3 KATAGO

KataGo [14] is an open-source Go program that implements and extends the
AlphaZero algorithm. It learns from scratch through self-play. Unlike AlphaZero,
it includes domain-specific features to boost learning. Its key contributions
include general purpose improvements over AlphaZero, such as better data bal-
ance, focused training, and enhanced neural networks with global pooling layers.
Go-specific improvements include extra input features to improve learning, and
helpful auxiliary targets such as as predicting point ownership and the final
score.

KataGo is the strongest open-source Go program, and is very widely used as
a study tool in the Go community, by amateurs and professionals alike. Therefore
a study of its limitations is directly relevant for this audience.

4 Dataset and Evaluation Method
4.1 Original and Modified Dataset

We used the 22 endgame problems labeled C.1, C.2, ..., C.22 from Berlekamp and
Wolfe’s “Mathematical Go: Chilling Gets the Last Point” [1]. We refer to these
as the original problems. We also used the modified problems from [8].
These modified versions are equivalent in terms of local endgame values, but
clearly separate endgame areas by safe stones and territories. This allows the
exact solver to analyse each small area separately, and solve the overall problem.
In each problem, white is to play, and if both players play perfectly, then white
wins by 0.5 points.

4.2 Extended Datasets

We use the exact solver to generate an extended dataset by playing perfect
games starting from different states in the modified endgame problems. As each
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game progresses, we adjust the komi when stones are captured. We then play
matches between the exact solver and KataGo from these starting positions. If
KataGo suggests a move that is not winning as indicated by the solver, then
we verify that it leads to KataGo losing the game. We expand our dataset for
each endgame position as follows:

– Find the winning move of that board position using the exact solver
– Play the winning move on the board and get the next starting position
– Adjust the komi if stones were captured
– Repeat until the end of the game

To expand the dataset, we use the modified problems C.1, C.2, C.3, C.6, C.7,
C.8, C.9, C.10, and C.21. We name this collection of data perfect games. To
add more 19×19 endgames to our dataset, we use an extension of the subsets of
C.11 from [9]. From these subsets, we generate additional data and name these
endgames C.11 subsets. All these endgame problems are stored in Smart Game
Format (SGF), a popular file format.

4.3 Splitting the Dataset by Existence of a Dominating Incentive

We divide our dataset of perfect games and C.11 subsets into two categories
to evaluate KataGo’s decision-making ability. For positions in category DI,
a single dominating incentive exists. The no-DI positions do not have a single
dominating incentive. Among the set of moves with two or more non-dominating
incentives, the best ones must be determined by minimax search.

4.4 Engine Settings

We used KataGo version v1.12.4 to analyse our endgame dataset. We also used
two different KataGo neural networks. For the best performance, we chose
a strong network called “kata1-b18c384nbt-s5832081920-d3223508649” with 18
blocks and 384 channels. Its self-play Elo rating is 13488.6 ± 14.1. Our weaker
option is a smaller network, “kata1-b6c96-s37368064-d5536083” with 6 blocks
and 96 channels, and a 7098.1± 19.0 elo rating.

For computational resources, we used one CPU core to process datasets and
OpenCL GPU to run KataGo. For example, the strong network took 64.1 s to
process 126 endgames with 100 search nodes each. The weak network did the
same task in 1.2 s. Analysing all perfect games with the strong network and
102,400 search nodes took nearly 5 h.

5 Experiments and Analysis

5.1 Evaluating KATAGO with Basic Settings

To evaluate KataGo’s performance, we run two types of tests: one uses only a
neural network policy, without search, while the other test applies the network
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during search as usual. In both types of tests we try the weak and the strong
version of the network. In each endgame position, we count a KataGo move as
correct if it is one of the known set of optimal moves. We consider both notions
of optimality, incentive optimal and minimax optimal. We measure the number
and percentage of correct moves among all generated moves. Since KataGo’s
results can change between runs, we run each experiment five times and average
the results. Table 1 summarises the average performance of KataGo for each of
the four test sets, in four scenarios: using the weak and the strong policy without
search, and using both policies with a search with a limit of 100 node visits.

Table 1. Total number of correct moves along with average success rate by the weak
and strong policy, and policies with 100 visits search.

Dataset Test Cases Average Total Number of Correct Moves and Success Rate (%)
Policy Search, 100 visits
Weak Strong Weak Strong

Original 22 8.8(40%) 12.8(58.2%) 9.6(43.6%) 16.2(73.6%)
Modified 22 7.8(35.5%) 13.6(61.8%) 9(40.9%) 16.8(77.3%)
Perfect games 126 98.8(78.4%) 118.8(94.3%) 105.8(84%) 123.8(98.3%)
C.11 subsets 371 355.6(95.8%) 369.6(99.6%) 361.4(97.4%) 370(99.7%)

As expected, in general the strong policy outperforms the weak one in all
settings and across all datasets. Among datasets, the success is higher in perfect
games and C.11 subsets, likely because many of these endgames offer more win-
ning moves (4 to 10) compared to the challenging other sets with only one or
two correct moves. Furthermore, when playing out perfect games, the endgame
size is gradually reduced, with fewer contested points, often leading to progres-
sively easier to solve positions. The results also show that adding a small search
to the weak net does not improve results much for the challenging original and
modified problems. Many of these problems remain out of reach. In contrast, the
more focused searches using the strong network shows more improvement.

Scaling the Search. We increase the search amount by ten successive dou-
blings from 100 to 102,400 maximum visits for all test cases. Figure 2 shows the
average success rate while using the weak and strong policies in these settings.
In Fig. 2 (a), the success rate of the weak policy steadily rises for original, mod-
ified, and perfect games. However, this combination still struggles with original
and modified problems, reaching only about 60% accuracy with 102,400 visit
searches. The scaling results for the strong policy in Fig. 2 (b) are surprising.
Initially, the success rate increases, but then it starts to deteriorate. This sug-
gests that in several endgame scenarios, picking a correct move is more due to
chance, even at this level of search. For C.11 subsets, we focus on one endgame
unsolved by the strong policy with 100 visits in Table 1. It still cannot be solved
by either policy with any amount of search that we tried.
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5.2 Evaluating KATAGO’s Incentive- and Minimax-optimal Play

In Subsect. 4.3 we split our datasets into DI, the positions where a dominating
incentive exists, and no-DI, where it does not. In all cases, we evaluate whether
KataGo’s move is minimax optimal. For test set DI, we additionally check
if KataGo’s move is incentive-optimal. In each position, the set of incentive-
optimal moves is a subset of the minimax-optimal ones. The sets can be equal,
and always contain at least one move. Table 2 shows the average results for DI
with weak and strong policies, and for the same policies with a 100 node search.
We use the datasets perfect games and C.11 subsets, because for these sets,
both incentive and minimax-optimal moves are available from the exact solver.
From the results of Table 2, we find that KataGo struggles more to identify best
incentive moves compared to minimax ones. This shows in the success rates of
finding incentive and minimax optimal moves. We see a large difference, ranging
from 10 to 40 percent. It appears that KataGo focuses more on finding any win,
rather than relying on the policy learning the small differences in move strength.
We only show the results for the DI test set here, as our no-DI set is too small
to analyze the results in a meaningful way.

Table 2. Total number of correct moves and average success rate for weak and strong
policy, and with 100-visit search, for the DI test set.

Name of DatasetNumber of Endgames Total Number of Correct Moves with Avg Success Rate (%)
Weak policy Strong Policy
Incentive optimalMinimax optimal Incentive optimalMinimax Optimal

Perfect games 125 70.8(56.6%) 96.8(77.8%) 103(82.4%) 115.8(92.6%)
C.11 subsets 345 190(55.1%) 328.8(95.3%) 251.6(72.8%) 345(100%)

Weak policy + 100 visit search Strong Policy + 100 visit search
Incentive optimalMinimax optimal Incentive optimalMinimax Optimal

Perfect games 125 89.2(71.4%) 106.2(85%) 106.2(85%) 122(97.6%)
C.11 subsets 345 235(68.1%) 333.8(96.8%) 254.6(73.8%) 345(100%)

Fig. 2. Average, minimum and maximum success rate of KataGo’s weak and strong
policy with different amounts of search.
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5.3 Playing Matches Between the Exact Solver and KATAGO

Matches between the exact solver and KataGo show the importance of perfect
play. We use the strong policy with 500 visit search. Since the exact solver can
solve every position in the perfect games and C.11 subsets, we use these two sets
for our experiment. KataGo preserves the win in 90.8% of the perfect games
and wins 100% of the matches starting from the C.11 subsets. In Sect. 5.1, we
identified an endgame in the C.11 subsets that KataGo is never able to solve.
However, this position doesn’t affect the win rate here, as Black (the losing side)
is to play here.

5.4 Case Studies of Interesting Mistakes

Figure 2 shows that the number of mistakes fluctuates with larger searches. Sev-
eral endgames remain unsolved even with our deepest search. For further anal-
ysis, we run selected endgames with more than 200k search visits and observe
the changes of utility (action value), lower confidence bound (lcb), winrate, and
number of visited nodes explored during the search process. Two examples dis-
cussed below are shown in Fig. 3.

Fig. 3. Examples for two types of interesting mistakes. KataGo’s suggested moves are
shown as red circles, and winning moves as blue circles. The number inside each circle
is the policy probability for that move. (Color figure online)

The original problem C.3 in Fig. 3(a) is not solved by KataGo even with deep
search. In different searches, KataGo suggests three different moves: J13, E5,
and F11, while the only winning move is K1. Figure 4(a-d), shows the changes of
winrate, lcb, utility and the number of visited nodes during the search. J13 has
high prior probability in Fig. 3(a), but as the search progresses, it drops. Move
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F11 starts out with a low prior, but with more search it becomes KataGo’s
preferred move. The optimal move K1 goes up, then down again. The win rate

Fig. 4. The changes of winrate, lcb, utility, and number of visited node during the
search.
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and lcb of all moves in Fig. 4(a and b), remain below 0.4. KataGo completely
fails to recognize that K1 wins. Figure 4(d) shows that after 25,600 visits, almost
all visits go to F11, a losing move.

Small Search Correct but Longer Search Wrong. In modified problem
C.11 shown in Fig. 3(b),KataGo correctly identifies winning moves with a small
search but switches to a wrong move after a longer search. The winning moves
of this position are G13, L4, P9, and Q17. However, KataGo also suggests the
losing moves D11, F16, and C5 in different searches.

The changes of winrate, lcb, utility and the number of node visits in Fig. 4(e-
h) show that initially, the winning moves are visited less often. After 1600 visits,
there is a significant improvement for P9, and KataGo starts selecting this
winning move. However, with deeper search the value of P9 decreases again, and
the losing move C5 becomes KataGo’s preferred move. The main issue here is
that KataGo cannot distinguish at all between winning and losing moves. The
win rate, utility, and lcb of all losing moves in Fig. 4(e-g) remain high. In Fig. 4
(h), KataGo explores C5 more in larger searches.

6 Limitations and Future Work

We explored some key questions of move selection, the role of search, and the
performance across several Go endgame datasets. The difference between weak
and strong neural networks was large. Adding even a small amount of search
greatly improved both. In matches against an exact solver, KataGo did well but
made mistakes in some simple endgames, particularly those with long corridors
of similar values. The network has not learned the correct relative values of those
moves, and often prefers a simple capture of slightly lesser value. Larger searches
generally boosted KataGo’s performance but did not solve all these puzzles.

Limitations. We do not have a large enough set of complex endgames, such as
no-DI. Our perfect game and C.11 subsets are relatively much easier to solve than
the original and modified Berlekamp/Wolfe problems. We did not run detailed
enough experiments to fully understand why KataGo struggles to find the best
incentive moves.

Future Work. One interesting future topic is to measure KataGo’s winrate
errors separately for winning and losing moves. In theory, all winning moves
should approach a winrate of 1, and all losing moves should be close to 0. A
similar winrate for both winning and losing moves indicates a poor understanding
of the position. We can evaluate problem difficulty more clearly by looking at
additional factors such as number of winning moves. We could also add more
challenging 19×19 test sets by following a narrow winning line from C.11 instead
of just removing subgames as in prior work, which tends to make the problems
much easier.
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