
Monte Carlo Tree Search in the Presence of Model
Uncertainty

by

Kiarash Aghakasiri

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Kiarash Aghakasiri, 2022

Abstract

Monte Carlo Tree Search (MCTS) is a extremely successful search-based frame-

work for decision making. With an accurate simulator of the environment’s

dynamics, it can achieve great performance in many games and non-games

applications. However, without a perfect simulator, the performance degra-

dation is so high that it can make the framework almost useless. Therefore,

we propose two methods to improve the performance of MCTS in such a sce-

nario: Deep Q-Network MCTS (DQMCTS) and Uncertainty Adapted MCTS

(UAMCTS). In the former, we use the model-free algorithm DQN to evaluate

the leaf nodes in the search tree. Although this approach shows promising

improvement over baseline MCTS, our results show that there is still more

room for improvement. In UAMCTS, we take a more fundamental approach

and change the behavior of MCTS’s components to directly take the model

incorrectness into account. Our results show that with an accurate measure

of model incorrectness, UAMCTS can achieve the performance of MCTS with

a perfect simulator in some cases. Even with a poor measure of model error,

UAMCTS can still outperform plain MCTS with an imperfect simulator.

ii

Preface

Part of this thesis has been submitted to IJCAI-ECAI 2022 co-authored with

Farnaz Kohankhaki, Martin Müller, and Ting-Han Wei. The proposed meth-

ods were developed in close collaboration with Farnaz Kohankhaki.

DQ-Expansion, UA-Selection, and UA-Backpropagation were implemented

by myself. The other methods: DQ-Simulation, UA-Expansion, and UA-

Simulation, were developed by Farnaz Kohankhaki. We discussed our results

and combined these methods and created the final agents UA-MCTS and DQ-

MCTS.

iii

To my parents and my sister

For being the most supportive family that I could ever imagine

iv

Most of the good programmers do programming not because they expect to get

paid or get adulation by the public, but because it is fun to program.

– Linus Torvalds, Software Engineer, Inventor of the Linux operating system

v

Acknowledgements

First and foremost, I want to thank my supervisor, Martin Müller, for giving

me the opportunity to work with him. I remember whenever I was worried or

stuck in a problem he kindly guided me through it. His words were always calm

and encouraging and taught me how to stay positive and patient in research

and life. I can neither thank him enough nor describe his guidance through

all stages of my studies.

I would also like to thank Ting for his accessible help and support, Chao for

his constructive comments, and Huawei Edmonton for their funding without

which I could not finish my thesis. I would like to acknowledge my committee

members, Martha White and Ryan Hayward, for taking time out of their busy

schedules and reading my thesis.

Many thanks to my dear friends, Bedir, Farnaz, Shivam, Hamza, Mohsen,

Aidan, Nikoo, Mahtab, and Sina who helped me pass through this tough

pandemic situation and get where I am right now.

Last but not least, I wanted to thank three people for always being there

for me: My mother, whose hair turned white so that I could light the way,

my father, who burned with love to warm my heart and enlighten my way, my

sister, who is also my best friend and I could not imagine my life without her.

vi

Contents

1 Introduction 1
1.1 Contributions . 2

2 Background 3
2.1 Markov Decision Processes (MDP) 3
2.2 Reinforcement Learning (RL) 4

2.2.1 Policy and Value Function 4
2.2.2 Model-Free RL . 6
2.2.3 Model-Based RL . 7

2.3 Model Uncertainty . 10
2.4 Monte Carlo Tree Search . 11

2.4.1 MCTS Selection . 13
2.4.2 MCTS Expansion . 14
2.4.3 MCTS Simulation . 14
2.4.4 MCTS Backpropagation 14

3 MCTS Performance Drop Under Model Corruption 16
3.1 Space Invaders . 16
3.2 Freeway . 18
3.3 Breakout . 20
3.4 Summary . 22

4 Combining DQN and MCTS 23
4.1 DQ-Simulation . 24
4.2 DQ-Expansion . 24
4.3 Experiments . 24

4.3.1 DQN Details . 25
4.3.2 Space Invaders . 26
4.3.3 Freeway . 27
4.3.4 Breakout . 30

4.4 Summary . 32

5 Uncertainty-Adapted MCTS 33
5.1 UA-Expansion . 34
5.2 UA-Simulation . 35
5.3 UA-Selection . 35
5.4 UA-Backpropagation . 36
5.5 Experiments . 37

5.5.1 Measure of Uncertainty (U) 39
5.5.2 Space Invaders . 39
5.5.3 Freeway . 41
5.5.4 Breakout . 42

5.6 Scaling Experiments . 45

vii

5.7 Summary . 45

6 Conclusion and Future Work 48

References 50

viii

List of Tables

4.1 Best parameter c for each (algorithm, DS) pair in Space Invaders. 28
4.2 Best parameter c for each (algorithm, DS) in Freeway. 29
4.3 Best parameter c for each (algorithm, DS) in Breakout 30

5.1 Best parameters c and τ for each experiment in Space Invaders
for the offline scenario. 40

5.2 Best parameters c and τ for each experiment in Space Invaders
for the online scenario. 41

5.3 Best parameters c and τ for each experiment in Freeway for the
offline scenario . 42

5.4 Best parameters c and τ for each experiment in Freeway for the
online scenario. 43

5.5 Best parameters c and τ for each experiment in Breakout for
the offline scenario. 43

5.6 Best parameters c and τ for each experiment in Breakout for
online scenario. 44

ix

List of Figures

2.1 Agent and environment interaction loop [44] 3
2.2 An example for selecting a child node in MCTS Selection (c =√

2). 13

3.1 A snapshot of the Space Invaders environment. The gray square
and the green rectangle represent the agent and the enemies
respectively. The pink and white rectangles are the agent’s and
enemies’ bullets respectively. 17

3.2 The performance drop of MCTS under model corruption in the
Space Invaders environment for different simulation depths DS
and number of iterations NI . 18

3.3 A snapshot of the Freeway environment. The gray square is the
agent and other rectangles are the moving objects. 19

3.4 The performance drop of MCTS under model corruption in the
Freeway Environment for different simulation depths DS and
number of iterations NI . 20

3.5 A snapshot of the Breakout environment. The gray square and
the white rectangle represent the agent and the bricks respec-
tively. The pink and green squares represent the moving ball. . 21

3.6 The performance drop of MCTS under model corruption in the
Breakout Environment for different simulation depths DS and
number of iterations NI . 22

4.1 Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on Space
Invaders. 26

4.2 Comparison of DQMCTS performance with MCTS baselines
and DQN in Space Invaders. From left to right and top to bot-
tom the simulation depth DS is equal to 0, 5, 10, 20 respectively. 27

4.3 Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on Freeway. 28

4.4 Comparison of DQMCTS performance with MCTS baselines
and DQN in Freeway. From left to right and top to bottom the
simulation depth DS is equal to 0, 5, 10, 25, 50 respectively. . 29

4.5 Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on
Breakout. 30

4.6 Comparison of DQMCTS performance with MCTS baselines
and DQN in Breakout. From left to right and top to bottom
the simulation depth DS is equal to 0, 5, 10, 25, 50 respectively. 31

5.1 Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders. 40

x

5.2 Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders in the online scenario. 41

5.3 Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway. 42

5.4 Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway in the online scenario. 43

5.5 Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout. 44

5.6 Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout in the online scenario. 45

5.7 Comparison of UA-MCTS offline and online scenario in Break-
out with different number of iterations. 46

5.8 Comparison of UA-MCTS offline and online scenario in Freeway
with different number of iterations. 47

5.9 Comparison of UA-MCTS offline and online scenario in Space
Invaders with different number of iterations. 47

xi

Chapter 1

Introduction

The Monte Carlo Tree Search (MCTS) framework [5] approaches sequential

decision-making problems by selective lookahead search. It manages the bal-

ance of exploration and exploitation with techniques such as UCT [21]. A

well-known combination of MCTS with machine learning is the famous Al-

phaGo program [39]. MCTS has also shown great results in other multiplayer

games such as Chess [13], Othello [31], Shogi [36], Blockus Duo [37], and Hex

[2, 10]. The method has also been used for single player games such as Sudoku

[8] and Solitaire [7] and real time games such as Ms. Pac-Man [48, 49]. MCTS

has shown further great successes in non-game applications such as security

systems [47], mixed integer programming [34], scheduling [29], and physics

simulations [27].

In all these applications, a perfect simulation model of the problem domain

is available, in which search steps can be efficiently performed. However, in

many practical applications, only an imperfect model is available to the agent.

Yet such a model can still be useful. The main goal of this thesis is to improve

MCTS for this setting.

Model uncertainty or model error has been studied a lot in the field of deep

learning. There is much research on how to capture model uncertainty using

Bayesian techniques [17]. Examples are model ensembles [24], Monte-Carlo

dropout [15], and heteroscedastic regression [32]. Another research area that

utilizes imperfect models is model-based reinforcement learning (MBRL).

In MBRL, the agent can build its own model through interactions with

1

the environment, or it can make use of a given model. The model, when used

for lookahead search, can either be for planning or for producing more accu-

rate training targets [41]. It can also be used to generate simulated training

samples for better sample efficiency [44]. If the model is learned, it may be

inaccurate for many reasons, including stochasticity of the environment, insuf-

ficient training, insufficient model capacity, and non-stationary environments.

Consequently, there is a rich body of research on uncertainty in MBRL.

While previous approaches to using search with imperfect models exist

[50, 51], surprisingly, to the best of our knowledge, there is no prior work

that directly adapts MCTS to deal with model uncertainty. In this thesis, we

propose two approaches to this problem.

1.1 Contributions

Here is the list of our contributions:

• We empirically show a significant drop in MCTS performance under

model error. (Chapter 3)

• We introduce our first adaptation, Deep Q-network MCTS (DQMCTS),

which uses a learned DQN value function as a heuristic to deal with

model uncertainty. (Chapter 4)

• We introduce our second adaptation, Uncertainty-Adapted MCTS (UAM-

CTS), which uses a method to capture the uncertainty and then diverts

the search from the uncertain parts. (Chapter 5)

• We slightly change three deterministic MinAtar environments [54] to

study search with a corrupt model (Chapter 3) and compare the per-

formance of our proposed methods, DQMCTS and UAMCTS with two

MCTS baselines. (Sections 4.3, 5.5)

2

Chapter 2

Background

In this chapter we explain the background needed to understand our approach.

2.1 Markov Decision Processes (MDP)

MDPs are a formalization of online sequential decision making in which making

a decision affects future situations [44]. In this work we focus on deterministic

MDPs which can be be specified by a tuple 〈S,A,M,R, γ〉. S and A are finite

state and action spaces respectively. R is a deterministic function mapping a

pair (s, a) with s ∈ S, a ∈ A to a scalar reward. At each time step t, the agent

observes a state st ∈ S and a scalar reward rt from the environment. Then at

the same time step the agent chooses an action at ∈ A to take, which affects

the next time step’s state, st+1 ∈ S and reward, rt+1. The agent follows a

trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3, . . .

Figure 2.1: Agent and environment interaction loop [44]

The agent and environment interaction loop are shown in Figure 2.1. M

is the transition dynamics, a deterministic function S × A → S showing the

3

next state given a state and action pair, M(st, at) = st+1 . 0 ≤ γ ≤ 1 is the

discount rate which determines the importance of the future rewards. The

goal of an agent acting in an MDP is to maximise its reward. Reinforcement

Learning and Search methods are two closely related approaches to solve an

MDP.

2.2 Reinforcement Learning (RL)

In Reinforcement Learning, the agent interacts with the environment to learn

how to act. The environment can be formulated by an MDP. The goal of an

agent is to maximize the sum of rewards Gt, which we call return, described

in Equation 2.1.

Gt=̇
∞∑
k=0

rt+k+1 (2.1)

In episodic tasks, the environment terminates after a finite number of time

steps so the return is bounded. In continuing tasks, the environment doesn’t

terminate. With an infinite number of time steps, the sum in Equation 2.1 is

not bounded. Thus, we should use the discounted sum of rewards, shown in

Equation 2.2 (0 ≤ γ < 1).

Gt=̇
∞∑
k=0

γkrt+k+1 (2.2)

In the following subsections we introduce the concepts of policy and value

function and two types of general RL algorithms, model-free and model-based

methods.

2.2.1 Policy and Value Function

A Policy determines the behaviour of the agent and the corresponding value

function estimates the return following the policy. A policy π : S ×A → [0, 1]

is a mapping from states to actions. π(a|s) is the probability of choosing action

a in state s when following π.

4

The value function of state s under policy π, vπ(s), is the expected return

from state s when following policy π. This is called the state value function

shown in Equation 2.3.

vπ(s)=̇Eπ[Gt | St = s] = Eπ
[∞∑
k=0

γkrt+k+1 | St = s

]
(2.3)

Similarly, a state-action value function, qπ(s, a), is the expected return of

taking action a in state s and following policy π from there. (Equation 2.4).

qπ(s, a)=̇Eπ[Gt | St = s, At = a] = Eπ
[∞∑
k=0

γkrt+k+1 | St = s, At = a

]
(2.4)

To calculate the value function for a policy π we use a fundamental recursive

relation called the Bellman equation shown in Equation 2.5 [44].

vπ(s) =
∑
a∈A

π(a|s)
[
R(s, a) + γvπ

(
M(s, a)

)]
, for all s ∈ S (2.5)

We can write a similar equation for state-action value functions (Equation

2.6).

qπ(s, a) = R(s, a) + γ
∑
a′∈A

π
(
a′|M(s, a)

)
qπ
(
M(s, a), a′

)
, for all s ∈ S, a ∈ A

(2.6)

Next we introduce optimal policies and value functions. A policy π is

better than or equal to policy π′ if and only if for all states s ∈ S, vπ(s) ≥

vπ′(s). A policy for which its value function is greater than or equal to all

other policies for all states is called an optimal policy π∗ [44]. The value

function corresponding to an optimal policy is called the optimal value function

(Equation 2.7). There is at least one such policy. The optimal value function

is unique, but more than one optimal policy might exist for an MDP.

v∗(s) = max
π

vπ(s)

q∗(s, a) = max
π

qπ(s, a) (2.7)

5

If the policy in the Bellman equation is optimal, we obtain the Bellman op-

timality equations (Equation 2.8). They can be used to directly calculate the

optimal value functions [44].

v∗(s) = max
a

[
R(s, a) + γv∗

(
M(s, a)

)]
, for all s ∈ S

q∗(s, a) = R(s, a) + γmax
a′

q∗
(
M(s, a), a′

)
, for all s ∈ S, a ∈ A (2.8)

2.2.2 Model-Free RL

In model-free methods, the agent does not have any access to the dynamics of

the environmentM . The only way for the agent to learn is through interactions

with the environment. One group of learning methods is called Temporal-

Difference (TD) learning [44]. TD methods use the Bellman equations but

instead of having access to the summation over all states, they use individual

transition samples to incrementally update the value function.

One famous TD method that uses Bellman optimality equations (Equations

2.7 and 2.8) to calculate the optimal policy is Q-learning [52]. A Q-learning

agent starts with a set of random values for all state-actions and then updates

the state-action value function with each transition sample (s, a, r, s′) using

Equation 2.9. To interact with the environment the agent chooses actions

according to an ε-greedy policy coming from q(s, a). A greedy policy derived

from a value function always chooses an action with the highest value on the

given state. An ε-greedy policy chooses a random action with probability ε

and a greedy action with probability 1 − ε. Usually, the value of ε is high

initially, which encourages exploration in the early episodes, and over time it

decreases to exploit the better states.

q(s, a)← q(s, a) + α[r + γmax
a′

q(s′, a′)− q(s, a)] (2.9)

In Q-learning the agent uses a table of q(s, a) values to learn and update

the value function. Although using a table results in an accurate value function

there are two downsides to it. First, in real applications, the state space S can

be immensely big, making it impossible to fit all the values in a table. Secondly,

6

a large state space S requires generalizing between similar states because the

agent might not be able to visit all the states in a reasonable time. Hence, a

more practical idea it to use function approximation methods to estimate the

value function. Deep Q-Network (DQN) is the function approximation version

of Q-learning [28]. A DQN agent approximates the value function with a

deep neural network and trains the neural network to minimize the TD loss

(Equation 2.10) using an optimization technique such as gradient descent.

TDLoss(s, a, s′, r)=̇
(
r + γmax

a′
qt(s

′, a′)− q(s, a)
)2

(2.10)

The target used in TD loss is not independent of the learning network which

makes DQN a semi-gradient method. To make the method more similar to true

gradient methods (target independent from the learner), DQN uses a target

network qt which is being updated with the learning network q after every

fixed number of interactions ft. DQN stores the environment interactions in

a transition buffer B and at each training step the q network is being trained

on a batch of data from B.

Algorithm 1 shows the pseudo code for DQN. πq,ε(s) is an ε-greedy policy

using values from network q(s, a) which returns an action a for state s. The

environment has two functions: The Start function initializes the environment

and returns the initial state, and the Step function gets an action from the

agent’s policy and returns the next state s′ and reward r. Bs is the size of the

mini-batch used at each training step. The function Sample(B,Bs) returns

a random mini-batch of size Bs from B . λ is the step size for training the

q network. NF is the number of frames or number of interactions with the

environment.

2.2.3 Model-Based RL

In model-based reinforcement learning (MBRL) methods, the agent uses a

model M̂ of the environment’s dynamics. Given this model, the agent does

not need to only rely on direct environment interactions to learn a good policy.

A model can be used in dynamic programming methods or real-time search

7

Algorithm 1 DQN Algorithm, from [28]

Parameters: ε for the ε-greedy policy. ft is the update frequency of qt. Bs is
the batch size. λ is the step size for q. NF is the number of frames for training.

Initialize Buffer: B ← {}
Initialize Interaction Counter: i← 0

Randomly Initialize θ

θ ← θt

s← Env.Start()

for NF steps do

a← πq,ε(s)

r, s′ ← Env.Step(a)

Store transition (s, a, r, s′) in buffer B

(S,A,R, S ′)← Sample(B,Bs)

if S ′ is terminal state then

y = R

else

y = R + γmaxA′ qt(S
′, A′ | θt)

loss←
(
y − q(S,A | θ)

)2
Gradient Descent Update: θ ← θ − λ.∂loss

∂θ
i← i+ 1

Update Target:

if i = ft then

θt ← θ

i← 0

8

methods. In this thesis, we use the Monte Carlo Tree Search algorithm which

we explain in the next section. In this section, we discuss MBRL in general

and the use of different types of models.

If M̂ = M , the agent has access to the true underlying dynamics of the

environment. In such cases, the agent can achieve extraordinary performances

such as AlphaGo [39]. In many cases, the agent does not have access to the M

function. In these situations the agent either has access to an imperfect model

(M̂ 6= M) or it has no initial knowledge of the dynamics and has to learn a

model from scratch. One simple model-based method uses experience replay

such as in the Dyna structure [43]. A Dyna agent stores trajectories of real

experience in a buffer and later retrains its policy using the stored transitions.

Another approach to create a model is using parametric models such as neural

networks. Hasselt et al. [16] compare the performance of experience replay

and parametric models on Atari games [4].

There are many ways to train a model. We briefly explain some of them

here. Transition models are most commonly used in MBRL. Such models ap-

proximate the dynamics M of the environment: given a state and an action

they predict the next state. They can be used to generate “artificial” transi-

tions for model-free updates [14], or to simulate rollouts for heuristic search

methods [11]. In a stochastic environment, transition models can be further

classified into expectation, sample and distribution models. Distribution mod-

els return a distribution over the next state’s feature vector, sample models

return a sample of the next state’s feature vector, and expectation models re-

turn the expected feature vector of the next state given a state and an action.

Sutton et al. [45] compare expectation and distribution models when using

linear function approximation for the value function.

Another use of models are backward transition models. Such models take

a state and an action as input and predict what the previous state would be

if the agent took the given action and ended up in the given state. Chelu et

al. [12] investigate the use of backward models for credit assignment.

The last type of models that we explain briefly are abstract models. They

first transfer the state into an abstract latent space and then predict values,

9

instant rewards, or next states from the latent space [38, 40].

In this work, we focus on forward transition models which we explain in

more detail in Section 2.3.

2.3 Model Uncertainty

Learning the forward transition model can be expressed as a regression task.

An agent can use any regression method to train the model. One easy way

is to train a neural network using the least squared error as the loss function.

Assume M̂θ(s, a) is the model’s prediction given s and a, and θ represents

model parameters which are the weights of a neural network. Given a buffer

of transitions B, the goal is to learn parameters θ that minimize the loss

L(θ) =
∑

s,a,s′∈B

(M̂θ(s, a)− s′)2. (2.11)

When the agent uses a learned model, uncertainties in the model’s predic-

tion may be due to three different factors [1]. The first is the stochasticity of

the environment. Since we are learning the expectation over the next state’s

feature vector, if the environment is stochastic there is an inevitable uncer-

tainty in the model’s predictions. This type of uncertainty comes from the

nature of the environment and is irreducible. Our deterministic environments

does not have this type of uncertainty.

Another type of uncertainty is caused by insufficient capacity in the model’s

structure, which makes it unable to learn the true dynamics in principle. This

type of uncertainty can be reduced by using a more powerful model, such as

a deeper or larger network, or a more expressive activation function.

The last type of uncertainty comes from insufficient data coverage or train-

ing. Training a model takes both time and data. If the data does not represent

the whole state space or if the model is not trained sufficiently with the data,

it leads to an incorrect model. This type of uncertainty can be reduced by

gathering more comprehensive data and increasing the training time.

In the rest of this section we discuss a few related works on model uncer-

tainty.

10

CMAX and CMAX++ are search algorithms specifically designed to deal

with uncertainty [50, 51]. They work by deleting the imperfect parts of the

model from search completely. To find a solution, there needs to be at least

one viable path to a goal which does not involve states with uncertainty. As in

our work, such states are identified by comparing against the real environment

during interactions.

Many techniques quantify and use uncertainty in the context of MBRL.

Lütjens et al. [26] capture uncertainty using ensembles of LSTM (a type of

recurrent neural network) and Monte Carlo dropout, and change the behaviour

of their agent to act more cautiously in the uncertain parts by introducing a

cost function for model predictive control (MPC).

Multiple previous approaches do use uncertainty, but not as a component

of an explicit search. Selective MVE [1], AdaMVE [53], and STEVE [6] modify

the model value expansion (MVE), a model based algorithm based on model

rollouts, by taking model uncertainty into consideration and giving less weight

to uncertain rollouts. Jafferjee et al. [18] investigate the effect of model up-

dates in both forward and backward directions with an imperfect model. Lai et

al. [23] use forward and backward models in model-based policy optimization

[19], a model based actor-critic method, in order to reduce accumulative model

error while maintaining a similar update depth. Talvitie [46] designs a way to

learn the model which reduces accumulative model error in deep lookahead.

2.4 Monte Carlo Tree Search

Beside RL, another way to find a solution in an MDP is to use Monte Carlo

Tree Search (MCTS). MCTS is a search method which finds a desirable policy

by building a search tree and using random sampling [5]. MCTS has been used

in many successful works such as mastering the games of Go [39, 40], Hex [2,

10, 35], Othello [33], and Chinese Checkers [30]. It has been used in non-game

applications such as Function Approximation [25], Physics Simulations [27],

Mixed Integer Programming [34], and Mathematical Expression Generation

[9].

11

The MCTS process builds a tree selectively and incrementally. In each

MCTS iteration, a tree policy chooses which leaf node of the tree needs to be

visited next. The goal of the tree policy is to balance between exploration of

the less visited nodes and exploitation of the higher value nodes. The idea is to

expand the nodes that are more promising deeply, but also explore other nodes

to reduce their uncertainty. After reaching a leaf node, the search expands the

selected node or runs simulations from the selected node. The first time we

visit the selected node, one or more simulations are run to evaluate its value

using the rollout policy. The simplest rollout policy is uniform random. If

the selected node has been visited before, we expand it and add its children

to the tree, then run one or more simulations from one of the children. New

evaluations are backpropagated to all their ancestor nodes to update their

values and visit counts. Algorithm 2 shows the pseudo code for an MCTS

agent.

Algorithm 2 MCTS Framework

function MCTS(s0)

create a root node v0 with state s0

for NI do

vs ← Select(v0)

if N(vs) > 0 then

vs ← Expand(vs)

value← Simulate(S(vs))

Backpropagate(vs, value)

vbest ← choose the most visited child of v0

return action(vbest)

After a fixed number of iterations NI , the agent chooses an action at the

root leading to the child with the highest number of visits. Sections 2.4.1-2.4.4

explain these four components in more detail.

12

2.4.1 MCTS Selection

The Select function starts from the root of the tree and repeatedly chooses a

child node with best UCT value until it reaches a leaf node. It then returns

that leaf node. For node v, Q(v) is the sum of rewards observed from v and

N(v) is the number of times v has been visited. Par(v) is the parent of node

v for which the best child is selected. The UCT value is defined as follows:

UCT (v) =
Q(v)

N(v)
+ c

√√√√√ ln

(
N(Par(v))

)
N(v)

The first term is the exploitation term and the second term is the explo-

ration term. c is the exploration constant. Figure 2.2 shows an example of

choosing between two child nodes with different values and number of visits.

A greedy policy would explore the upper node with its higher value, but UCT

chooses the lower value node due to its low number of visits.

N=7
 Q = 0.3
 UCT = 1.22

N=13
 Q = 0.5
 UCT = 1.18

N=20

Figure 2.2: An example for selecting a child node in MCTS Selection (c =
√

2).

Algorithm 3 shows the pseudo code for the select function.

Algorithm 3 Selection Algorithm

function Select(v)

while v is expanded do

v ← argmax
vi∈Ch(v)

Q(vi)
N(vi)

+ c
√

lnN(v)
N(vi)

·

return v

13

2.4.2 MCTS Expansion

The Expand function adds all children of a node to the tree using the model

of the environment M̂ . Expansion is responsible for growing the search tree.

S(v) is the state corresponding to node v and R(v) is the reward when entering

this node. Algorithm 4 shows the pseudo code for the expand function.

Algorithm 4 Expansion Algorithm

function Expand(v)

for ai ∈ A do

si, ri ← M̂(S(v), ai)

create a node vi with state si and reward ri

N(vi)← 0

Q(vi)← 0

return a random child of v

2.4.3 MCTS Simulation

When the search reaches a leaf node for the first time, it needs to estimate its

value. The simulate function estimates a leaf node’s value by doing NS random

rollouts (NS ≥ 1) from that node until a depth DS, and returns the average

of the rollout estimates. Algorithm 5 shows the pseudo code for simulate.

2.4.4 MCTS Backpropagation

This last step of the search loop updates the values and visit counts of nodes

along the search path. The backpropagate function starts from a leaf node and

updates the values and visit counts of its ancestors until it reaches the root of

the tree. Let Par(v) be the parent of node v. We define Par(root)=̇NULL.

The pseudo code for the backpropagation process is shown in Algorithm 6.

14

Algorithm 5 Simulation Algorithm

function Simulate(s, depth)

for i← 1 to NS do

gi ← Rollout(s)

αi ←1/NS

return
NS∑
i=1

αi ·gi

function Rollout(s)

count← 0

rewards← 0

discount← 1

while s is not terminal and count < DS do

choose a random action a from A
s, r ← M̂(s, a)

count← count+ 1

rewards← rewards+ discount · r
discount← discount · γ

return rewards

Algorithm 6 Backpropagation Algorithm

function Backpropagate(v, value)

while v is not NULL do

N(v)← N(v) + 1

Q(v)← Q(v)+ value

value← value · γ +R(v)

v ← Par(v)

15

Chapter 3

MCTS Performance Drop
Under Model Corruption

In this chapter we investigate the performance drop in MCTS when using an

imperfect model. We experimented on the deterministic environments from

the MinAtar testbed [54]: Space Invaders, Freeway, and Breakout. In order

to investigate the effect of an imperfect model on the performance of MCTS,

we modified the true dynamics M of each environment. Each game is slightly

different from its original version but the agent only has access to the original

game M̂ . This type of model corruption is motivated by robotics tasks. For

instance, in Vemula et al. [51] the simulator knows only the perfect dynamics,

but one of the robot’s arms is broken, which slightly changes the real dynam-

ics. We introduce our modified environments in this chapter and this type of

environment corruption is used in the rest of this thesis (Chapters 4 and 5).

3.1 Space Invaders

A snapshot of the Space Invaders environment is shown in Figure 3.1. The

goal of the game is to eliminate the enemies and avoid the shots from them.

The gray square at the bottom is the agent and the green rectangle (4× 6) at

the top are the enemies. The size of the screen is 10 × 10. At each step the

agent has four actions {left, right, none, fire}. The pink and white squares

show the agent’s and the enemies’ bullets respectively. If the agent’s bullet

hits one of the 24 enemies, it is eliminated and the agent receives a reward of

16

+1. If the enemies’ bullet hits the agent or if all the enemies are eliminated,

the game terminates. The enemies move from left to right and drop down

when they reach the side of the screen and change direction to the other side.

In our modification to this game, at columns 2, 3, 4, 5, and 6 the agent’s “fire”

action does not work and is equal to the “none” action. The modification

is included in the true model M . However the corrupted model M̂ is not

aware of this modification and only includes the dynamics from the original

game where “fire” always works. To investigate the performance drop, we

Figure 3.1: A snapshot of the Space Invaders environment. The gray square
and the green rectangle represent the agent and the enemies respectively. The
pink and white rectangles are the agent’s and enemies’ bullets respectively.

used two independent agents: One has access to M and one only has access

to M̂ . The former is labeled “True” and the latter is labeled “Corrupted” in

the following figures. We investigated the performance for different simulation

depths DS ∈ {0, 5, 10, 20, 50} and number of iterations NI ∈ {4, 10, 25, 50, 100}

in two separate experiments. In the former NI = 10 and in the latter DS =

10, and in both cases NS = 10. In this experiment and all the following

experiments in this work we performed 30 independent runs and the error

bars show the standard deviation.

Figure 3.2 shows the results of these experiments. As expected, for each

simulation depth DS, the agent using M̂ had a lower performance than the

agent using M . Increasing DS improved the performance of the corrupted

17

agent until DS = 20. Although the true agent’s performance improved a

lot from DS = 20 to DS = 50, the corrupted agent did not have much im-

provement due to the model error. This suggests that deeper rollouts with an

imperfect model do not improve the performance. Similarly, the true agent’s

performance improved with more number of iterations but the corrupted agent

did not improve after NI = 10.

0

5

10

15

20

25

True

Corrupted

True

True
True

True

Corrupted

Corrupted
Corrupted

Corrupted

D
s

=
 0

D
s

=
 5

D
s

=
 1

0

D
s

=
 2

0

D
s

=
 5

0

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Corrupted

True

True

True
True True

Corrupted Corrupted Corrupted Corrupted

N
I =

 4

N
I =

 1
0

N
I =

 2
5

N
I =

 5
0

N
I =

 1
00

Av
er

ag
e

R
ew

ar
d

in
 E

pi
so

de

Figure 3.2: The performance drop of MCTS under model corruption in the
Space Invaders environment for different simulation depths DS and number of
iterations NI .

3.2 Freeway

The Freeway environment is shown in Figure 3.3. The goal of the game is to

reach the top of the 10 × 10 screen without getting hit by any of the moving

objects. The gray square at the bottom of the screen is the agent. At each

step it has three actions {up, down, none}. In each row, a 2 × 1 rectangle

represents a moving object. The green square is the head of the object. The

objects move in their own row with a fixed speed in the direction in which

their head is pointing. When a moving object reaches the border of the screen

it reappears on the other side. If the agent reaches the top of the screen, the

game terminates with a reward of +1. If the agent hits one of the objects,

the game terminates with a reward of 0. In our modification to this game, at

rows 1, 2, 3, 5, 6, and 7 the effect of the “none” action is equal to the “up”

action. The agent cannot stop in these rows and has to plan ahead to either

18

pass them quickly or step back. This modification is only added to the true

model M but not to M̂ .

Figure 3.3: A snapshot of the Freeway environment. The gray square is the
agent and other rectangles are the moving objects.

We tested two MCTS agents, one using M and one using M̂ . The modifi-

cations make this environment much more difficult to solve and it needs deeper

search than Space Invaders. While in Space Invaders the agent cannot shoot

in some states, nothing harmful happens even if the agent continues shooting

from those states. In Freeway, the agent now has to move in many states, and

these states are not avoidable because the agent has to pass them in order to

reach the top and get a reward. Thus, the agent needs to plan ahead and start

going up when the path is free until the next position that the agent can stop

in.

We investigated the performance for different simulation depths DS ∈

{0, 5, 10, 20, 50} and number of iterations NI ∈ {3, 20, 50, 100, 200}. In the

former we used more iterations in this more complex environment, NI = 100

and the latter DS = 50. In both cases NS = 10.

Figure 3.4 shows the results. Due to model error the increased simulation

depth couldn’t help the agent after DS = 5 and even made the performance

worse. Increasing the number of iterations also did not improve the perfor-

mance of the corrupted agent after NI = 100.

19

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

D
s

=
 0

D
s

=
 5

D
s

=
 1

0

D
s

=
 2

5

D
s

=
 5

0

0

0.2

0.4

0.6

0.8

1

Corrupted

Corrupted
Corrupted

Corrupted Corrupted

True

True True True True

True

True

True True True

Corrupted

Corrupted

Corrupted

Corrupted CorruptedN
I =

 3

N
I =

 2
0

N
I =

 5
0

N
I =

 1
00

N
I =

 2
00

Av
er

ag
e

R
ew

ar
d

in
 E

pi
so

de

Figure 3.4: The performance drop of MCTS under model corruption in the
Freeway Environment for different simulation depths DS and number of iter-
ations NI .

3.3 Breakout

The breakout environment is shown in Figure 3.5. The goal of the game is to

hit the bricks at the top of the screen with a moving ball. The gray square at

the bottom of the screen is the agent. There is a 3×10 brick wall at the top of

the screen shown in white. The two connected green and pink squares are the

moving ball. The green square shows the head. At each step, the agent has

three actions {left, right, none}. When the ball hits the agent it either bounces

back at the same angle, or reflects at the exact opposite angle, depending on

the agent’s movement. If the agent moves towards the ball when hitting it, the

ball bounces back at the same angle, but if the agent stands still when hitting

it, the ball gets reflected at the opposite angle, like a mirror. When the ball

hits any of the bricks, it reflects and that brick disappears with a reward of

+1. If the ball reaches the bottom of the screen or if all the bricks disappear,

the game terminates. Our modification to this game is that when the agent

is at columns 2 or 4 the reflection does not work, the ball can go through the

agent in those positions, and the game is over. To avoid this, the agent has to

plan ahead and try to control the direction of the ball. This modification also

makes the problem much more difficult, even harder than Freeway. In this

environment it is much harder to avoid the “bad” states and it needs more

thorough search. The agent needs to hit the ball in a direction such that after

many bounces, the ball doesn’t land on positions 2 or 4 (20% of positions).

20

Otherwise the agent loses.

For the first set of experiments, we again used a deeper search, setting

NI and NS equal to 100 and 10 respectively and DS ∈ {0, 5, 10, 25, 50}. For

the second part of the experiments we used DS = 50, NS = 10, and NI ∈

{3, 20, 50, 100}.

Figure 3.5: A snapshot of the Breakout environment. The gray square and
the white rectangle represent the agent and the bricks respectively. The pink
and green squares represent the moving ball.

Figure 3.6 shows the results. Again, the agent with the corrupted model has

much lower performance than the agent with the true model. The performance

drop in this environment is more than in the other two environments, which

shows the difficulty of handling it without access to the true dynamics. Similar

to Freeway, the increased simulation depth couldn’t help the agent after DS =

10 and even made the performance worse. Also, increasing the number of

iteration did not seem to improve the performance of the corrupted agent at

all.

21

0

5

10

15

20

D
s

=
 0

D
s

=
 5

D
s

=
 1

0

D
s

=
 2

5

D
s

=
 5

0

True

Corrupted

Corrupted

Corrupted

Corrupted

Corrupted

True

True

True
True

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

True

True

True

True

Corrupted Corrupted Corrupted Corrupted

N
I =

 3

N
I =

 2
0

N
I =

 5
0

N
I =

 1
00

Av
er

ag
e

R
ew

ar
d

in
 E

pi
so

de

Figure 3.6: The performance drop of MCTS under model corruption in the
Breakout Environment for different simulation depths DS and number of iter-
ations NI .

3.4 Summary

In this chapter we talked about the performance drop in MCTS when using

an imperfect model. We explained our modifications to the MinAtar environ-

ments and the type of model error we used for the rest of the experiments. The

results show a significant drop in the performance of MCTS when searching

using an imperfect model. They also suggest that increasing the simulation

depth in an imperfect model not only is not helpful after some point but it

can also be harmful and reduce the performance.

22

Chapter 4

Combining DQN and MCTS

With an accurate model, model-based methods can be much more sample effi-

cient than model-free methods [42]. However, in most cases their performance

is highly sensitive to the quality of the model. Their performance drops heavily

when using an inaccurate model. In a multi-step trajectory, the error com-

pounds at each step which results in a significant error for longer trajectories

[53]. Research to address this issue includes learning the multi-step model

directly [3] or using the model’s predictions in the training to correct them

[46].

As mentioned in Section 2.4, MCTS is a very successful model-based search

method that relies on deep simulations. Due to compounding error, having an

imperfect model causes erroneous return predictions from simulations which

results in a low performance even after many iterations. In this chapter, we

address the issue of model error in MCTS by proposing a new method called

Deep Q-network MCTS (DQMCTS).

DQMCTS combines the model-free algorithm DQN with MCTS to deal

with imperfect models. DQN solely uses the interactions between agent and

environment to train a value network. Thus, we can use its value function

safely even when the model is not accurate. The idea consists of taking ad-

vantage of DQN values in MCTS in two ways: During simulations, and during

expansion. We call the former method DQ-Simulation and the latter DQ-

Expansion.

23

4.1 DQ-Simulation

Deep rollouts are one of the fundamental aspects of MCTS. MCTS utilizes

deep rollouts to evaluate its leaf nodes and backpropagates those evaluations

to tree nodes higher up. Using an imperfect model misleads these rollouts and

can drop the performance significantly. To compensate for incorrect rollouts,

we investigate using a learned DQN value function to evaluate leaf nodes, or

rolling out to a fixed depth and evaluating the endpoints with DQN values.

This method gives insights in the choice of DQN value function and of a good

depth of the rollouts. For more details see [22].

4.2 DQ-Expansion

During the expansion process in MCTS, all children of a specific node are

added to the search tree. In the basic framework, the initial value of the

newly added nodes is zero. This initial value gets updated later with rollout

results or backpropagated values. A better idea is to use a heuristic to initialize

the children’s values. Creating a hand designed heuristic function might not

be simple and may require profound knowledge of the environment.

An initial value of zero puts all the pressure of learning on the rollouts which

as we mentioned can be considerably misleading with an imperfect model. In

DQMCTS, we suggest to use a learned DQN value function as a heuristic to

overcome the model’s imperfections and improving the performance. Algo-

rithm 7 shows the modified expand function. The term written in red is the

difference between basic MCTS and DQMCTS. In DQ-Expansion, when we

add a new child vi to the search tree, its initial value Q(vi) comes from the

learned DQN value function qdqn.

4.3 Experiments

In this section we first explain the details of our experimental design, and then

show and discuss the results. We experimented with the new methods on the

modified version of Space Invaders, Freeway, and Breakout from the MinAtar

24

Algorithm 7 DQ-Expansion Algorithm

function DQ-Expand(v, qdqn)

for ai ∈ A do

si, ri ← M̂(S(v), ai)

create a node vi with state si and reward ri

N(vi)← 0

Q(vi)←
1

|A|
∑
a′∈A

qdqn
(
S(v), a′)

)
return a random child of v

testbed [54]. See chapter 3 for more details on these environments.

The DQMCTS experiments for each environment proceed in two stages.

First, the agent trains a DQN agent on the real environment for a fixed number

of episodes and stores its learned value function qdqn. In the second stage, the

agent plays in the environment using DQMCTS and the stored value function

qdqn from the first stage. We compared the performance of DQMCTS with

two MCTS baselines: An MCTS agent with access to the true dynamics M

and an MCTS agent which only has access to the corrupted model M̂ . In

the following plots, the former is labeled with “True MCTS” and the latter

is labeled with “Corrupted MCTS”. To have fair experiments, we optimized

the exploration rate c separately for each of the experiments over a set of four

values c ∈ {0.5, 1,
√

2, 2}. For reproducibility, the chosen value for c, NI , NS,

and DS are mentioned in each environment later on.

We study the effect of the learned value function in DQMCTS on snapshots

from different stages of learning. To investigate the effect of rollouts with an

imperfect model we also experimented with different simulation depths DS

which we mentioned for each agent in their section.

4.3.1 DQN Details

The DQN used in all the environments had similar parameters which we ex-

plain in more detail in this section. For the qdqn network, we used a fully

connected neural network with two hidden layers each containing 64 units.

25

We used the RMSProp optimizer with step size λ = 0.00025 to train the

network. The training batch size Bs is 32 and the target network update fre-

quency ft is every 1000 interactions. To have more robust convergence, we

started with ε = 1 and linearly reduced its value to 0.1 over the course of

100000 interactions. After that the ε value remains at 0.1 for the rest of the

training. We used a buffer of size 100000 to store the transitions. When the

buffer is full the oldest transition is replaced with the new one.

4.3.2 Space Invaders

The right plot in Figure 4.1 shows the learning curve of training the dqn agent.

We test the quality of the learned value function qdqn at different episodes using

ε = 0. The left plot in Figure 4.1 shows the evaluation of value functions at

different stages of training. Based on this evaluation we picked three learned

qdqn at different levels of training to use in DQMCTS: after episodes 3000,

7000, and 20000. These value functions are shown in red in Figure 4.1.

�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�

�

�

�

�

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

	
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�

�

��

��

��

��

�
�
�
�
�
�
�
�
�
�

������� ����� ������� �����

Figure 4.1: Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on Space Invaders.

We compared the performance of DQ-Expansion and the combination of

both DQ-Expansion and DQ-Simulation (DQMCTS) with MCTS baselines

using 4 different simulation depths, DS ∈ {0, 5, 10, 20}, and number of itera-

tions and simulations NI = NS = 10. Figure 4.2 shows the comparison plots.

We observe that while DQ-Expansion always has higher performance than the

corrupted MCTS baseline, DQN outperforms all of them. This is because even

if we evaluate the leaf nodes using the DQN, the search tree itself is built with

incorrect transitions. This encouraged us to develop another idea to weigh

26

different parts of the search tree which we explain in Chapter 5. Another

observation is that increasing the simulation depth DS reduces the DQMCTS

performance. The reason is that an unrealistic rollout might lead to a state

with good DQN values that can happen during DQ-Simulation. This effect

falsely evaluates a leaf node to be much better than it actually is. Thus, when

using DQMCTS we suggest to completely eliminate the simulation steps and

only use the qdqn to evaluate leaf nodes as in AlphaZero [40]. However, in the

case that we only use DQ-Expansion, increasing DS improves the performance

because in DQ-Expansion the qdqn values only give an initial direction to the

search. Table 4.1 shows the best parameter c for each of the algorithms and

for different simulation depths DS.

0

5

10

15

20

25

DQN 3K

DQN 7K

DQN 20K

Corrupted MCTS True MCTS

D
Q

E
xp

an
si

on
 3

K
 D

Q
E

xp
an

si
on

 7
K

 D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 3
K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

DQN 3K

0

5

10

15

20

25

Corrupted MCTS

DQN 7K

DQN 20K

True MCTS

D
Q

E
xp

an
si

on
 3

K

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 3
K

D
Q

M
C

T
S

 7
K

D
Q

E
xp

an
si

on
 2

0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

5

7.5

10

12.5

15

17.5

22.5

25

20

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

DQN 20K

DQN 7K

DQN 3K

Corrupted MCTS

True MCTS

D
Q

E
xp

an
si

on
 3

K

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 3
K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 2
0K

DQN 20K

DQN 7K

Corrupted MCTS

True MCTS

DQN 3K

D
Q

E
xp

an
si

on
 3

K

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 3
K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 2
0K

5

7.5

10

12.5

15

17.5

20

22.5

25

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Figure 4.2: Comparison of DQMCTS performance with MCTS baselines and
DQN in Space Invaders. From left to right and top to bottom the simulation
depth DS is equal to 0, 5, 10, 20 respectively.

4.3.3 Freeway

Figure 4.3 shows the training and evaluation of the DQN agent at different

stages of training. Based on this evaluation we again picked three learned qdqn

27

DS = 0 DS = 5 DS = 10 DS = 20

True MCTS 2 1 0.5 0.5
Corrupted MCTS 2 1 2 2

DQExpansion 3K 0.5
√

2
√

2
√

2

DQExpansion 7K
√

2 2 0.5 2

DQExpansion 20K 2
√

2 2 0.5

DQMCTS 3K
√

2 2 2
√

2
DQMCTS 7K 0.5 2 0.5 2

DQMCTS 20K
√

2
√

2 2 1

Table 4.1: Best parameter c for each (algorithm, DS) pair in Space Invaders.

at different levels of training to use in DQMCTS: after episode 7000, after

episode 10000, after episode 20000. The DQN results show that this task was

too difficult for the DQN agent to solve and the agent did not even get close to

perfect play (average reward of 1). Next, we evaluate whether such a poorly

learned value function can still be useful in DQMCTS.

�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����

����

�

���

���

���

���

�

����

���

����

���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

	
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����� ������
����� ������

�
�
�
��
�
�
�
�
�
�
��

Figure 4.3: Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on Freeway.

We compare the performance of DQMCTS (combination of DQ-Expansion

and DQ-Simulation) and DQ-Expansion with the same MCTS baselines at 5

different simulations depths, DS = [0, 5, 10, 25, 50]. As mentioned in Chapter

3, this environment is harder than Space Invaders and needs more thorough

search, so we used NI = 100 and NS = 10. Figure 4.4 shows the comparison

plots. The results show a significant improvement over the corrupted MCTS

baseline and the DQN agent in all cases. Another observation from Figure

4.4 is that DQMCTS has lower standard error than DQN and the corrupted

MCTS baseline which makes it a more robust algorithm. Table 4.2 shows the

best parameter c for each of the algorithms at different simulation depths DS.

28

-0.2

0.8

0.6

0.4

0.2

0

DQN 7K DQN 10K

DQN 20K

True MCTSCorrupted MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

DQN 7K

DQN 10K

DQN 20K

Corrupted MCTS

True MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

-0.2

1

0

0.2

0.4

0.6

0.8

-0.2

1

0

0.2

0.4

0.6

0.8

DQN 7K

DQN 10K
DQN 20K

Corrupted MCTS

True MCTS
D

Q
E

xp
an

si
on

 7
K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

-0.2

0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

DQN 7K

DQN 10K

DQN 20K

Corrupted MCTS

True MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

-0.2

0

0.2

0.4

0.6

0.8

1

DQN 7K

DQN 10K

DQN 20K

Corrupted MCTS

True MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Figure 4.4: Comparison of DQMCTS performance with MCTS baselines and
DQN in Freeway. From left to right and top to bottom the simulation depth
DS is equal to 0, 5, 10, 25, 50 respectively.

DS = 0 DS = 5 DS = 10 DS = 25 DS = 50

True MCTS 2 2 2 2
√

2

Corrupted MCTS 2 2
√

2 1
√

2

DQExpansion 7K 2 2
√

2
√

2 2

DQExpansion 10K 2
√

2 2
√

2 2

DQExpansion 20K 2 1 2 2
√

2

DQMCTS 7K 2
√

2 1 2 0.5

DQMCTS 10K 2
√

2 0.5
√

2 2

DQMCTS 20K
√

2 1 2 2 2

Table 4.2: Best parameter c for each (algorithm, DS) in Freeway.

29

DS = 0 DS = 5 DS = 10 DS = 25 DS = 50

True MCTS 2
√

2 1 2 2

Corrupted MCTS 2
√

2 2 0.5 0.5
DQExpansion 7K 2 2 1 2 0.5
DQExpansion 10K 0.5 0.5 0.5 1 1

DQExpansion 20K
√

2 1 0.5 0.5 1

DQMCTS 7K 1
√

2 1 0.5 2
DQMCTS 10K 1 1 0.5 2 2

DQMCTS 20K 2 2 0.5
√

2 0.5

Table 4.3: Best parameter c for each (algorithm, DS) in Breakout

4.3.4 Breakout

Similar to Freeway, we picked three learned qdqn after episodes 7000, 10000,

and 20000 (Figure 4.5).
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�

�

��

��

��

��

�

�

�

�

�

�

�

�

	

����� ������
����� ������

�
�
�
��
�
�
�
�
�
�
��

Figure 4.5: Left plot: performance of value functions at different training
stages using ε = 0. Right plot: learning curve of DQN on Breakout.

Figure 4.6 shows the performance of DQMCTS with MCTS and DQN base-

lines. We compared with the same five simulations depths, DS = [0, 5, 10, 25, 50],

with NI = 100 and NS = 10. We observe that DQMCTS and DQ-Expansion

outperformed the corrupted MCTS baseline, however DQN still outperformed

them both. This again suggests that evaluating the leaf nodes is not enough

to deal with model corruption and it needs further measures to properly make

use of the built search tree. The Breakout and Space Invaders results moti-

vated our UA-MCTS method explained in Chapter 5. Table 4.3 shows the

best parameter c for each of the algorithms with different simulation depths

DS.

30

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

0

25

5

10

15

20

DQN 7K

DQN 10K

DQN 20K

Corrupted MCTS True MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

0

5

10

15

20

25

DQN 20K

DQN 10K

DQN 7K

Corrupted MCTS

True MCTS

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
20

K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

DQN 20K

0

5

10

15

20

25

DQN 7K

DQN 10K

Corrupted MCTS

True MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

0

5

10

15

20

25

DQN 7K

DQN 10K

DQN 20K

True MCTS

Corrupted MCTS

D
Q

E
xp

an
si

on
 7

K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

0

5

10

15

20

25

DQN 7K

DQN 10K

DQN 20K

True MCTS

Corrupted MCTS

D
Q

E
xp

an
si

on
7K

D
Q

E
xp

an
si

on
 1

0K

D
Q

E
xp

an
si

on
 2

0K

D
Q

M
C

T
S

 7
K

D
Q

M
C

T
S

 1
0K

D
Q

M
C

T
S

 2
0K

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Figure 4.6: Comparison of DQMCTS performance with MCTS baselines and
DQN in Breakout. From left to right and top to bottom the simulation depth
DS is equal to 0, 5, 10, 25, 50 respectively.

31

4.4 Summary

To summarize, in this chapter we introduced a new method DQMCTS to deal

with model imperfection using a model free algorithm DQN. DQMCTS uses

a DQN learned value function to evaluate leaf nodes in the search tree. We

compared our method’s performance with DQN and MCTS baselines in three

MinAtar environments: Space Invaders, Freeway, and Breakout. DQMCTS

outperformed the MCTS baseline in all cases, and even outperformed the

DQN baseline in Freeway. However, DQN outperformed our method in the

other two environments, which suggests that evaluating the leaf nodes is not

enough to deal with model corruption in all cases. Therefore, we also change

the way MCTS builds and traverses the search tree in Chapter 5. 1

1Implementation of these ideas can be found in: https://github.com/

ualberta-mueller-group/imperfect_model_code

32

https://github.com/ualberta-mueller-group/imperfect_model_code
https://github.com/ualberta-mueller-group/imperfect_model_code

Chapter 5

Uncertainty-Adapted MCTS

In Chapter 4, we used a learned DQN value function to evaluate the leaf nodes

of the search tree in order to deal with model uncertainty. That approach

showed improvements over the MCTS baseline with the corrupted model.

However, there was a significant gap between the MCTS baseline with the

true model and our method. This motivates our new method, Uncertainty-

Adapted MCTS (UA-MCTS) which changes the behavior of MCTS more fun-

damentally.

Assuming a measure of model uncertainty is available, we modify the be-

havior of MCTS. The choice of uncertainty measure is independent of UA-

MCTS. It can be a simple euclidean distance between the model predictions

and the true next state or a more complicated similarity measure between

their representations. It can also be learned by environment interactions or

can be given by a domain expert.

Given an uncertainty model, there are two general behaviors one might

follow. The first behavior is the exploratory approach: The agent tries to

explore the uncertain parts of the model in order to see what it might achieve

there. The upside to this approach is that the agent might find a policy that

performs better than any policy that could have been found when trusting the

model. The downside is that taking exploratory actions may be very costly

for the agent, for example in robotics tasks or in real environments.

The other approach is the risk-avoiding approach: In this approach, the

agent tries to avoid the uncertain parts of the model and exploits the certain-

33

ties. This approach can be seen as safer because the agent does not take any

risk by exploring uncertain states. The downside of this approach is that in

the case that the optimal policy is not available in the model, the agent is very

unlikely to find it. However it will achieve a sub-optimal policy if one exists

in the model.

In this work, we propose Uncertainty-Adapted MCTS (UA-MCTS) based

on the exploitatory attitude. Our goal for the agent is to spend less search in

the uncertain parts, without completely excluding them.

We modified each of the four main components of MCTS: selection, expan-

sion, simulation, and backpropagation in UA-MCTS, by taking uncertainty

into account. Since the specific choice of uncertainty measure is independent

of the algorithm, we leave it unspecified while explaining the ideas, and will test

concrete choices in experiments. During the expansion phase in UA-MCTS,

the agent stores the uncertainty of the new transitions as an attribute Û in

the nodes. Since the model is fixed and the environment is static, this model

error does not change over time. Each node has a measure of its transition

uncertainty. We will explain how to use it in different parts of UA-MCTS in

the rest of this chapter.

5.1 UA-Expansion

During UA-Expansion we exclude one of the new child nodes from getting

added to the search tree with probability τ . With probability 1 − τ , UA-

Expansion is exactly the same as regular Expansion. The probability of a

child being excluded is proportional to its uncertainty, so the child with the

highest uncertainty is the most likely to get excluded from the search tree.

In the case that all children have zero uncertainty, we do not exclude any of

them. This idea reduces the branching factor of the search tree and leaves

more time to search the more certain parts of the model. For more details see

[22].

34

5.2 UA-Simulation

MCTS gives all rollouts the same credit by taking the unweighted average

of all rollout results in a state. UA-MCTS changes this behavior and gives

more weight to the more certain rollouts. The UA-Simulation approach first

calculates the sum over the uncertainty of all transitions in a rollout to measure

its uncertainty as a whole, then takes a weighted average between different

rollouts using the softmax of the negative uncertainty as the weights. For

more details on this method see [22].

5.3 UA-Selection

As we discussed in Chapter 2, selection in MCTS starts from the root of the

search tree and decides which child is the most promising to follow until it

reaches a leaf node. The child of a node with highest UCT value is chosen

(Equation 5.1).

UCT (v) =
Q(v)

N(v)
+ C

√√√√√ ln

(
N(Par(v))

)
N(v)

(5.1)

Intuitively, our goal is that the selection should also take the uncertainty of

these children into account, in a way that more uncertain children are chosen

less often. We change the UCT formula in a way that favors more certain

children over uncertain ones.

We formalize this intuition by adding a new term to the standard UCT

formula. This new part, (1 − αv) in Equation 5.3, is bounded between 0 and

1. It is smaller when there is more uncertainty which results in a lower UCT

value for this child.

UA− UCT (v) =
Q(v)

N(v)
+ C

√√√√√ ln

(
N(Par(v))

)
N(v)

× (1− αv) (5.2)

αv =̇
eÛ(v)/τ∑

vj∈Ch(Par(v))
eÛ(vj)/τ

(5.3)

35

Equation 5.3 shows the definition of αv which is a softmax function over the

uncertainties of all the siblings of node v. τ is the temperature parameter of the

softmax which decides how much we should pay attention to the uncertainty

values. We will tune this τ parameter in our experiments in Section 5.5.

Algorithm 8 shows the pseudo code of UA-Selection. The red parts are the

parts added to normal MCTS selection.

Algorithm 8 Uncertainty Adapted Selection Algorithm.

Parameter: temperature τ for softmax

function UA-Select(v)

while v is expanded do

for vi ∈ Ch(v) do

αi ← eÛ(vi)/τ∑
vj∈Ch(v)

eÛ(vj)/τ

v ← argmax
vi∈Ch(v)

Q(vi)
N(vi)

+ c
√

lnN(v)
N(vi)

· (1 - αi)

return v

5.4 UA-Backpropagation

Giving more credit to certain transitions while selecting a node is good but

it is not enough. In UA-Backpropagation we modify MCTS backpropgation

in such a way that more certain children have more impact on the value of

their parents. In MCTS, the backpropagate function gives an equal weight

of 1 to all transitions, so the children chosen more often have more influence

on the value of their parent. Let µ(v) be the average reward seen from node

v (µ(v) =
Q(v)

N(v)
in MCTS). Equation 5.4 shows µ(v) in terms of its children

values in normal MCTS.

µ(v) =

∑
vi∈Ch(v)

Q(vi)×N(vi)∑
vi∈Ch(v)

N(vi)
(5.4)

The goal of UA-Backpropagate is to give more weight to the more certain

36

children while updating the value of their parent. Equation 5.5 shows the

weighted average reward computation using UA-Backpropagation. The new

parameter αi has an inverse relationship with the uncertainty Û of node vi

(shown in Equation 5.6).

µ(v) =

∑
vi∈Ch(v)

Q(vi)×N(vi)× αi∑
vi∈Ch(v)

N(vi)× αi
(5.5)

αi =
e−Û(vi)∑

vj∈Ch(Par(vi))
e−Û(vj)

(5.6)

During regular MCTS backpropagation, the backpropagated value is added

to the parent values and the number of visits of the parent is incremented by

one. In UA-Backpropagate, we first calculate the coefficient αi in Equation 5.6

and update the parent value with the child i’s value weighted by αi. Algorithm

9 shows the pseudo code for this method.

Using UA-Backpropagate changes the Q(v) stored in each parent node. In

order to reach the exact value as in Equation 5.5, we need to slightly change

the exploitatory term UCT formula in selection. The UA-Select function in

Algorithm 9 shows this change. UA-Selection changes the exploration term of

UCT and UA-Backpropagation changed the exploitation term of UCT. Thus,

we can use both ideas at the same time.

5.5 Experiments

In this section we explain our experimental designs and results. We experi-

mented with UA-MCTS on modified versions of three MinAtar environments,

as discussed in Chapter 3: Space Invaders, Freeway, and Breakout. In order

to investigate the effect of each modification in UA-MCTS, for each agent,

we combined one component of UA-MCTS (e.g. UA-Selection) with normal

MCTS and compared the results with MCTS baselines. UA-SB is the combi-

nation of both UA-Selection and UA-Backpropagation, and UA-MCTS is the

combination of all four components.

37

Algorithm 9 Uncertainty Adapted Backpropagation Algorithm.

Parameter: temperature τ for softmax

function UA-Backpropagate(v, value)

while v is not NULL do

N(v)← N(v) + 1

α =
e−Û(v)/τ∑

n∈Ch(Par(v))
e−Û(n)/τ

Q(v)← Q(v)+ α ·value
value← value · γ +R(v)

v ← Par(v)

function UA-Select(v)

while v is expanded do

for vi ∈ Ch(v) do

for vj ∈ Ch(vi) do

αj =
e−Û(vj)/τ∑

n∈Ch(vi)
e−Û(n)/τ

di =
∑

vj∈Ch(vi)
N(vj) · αj

v ← argmax
vi∈Ch(v)

Q(vi)
di

+ c
√

lnN(v)
N(vi)

return v

We experimented with two scenarios: offline and online. In the offline

scenario, we assume that the agent has access to the true uncertainty of the

model Û = U . This way we can investigate the performance of our ideas

without the additional complication and errors from learning the uncertainty.

The online scenario consists of two stages. First, a normal unmodified

MCTS interacts with the real environment and gathers a buffer B of tran-

sitions. When B is full we stop the MCTS agent and train the measure of

uncertainty Û for 10000 training steps. In the second stage, we use the trained

Û with UA-MCTS to search in the model and then play in the environment.

38

For each experiment, we optimize parameters c and τ over a set of values

c ∈ {0.5, 1,
√

2, 2}, τ ∈ {0.1, 0.5, 0.9}. Other hyper-parameters such as NI ,

NS, DS are specified in each experiment separately. To study the effect of

the learned uncertainty Û on the performance of UA-MCTS we used three

different buffer sizes, 1000, 3000, and 7000, for each experiment.

5.5.1 Measure of Uncertainty (U)

Any measure of uncertainty can be chosen in the UA-MCTS framework. In

the following experiments we used a simple euclidean distance between the

true and predicted state representations as the model uncertainty. Thus for

a given state action pair (s, a) the uncertainty U(s, a) is defined in Equation

5.7.

U(s, a) =
(
M̂(s, a)−M(s, a)

)2
(5.7)

In the offline scenario the agent has access to the function U(s, a) for any

s ∈ S, a ∈ A. In the online scenario we used a neural network with two

fully connected layers (64 units in each layer) to approximate U . The neural

network is trained over the gathered buffer B from MCTS’s interaction with

the environment for 10000 steps using the loss function in Equation 5.8. We

used the Adam optimizer [20] and a step size of 0.001 with batch size of 32.

L =
∑

s,a,U(s,a)∈B

(
Û(s, a)− U(s, a)

)2

(5.8)

5.5.2 Space Invaders

Offline Scenario

The results are shown in Figure 5.1. In this experiment, NI = 10, DS = 20,

and NS = 10. The combination of UA-Selection and UA-Backpropagation

outperformed their separate versions and both MCTS baselines. UA-MCTS,

the combination of all four components, almost reached perfect play which has

an average reward of 24. Table 5.5.2 shows the best parameters c and τ for

each of the experiments.

39

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

12

14

16

18

20

22

24

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

True MCTS

Corrupted MCTS

U
A

M
C

T
S

U
A

-S
&

B

Figure 5.1: Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders.

C τ

True MCTS 0.5 NA
Corrupted MCTS 2 NA
UA-MCTS 1 0.1

UA-S&B
√

2 0.1

UA-Selection
√

2 0.1

UA-Backpropagation
√

2 0.9

Table 5.1: Best parameters c and τ for each experiment in Space Invaders for
the offline scenario.

Online Scenario

Figure 5.2 shows the performance of UA-MCTS with different buffer sizes for

training Û . NI , DS, and NS are the same as in the offline scenario. UA-MCTS

and its components had a much better performance when having access to the

U function but their performance with a learned Û function is still better

than both MCTS baselines. With less data to train Û , the performance of

UA-MCTS slightly drops but still outperforms the MCTS baselines. Table

5.5.2 shows the best c and τ parameters for each method.

40

U
A

M
C

T
S

U
A

M
C

T
S

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
&

B

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-S
el

ec
tio

n

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

U
A

-B
ac

kp
ro

pa
ga

tio
n

U
A

-B
ac

kp
ro

pa
ga

tio
n

12

14

16

18

20

22

24

Size B = 7000 Size B = 3000 Size B = 1000

Corrupted MCTS

True MCTS

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Figure 5.2: Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders in the online scenario.

Size B = 7000 Size B = 3000 Size B = 1000
C τ C τ C τ

UA-MCTS 0.5 0.1 1 0.1 1 0.1

UA-S&B 1 0.1
√

2 0.1
√

2 0.1
UA-Selection 2 0.1 2 0.1 1 0.1

UA-Backpropagation 2 0.5
√

2 0.5
√

2 0.9

Table 5.2: Best parameters c and τ for each experiment in Space Invaders for
the online scenario.

5.5.3 Freeway

Offline Scenario

Figure 5.3 shows the results for the offline scenario in the Freeway environ-

ment. All the component methods improved over the MCTS with the cor-

rupted model but UA-MCTS outperformed them all and almost reached the

performance of MCTS with the true model. For freeway we picked NI , DS, and

NS to be 100, 50, and 10 respectively due to the difficulty of the environment.

Online Scenario

Figure 5.4 shows the performance of UA-MCTS in the online scenario (NI , DS,

and NS are same as in the offline scenario). The performance of all UA-MCTS

versions with the learned Û functions is better than the MCTS baselines.

41

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Corrupted MCTS

True MCTS

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

Figure 5.3: Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway.

C τ

True MCTS
√

2 NA

Corrupted MCTS
√

2 NA
UA-MCTS 2 0.1
UA-S&B 0.5 0.1
UA-Selection 1 0.1
UA-Backpropagation 2 0.5

Table 5.3: Best parameters c and τ for each experiment in Freeway for the
offline scenario

However, with the true U function (Figure 5.3), UA-MCTS performed much

better. Table 5.5.3 shows the best c and τ parameters for each method.

5.5.4 Breakout

Offline Scenario

Figure 5.5 shows the results for the offline scenario in the Breakout environ-

ment. In this experiment, NI = 100, DS = 50, and NS = 10. With the perfect

uncertainty model, Û = U , the UA-MCTS agent achieves the True MCTS

performance.

Online Scenario

Figure 5.6 shows the performance of UA-MCTS and its individual components

for the online scenario. Table 5.5.4 shows the parameters for each of these

42

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

0.2

0.4

0.6

0.8

1

1.2

Size B = 7000 Size B = 3000 Size B = 1000

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ar

op
ag

at
io

n

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ar

op
ag

at
io

n

Corrupted MCTS

True MCTS

Figure 5.4: Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway in the online scenario.

Size B = 7000 Size B = 3000 Size B = 1000
C τ C τ C τ

UA-MCTS 1 0.1
√

2 0.1 2 0.1
UA-S&B 1 0.1 0.5 0.1 0.5 0.1

UA-Selection 2 0.1 0.5 0.1 1 0.1

UA-Backpropagation
√

2 0.9
√

2 0.9
√

2 0.9

Table 5.4: Best parameters c and τ for each experiment in Freeway for the
online scenario.

experiments. Our method outperformed the corrupted MCTS baseline but

again could not achieve its own offline performance. Compared to Freeway

and Space Invaders, there is a larger drop in the performance of offline and

online scenarios in Breakout. The red horizontal line in Figure 5.6 shows that

MCTS performs quite poorly with a corrupted model in this environment, with

an average reward of 1.33. In order to train the uncertainty measure Û we used

a buffer gathered by the MCTS agent and due to the poor performance of the

MCTS baseline we can deduct that the gathered buffer is not sufficient to train

C τ

True MCTS 2 NA
Corrupted MCTS 0.5 NA

UA-MCTS
√

2 0.1
UA-S&B 2 0.1

UA-Selection
√

2 0.1
UA-Backpropagation 2 0.5

Table 5.5: Best parameters c and τ for each experiment in Breakout for the
offline scenario.

43

0

5

10

15

20

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Corrupted MCTS

True MCTS

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

Figure 5.5: Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout.

a good model Û . Since the buffer sizes are similar for each environment, we

investigated this hypothesis, by checking the percentage of unique data in the

gathered buffers. For Space Invaders and Freeway more than 90% of the data

was unique on average but for Breakout the average of unique data in buffers

was less than 20% which validates our hypothesis. However, even with such a

poorly trained Û , UA-MCTS managed to outperform the MCTS baseline. This

phenomenon might occur in any environment in which model corruption is in

a way that significantly drops MCTS performance and causes an insufficient

buffer content. As a future research direction, we want to constantly gather a

buffer and train Û while UA-MCTS interacts with the environment.

Size B = 7000 Size B = 3000 Size B = 1000
C τ C τ C τ

UA-MCTS 1 0.1
√

2 0.1 2 0.9
UA-S&B 2 0.1 2 0.1 2 0.1

UA-Selection
√

2 0.1 1 0.1 0.5 0.1

UA-Backpropagation
√

2 0.1
√

2 0.5
√

2 0.5

Table 5.6: Best parameters c and τ for each experiment in Breakout for online
scenario.

44

0

5

10

15

20

True MCTS

Corrupted MCTS

Size B = 7000 Size B = 3000 Size B = 1000

U
A

M
C

T
S

U
A

M
C

T
S

U
A

M
C

T
S

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-S
&

B

U
A

-S
el

ec
tio

n

U
A

-B
ac

kp
ro

pa
ga

tio
n

U
A

-B
ac

kp
ro

pa
ga

tio
n

U
A

-B
ac

kp
ro

pa
ga

tio
n

A
ve

ra
g

e
R

ew
ar

d
in

 E
pi

so
de

Figure 5.6: Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout in the online scenario.

5.6 Scaling Experiments

In this section, we investigate the online and offline performance of UA-MCTS

agents with different numbers of iterations. Figures 5.7-5.9 demonstrate the

experimental results. In the offline scenario in which the uncertainty model

is perfect, with more iterations, the performance improved, and even in the

Space Invaders environment, it reached perfect play. For the online scenario, in

Freeway and Space Invaders environment the performance improved with more

iterations but could not achieve the offline performance due to the error in the

uncertainty model. Since the learned uncertainty in the Breakout environment

was insufficient, the online agent performed poorly with both lower and higher

number of iterations, which shows the importance of the learned measure of

the uncertainty.

5.7 Summary

In this chapter we introduced a new method, UA-MCTS, to deal with model

uncertainty. UA-MCTS has the four main components of MCTS but their

behavior is different due to taking model uncertainty into account. We showed

the performance of UA-MCTS when having access to the true uncertainty

function U in the offline scenario. UA-MCTS achieved the performance of

45

N
I =

 3

N
I =

 2
0

N
I =

 5
0

N
I =

 1
00

Offline

Offline
Offline

Offline

OnlineOnlineOnline
OnlineAv

er
ag

e
R

ew
ar

d
in

 E
pi

so
de

Figure 5.7: Comparison of UA-MCTS offline and online scenario in Breakout
with different number of iterations.

the MCTS baseline with the true model or even outperformed it in the Space

Invaders environment. We also investigate UA-MCTS’s performance with a

learned uncertainty function Û for three different sizes of training buffer in the

online scenario. We showed that UA-MCTS cannot achieve its true potential

with Û insufficiently trained, but still outperforms the MCTS baseline.

1

1Implementation of these ideas can be found in: https://github.com/

ualberta-mueller-group/imperfect_model_code

46

https://github.com/ualberta-mueller-group/imperfect_model_code
https://github.com/ualberta-mueller-group/imperfect_model_code

N
I =

 3

N
I =

 2
0

N
I =

 5
0

N
I =

 1
00Online

Online Online
Online

Offline

Offline

Offline

Offline

Av
er

ag
e

R
ew

ar
d

in
 E

pi
so

de

Figure 5.8: Comparison of UA-MCTS offline and online scenario in Freeway
with different number of iterations.

N
I =

 4

N
I =

 1
0

N
I =

 2
5

N
I =

 5
0

N
I =

 1
00

Offline

Offline Offline Offline Offline

Online

Online
Online Online Online

Av
er

ag
e

R
ew

ar
d

in
 E

pi
so

de

Figure 5.9: Comparison of UA-MCTS offline and online scenario in Space
Invaders with different number of iterations.

47

Chapter 6

Conclusion and Future Work

In this thesis, we investigated the effect of model inaccuracies on the perfor-

mance of MCTS. We modified three deterministic MinAtar environments in a

specific way to induce model error motivated by robotic tasks. We show that

deeper simulations in a wrong model do not improve the performance and in

some cases can also reduce the performance of MCTS.

To deal with this error we first proposed the DQMCTS method, which uses

a learned DQN value function as a heuristic to evaluate the leaf nodes of the

search tree. We empirically show that DQMCTS outperforms MCTS baselines

and performs best with lower simulation depth. However, there is still room

for improvement.

Our second method UA-MCTS deals with model error by changing the

behavior of all four components of MCTS, to focus the search more on certain

parts of the model. We empirically show that with an accurate measure U of

uncertainty, UA-MCTS can achieve the performance of a MCTS agent that has

access to the true dynamics. Even with a poorly trained uncertainty measure

Û , UA-MCTS still performs better than the MCTS baseline with a corrupted

model.

There are several future directions that are worthwhile investigating:

• In our work we did not focus on the amount of model error. Investigating

the amount of model error on the performance of MCTS, DQMCTS, and

UA-MCTS is an interesting question to explore.

• The precision of the uncertainty model has a lot of influence on the per-

48

formance of UA-MCTS. Thus, investigating different uncertainty mea-

sures or finding ways to train uncertainty more accurately is another

future step for our work.

• Creating a more general and online framework that can learn the uncer-

tainty and value functions while interacting with the environment and

uses them in a combination of UA-MCTS and DQMCTS is the most

straight forward follow up to our work which we would very much like

to pursue.

49

References

[1] Z. Abbas, S. Sokota, E. Talvitie, and M. White, “Selective Dyna-style
planning under limited model capacity,” in International Conference on
Machine Learning, PMLR, 2020, pp. 1–10.

[2] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo tree search
in Hex,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 2, no. 4, pp. 251–258, 2010.

[3] K. Asadi, K. Evan, D. Misra, and M. L. Littman, “Towards a Simple
Approach to Multi-step Model-based Reinforcement Learning,” NeurIPS
2019 Deep Reinforcement Learning Workshop, 2019.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[6] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee, “Sample-
efficient Reinforcement Learning with stochastic ensemble value expan-
sion,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, ser. NIPS’18, Montréal, Canada: Cur-
ran Associates Inc., 2018, pp. 8234–8244.

[7] T. Cazenave, “Reflexive Monte-Carlo search,” in Computer Games Work-
shop, Citeseer, 2007, pp. 165–173.

[8] ——, “Nested Monte-Carlo search,” in Twenty-First International Joint
Conference on Artificial Intelligence, 2009, pp. 456–461.

[9] ——, “Nested Monte-Carlo expression discovery,” in ECAI, IOS Press,
2010, pp. 1057–1058.

[10] T. Cazenave and A. Saffidine, “Monte-Carlo Hex,” in Proc. Board Games
Studies Colloq., Paris, France, Citeseer, 2010.

50

[11] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo tree
search: A new framework for game AI.,” AIIDE, vol. 8, pp. 216–217,
2008.

[12] V. Chelu, D. Precup, and H. P. van Hasselt, “Forethought and hind-
sight in credit assignment,” Advances in Neural Information Processing
Systems, vol. 33, pp. 2270–2281, 2020.

[13] M. Enzenberger, M. Müller, B. Arneson, and R. Segal, “Fuego—an open-
source framework for board games and Go engine based on Monte Carlo
tree search,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. 2, no. 4, pp. 259–270, 2010.

[14] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S.
Levine, “Model-based value expansion for efficient model-free Reinforce-
ment Learning,” in Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

[15] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning,” in International Confer-
ence on Machine Learning, PMLR, 2016, pp. 1050–1059.

[16] H. P. van Hasselt, M. Hessel, and J. Aslanides, “When to use parametric
models in Reinforcement Learning?” Advances in Neural Information
Processing Systems, vol. 32, pp. 14 322–14 333, 2019.

[17] G. E. Hinton and D. Van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” in Proceedings of
the sixth annual conference on Computational Learning Theory, 1993,
pp. 5–13.

[18] T. Jafferjee, E. Imani, E. Talvitie, M. White, and M. Bowling, “Halluci-
nating value: A pitfall of dyna-style planning with imperfect environment
models,” arXiv preprint arXiv:2006.04363, 2020.

[19] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” Advances in Neural Information Pro-
cessing Systems, vol. 32, pp. 12 519–12 530, 2019.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR,
2015.

[21] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[22] F. Kohankhaki, “Monte Carlo tree search in the presence of model un-
certainty,” MSc Thesis, University of Alberta, 2022.

[23] H. Lai, J. Shen, W. Zhang, and Y. Yu, “Bidirectional model-based pol-
icy optimization,” in International Conference on Machine Learning,
PMLR, 2020, pp. 5618–5627.

51

[24] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[25] J. Lu, X. Wang, D. Wang, and Y. Wang, “Parallel Monte Carlo tree
search in perfect information game with chance,” in Chinese Control
and Decision Conference (CCDC), IEEE, 2016, pp. 5050–5053.

[26] B. Lütjens, M. Everett, and J. P. How, “Safe Reinforcement Learning
with model uncertainty estimates,” in 2019 International Conference on
Robotics and Automation (ICRA), IEEE, 2019, pp. 8662–8668.

[27] C. Mansley, A. Weinstein, and M. Littman, “Sample-based planning for
continuous action Markov Decision Processes,” in Twenty-First Interna-
tional Conference on Automated Planning and Scheduling, 2011.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep Reinforcement Learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[29] H. Nakhost and M. Müller, “Monte-Carlo exploration for deterministic
planning,” in Twenty-First International Joint Conference on Artificial
Intelligence, Citeseer, 2009.

[30] J. P. A. Nijssen and M. H. Winands, “Enhancements for multi-player
Monte-Carlo tree search,” in International Conference on Computers
and Games, Springer, 2010, pp. 238–249.

[31] J. Nijssen, “Playing Othello using Monte Carlo,” Strategies, pp. 1–9,
2007.

[32] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” in Proceedings of IEEE International
Conference on Neural Networks (ICNN), IEEE, vol. 1, 1994, pp. 55–60.

[33] Y. Osaki, K. Shibahara, Y. Tajima, and Y. Kotani, “An Othello evalu-
ation function based on Temporal Difference Learning using probability
of winning,” in IEEE Symposium On Computational Intelligence and
Games, IEEE, 2008, pp. 205–211.

[34] A. Sabharwal, H. Samulowitz, and C. Reddy, “Guiding combinatorial
optimization with UCT,” in International conference on integration of
artificial intelligence (AI) and operations research (OR) techniques in
constraint programming, Springer, 2012, pp. 356–361.

[35] A. Saffidine, “Utilisation d’UCT au Hex,” Ecole Normale Super. Lyon,
France, Tech. Rep, 2008.

[36] Y. Sato, D. Takahashi, and R. Grimbergen, “A Shogi program based on
Monte-Carlo tree search,” ICGA Journal, vol. 33, no. 2, pp. 80–92, 2010.

52

[37] K. Shibahara and Y. Kotani, “Combining final score with winning per-
centage by sigmoid function in Monte-Carlo simulations,” in IEEE Sym-
posium On Computational Intelligence and Games, IEEE, 2008, pp. 183–
190.

[38] D. Silver, H. Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G.
Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto, et al., “The Pre-
dictron: End-to-end learning and planning,” in International Conference
on Machine Learning, PMLR, 2017, pp. 3191–3199.

[39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, et al., “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the
game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[41] D. Silver, R. S. Sutton, and M. Müller, “Sample-based learning and
search with permanent and transient memories,” in Proceedings of the
25th International Conference on Machine learning, 2008, pp. 968–975.

[42] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford,
“Model-based RL in contextual decision processes: Pac bounds and ex-
ponential improvements over model-free approaches,” in Conference on
Learning Theory, PMLR, 2019, pp. 2898–2933.

[43] R. S. Sutton, “Integrated Architectures for Learning, Planning, and Re-
acting Based on Approximating Dynamic Programming,” in Machine
Learning proceedings, Elsevier, 1990, pp. 216–224.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction.
MIT press, 2018.

[45] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. Bowling, “Dyna-style
planning with linear function approximation and prioritized sweeping,”
in Proceedings of the Twenty-Fourth Conference on Uncertainty in Ar-
tificial Intelligence, ser. UAI’08, AUAI Press, 2008, pp. 528–536, isbn:
0974903949.

[46] E. Talvitie, “Self-correcting models for model-based Reinforcement Learn-
ing,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[47] Y. Tanabe, K. Yoshizoe, and H. Imai, “A study on security evalua-
tion methodology for image-based biometrics authentication systems,”
in IEEE 3rd International Conference on Biometrics: Theory, Applica-
tions, and Systems, IEEE, 2009, pp. 1–6.

53

[48] B. K.-B. Tong, C. M. Ma, and C. W. Sung, “A Monte-Carlo approach for
the endgame of Ms. Pac-Man,” in IEEE Conference on Computational
Intelligence and Games (CIG’11), IEEE, 2011, pp. 9–15.

[49] B. K.-B. Tong and C. W. Sung, “A Monte-Carlo approach for ghost
avoidance in the Ms. Pac-Man game,” in 2nd International IEEE Con-
sumer Electronics Society’s Games Innovations Conference, IEEE, 2010,
pp. 1–8.

[50] A. Vemula, J. A. Bagnell, and M. Likhachev, “CMAX++: Leveraging
experience in planning and execution using inaccurate models,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,
pp. 6147–6155.

[51] A. Vemula, Y. Oza, J. Bagnell, and M. Likhachev, “Planning and Execu-
tion using Inaccurate Models with Provable Guarantees,” in Proceedings
of Robotics: Science and Systems, Corvalis, Oregon, USA, Jul. 2020.

[52] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[53] C. Xiao, Y. Wu, C. Ma, D. Schuurmans, and M. Müller, “Learning
to combat compounding-error in model-based Reinforcement Learning,”
NeurIPS 2019 Deep Reinforcement Learning Workshop, 2019.

[54] K. Young and T. Tian, “MinAtar: An Atari-inspired testbed for thorough
and reproducible Reinforcement Learning experiments,” arXiv preprint
arXiv:1903.03176, 2019.

54

	Introduction
	Contributions

	Background
	Markov Decision Processes (MDP)
	Reinforcement Learning (RL)
	Policy and Value Function
	Model-Free RL
	Model-Based RL

	Model Uncertainty
	Monte Carlo Tree Search
	MCTS Selection
	MCTS Expansion
	MCTS Simulation
	MCTS Backpropagation

	MCTS Performance Drop Under Model Corruption
	Space Invaders
	Freeway
	Breakout
	Summary

	Combining DQN and MCTS
	DQ-Simulation
	DQ-Expansion
	Experiments
	DQN Details
	Space Invaders
	Freeway
	Breakout

	Summary

	Uncertainty-Adapted MCTS
	UA-Expansion
	UA-Simulation
	UA-Selection
	UA-Backpropagation
	Experiments
	Measure of Uncertainty (U)
	Space Invaders
	Freeway
	Breakout

	Scaling Experiments
	Summary

	Conclusion and Future Work
	References

