GrandTour^{obs} Puzzle as a SAT Benchmark

Md Solimul Chowdhury Department of Computing Science University of Alberta Edmonton, Alberta, Canada mdsolimu@ualberta.ca Martin Müller

Department of Computing Science University of Alberta Edmonton, Alberta, Canada mmueller@ualberta.ca Jia-Huai You Department of Computing Science University of Alberta

Edmonton, Alberta, Canada

jyou@ualberta.ca

Abstract—GrandTour¹ is a puzzle game, which is usually played in a rectangular grid of points, where a player is posed with the challenge to find a closed loop that goes through each point exactly once. In GrandTour, the player is allowed to connect any pair of points to solve the game. We consider a slight variation of the GrandTour puzzle game, where a player is allowed to connect a restricted subset of pairs of points, as there are obstacles between some of the points. We call this puzzle GrandTour with obstacles or GrandTour^{obs}. For SAT competition-2018, we provide 20 SAT instances of the GrandTour^{obs} puzzle.

I. ENCODING AND INSTANCE GENERATION

a) **GrandTour**^{obs} as Hamiltonian Cycle Problem: The problem of determining whether a Hamiltonian cycle exists in a given graph is a well-known NP-complete problem. This problem deals with the following question: is there a cycle in a given graph, in which each vertex is visited exactly once? While solving a **GrandTour** puzzle is equivalent to finding a Hamiltonian cycle in a complete graph² induced from its completely connected puzzle grid, solving **GrandTour**^{obs} problem is equivalent to finding a Hamiltonian cycle in an incomplete graph, which is induced from its incompletely connected puzzle grid. If a Hamiltonian cycle exists in the graph induced from the puzzle grid of a **GrandTour**^{obs} puzzle, then the puzzle is solvable, otherwise it is not.

b) Problem Encoding: A ground normal logic program P can be converted into a SAT formula S, from the Clark's completion C of P. For example, the Clark's completion of $P = \{a \leftarrow b., a \leftarrow c.\}$ is $C = \{a \leftarrow b \lor c.\}$ and C can be expressed into the SAT formula S in CNF form as: $(\neg b \land \neg c) \lor a \equiv (\neg b \lor a) \land (\neg c \lor a)$. This technique is utilized in ASSAT [1], a solver for answer set programs using a SAT solver as the underlying inference engine. Given a ground normal logic program P, ASSAT computes its stable models by using a SAT solver. As part of its solving process, ASSAT produces a SAT formula S from P. We exploit this feature of ASSAT to generate SAT instances of the **GrandTour**^{obs} problem from the normal logic program encoding of Hamiltonian cycle as proposed in [2].

c) Instance Generation: For the **GrandTour**^{obs}, a puzzle grid of size $x \times y$ can be induced from a graph with nnodes, where n is an even number and n = x * y. The website for ASSAT³ contains 32 normal logic program instances for the Hamiltonian cycle problem from two graphs with 60 and 50 vertexes, respectively. We treat these instances as the **GrandTour**^{obs} instances of grid size 10×6 and 10×5 , respectively.

TABLE I: Details of the 20 SAT instances for the **GrandTour**^{obs} benchmark; An instance gto_pxcy is based on a grid which has x points and y pairs of points are connected.

Problem/Grid Size	Variables/Clauses	MiniSAT cpuTime (s)	MiniSAT Results
gto_p60c229 / 10 × 6	1011/3473	101.95	UNSAT
gto_p60c231 / 10 × 6	1015/3493	351.36	UNSAT
gto_p60c241 / 10 × 6	1046/3673	481.81	UNSAT
gto_p60c239 / 10 × 6	1038/3627	717.90	UNSAT
gto_p60c231_1 / 10 × 6	1019/3517	833.89	UNSAT
gto_p60c243 / 10 × 6	1054/3721	881.04	UNSAT
gto_p60c233 / 10 × 6	1023/3533	1177.71	UNSAT
gto_p60c234 / 10 × 6	1027/3577	1897.77	UNSAT
gto_p60c235 / 10 × 6	1031/3583	3360.01	UNSAT
gto_p60c238 / 10 × 6	1043/3649	4232.67	UNSAT
gto_p60c295 / 10 × 6	635/3330	5000	UNKNOWN
gto_p60c343 / 10 × 6	729/4563	5000	UNKNOWN
gto_p50c291 / 10 × 5	607/3813	5000	UNKNOWN
gto_p50c345 / 10 × 5	703/5413	5000	UNKNOWN
gto_p50c311 / 10 × 5	623/4137	5000	UNKNOWN
gto_p50c312 / 10 × 5	643/4325	5000	UNKNOWN
gto_p50c314 / 10 × 5	635/4319	5000	UNKNOWN
gto_p50c314_1 / 10 × 5	639/4339	5000	UNKNOWN
gto_p50c345 / 10 × 5	605/3664	5000	UNKNOWN
gto_p50c307 / 10 × 5	613/4036	5000	UNKNOWN

These 32 instances are known to be hard for SAT solvers. In our experiment, MiniSat could not solve any of those within 5000 seconds. So, these instances are not *interesting* for the SAT competition-2018. As per the requirement of the benchmark submission, to generate 10 *interesting* SAT instances, we took a graph G, namely *hard.1.graph* in the ASSAT website, and repeated the following steps until we get 10 *interesting* instances: (i) randomly remove a few arcs to produce a new graph G', (ii) generate the SAT instance S from the normal logic program encoding of the Hamiltonian cycle program along with G' by using ASSAT, and (iii) test S with MiniSat to see if it is *interesting*. The first 10 rows in Table 1 show these *interesting* instances taken from the ASSAT website.

³http://assat.cs.ust.hk/hardsat.html

¹http://curiouscheetah.com/Museum/Puzzle/Grandtour

²In a complete graph, each pair of vertexes are connected by an edge.

REFERENCES

- F. Lin and Y. Zhao, "ASSAT: computing answer sets of a logic program by SAT solvers", Artif. Intell., vol. 157, pp. 115–137, 2004.
 I. Niemelä, "Logic Programs with Stable Model Semantics as a Con-straint Programming Paradigm", Ann. Math. Artif. Intell., vol. 25, pp.241–273, 1999.