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Abstract

Utilizing multiple queues in Greedy Best-First Search
(GBFS) has been proven to be a very effective approach
to satisficing planning. Successful techniques include extra
queues based on Helpful Actions (or Preferred Operators),
as well as using Multiple Heuristics. One weakness of all
standard GBFS algorithms is their lack of exploration. All
queues used in these methods work as priority queues sorted
by heuristic values. Therefore, misleading heuristics, espe-
cially early in the search process, can cause the search to be-
come ineffective.

Type systems, as introduced for heuristic search by Lelis et
al, are a development of ideas for exploration related to the
classic stratified sampling approach. The current work intro-
duces a search algorithm that utilizes type systems in a new
way — for exploration within a GBFS multiqueue framework
in satisficing planning.

A careful case study shows the benefits of such exploration
for overcoming deficiencies of the heuristic. The proposed
new baseline algorithm Type-GBFS solves almost 200 more
problems than baseline GBFS over all International Planning
Competition problems. Type-LAMA, a new planner which
integrates Type-GBFS into LAMA-2011, solves 36.8 more
problems than LAMA-2011.!

Introduction

In the latest International Planning Competition (IPC) IPC-
2011 (Garcia-Olaya, Jiménez, and Linares Lopez 2011), the
planner LAMA-2011 (Richter and Westphal 2010) was the
clear winner of the sequential satisficing track, by both mea-
sures of coverage and plan quality. LAMA-2011 finds a first
solution using Greedy Best-First Search (GBFS) (Bonet and
Geftner 2001; Helmert 2006) with popular enhancements
such as Preferred Operators (Richter and Helmert 2009),
Deferred Evaluation (Richter and Helmert 2009) and Multi-
Heuristic (Richter and Westphal 2010).

GBFS always expands a node n that is closest to a goal
state according to a heuristic /.. While GBFS makes no guar-
antees about solution quality, it can often find a solution
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quickly. GBFS’s performance strongly depends on h. Mis-
leading or uninformative heuristics can result in massive in-
creases in the time and memory complexity of search.

Two of the three enhancements above, Preferred Oper-
ators and Multi-Heuristic, are implemented in a Multiple
Queue Search framework (Helmert 2006). Separate prior-
ity queues are used to hold different sets of nodes, or keep
them sorted according to different heuristics. Still, each
queue is sorted based on some heuristic h, and is used in
a greedy fashion by the search, which always expands a
node with minimum h-value from one of the queues. This
makes search vulnerable to the misleading heuristic prob-
lem, where it can stall in bad subtrees, which contain large
local minima or plateaus but do not lead to a solution.
Adding exploration to a search algorithm is one way to at-
tack this problem.

Previous approaches to this problem of GBFS with mis-
leading heuristics include K-BFS (Felner, Kraus, and Korf
2003), which expands the first £ best nodes in a single pri-
ority queue and adds all their successors, and Diverse-BFS
(Imai and Kishimoto 2011), which expands extra nodes with
non-minimal A-values or at shallow levels of the search
tree. Another simple algorithm is e-GBFS (Valenzano et al.
2014), which expands a node selected uniformly at random
from the open list with probability €. All these algorithms
add an element of exploration.

The current paper proposes and evaluates a simple yet
very effective way of adding exploration based on a type sys-
tem (Lelis, Zilles, and Holte 2013). The major contributions
are:

1. An analysis of the weaknesses of previous simple explo-
ration schemes. and a non-greedy approach to exploration
based on a simple type system.

2. A search algorithm under the framework of multiple-
queue search named Type-GBFS which uses a type sys-
tem for exploration, and the corresponding planner Type-
LAMA, which replaces the GBFS component of LAMA-
2011 by Type-GBFS.

3. Detailed experiments on IPC benchmarks, which demon-
strate that baseline Type-GBFS solves substantially more
problems than baseline GBFS, and that this superiority
also holds when adding most combinations of standard
planning enhancements. Type-LAMA with all such en-



hancements outperforms LAMA-2011.

The discussion starts with a review of Multiple Queue
Search and the problems caused by misleading heuristics in
best-first algorithms. An analysis of e-GBFS shows that its
exploration suffers from closely following the distribution
of h-values in the open list. A simple type system based on
both g- and h-values of each node is proposed as a remedy
and shown to lead to better exploration. Experiments on the
baseline as well as state of the art planners confirm that this
leads to significant progress in coverage.

Background: Multiple Queue Search and
Early Mistakes in GBFS

Multiple Queue Search

Two of the most important enhancements for satisficing
planning, Preferred Operators and Multi-Heuristics, are
based on Multiple Queue Search (Helmert 2006; Roger and
Helmert 2010). When more than one heuristic is used in the
search algorithm, Multiple Queue Search uses one priority
queue for each heuristic, and selects the next node to expand
from these queues in a round-robin manner. Queue boost-
ing (Helmert 2006) can be used to assign priorities to dif-
ferent queues. Once a node is expanded, all its successors
are evaluated by all heuristics, and put into every queue with
the corresponding value. For Preferred Operators (or Helpful
Actions), one additional priority queue per heuristic is used,
which contains only the successors generated by a preferred
operator. The algorithm again selects nodes in a round-robin
manner from all queues, but boosts the preferred operator
queue(s). The search benefits both from focusing more on
usually relevant actions, and from reaching greater depths
more quickly because of the smaller effective branching fac-
tor in the preferred queues.

Early Mistakes caused by Misleading Heuristics

Early mistakes are mistakes in search direction at shallow
levels of the search tree caused by sibling nodes being ex-
panded in the wrong order. This happens when the root node
of a bad subtree, which contains no solution or only hard-
to-find solutions, has a lower heuristic value than a sibling
which would lead to a quick solution.

The 2011-Nomystery domain from IPC-2011 is a typ-
ical example where delete-relaxation heuristics systemati-
cally make early mistakes (Nakhost, Hoffmann, and Miiller
2012). In this transportation domain with limited non-
replenishable fuel, delete-relaxation heuristics such as A"
ignore the crucial aspect of fuel consumption, which makes
the heuristic overoptimistic and misleading, and results in
large unrecognized dead-ends in the search space. Bad sub-
trees in the search tree, which over-consume fuel early on,
are searched exhaustively, before any good subtrees which
consume less fuel and can lead to a solution are explored.
As a result, while the random walk-based planner Arvand
with its focus on exploration solved 19 out of 20 nomystery
instances in IPC-2011, LAMA-2011 solved only 10.
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Exploration bias in the Open List: Two Case
Studies

Previous exploration methods in GBFS suffer from biasing
their exploration heavily towards the neighborhood of nodes
in the open list. In the case of early mistakes, the large
majority of these nodes is in useless regions of the search
space. Consider the nodes in the regular A" (Hoffmann
and Nebel 2001) open list of LAMA-2011 while solving the
problem 2011-nomystery #12. Figure 1(a) shows snapshots
of their h-value distribution after 2,000, 10,000 and 50,000
nodes expanded. In the figure, the x-axis represents differ-
ent heuristic values and the y-axis represents the number
of nodes with a specific h value in the open list. The solu-
tion eventually found by LAMA-2011 goes through a single
node n in this 50,000 node list, with 2(n) = 18. This node is
marked with an asterisk in the figure. Over 99% of the nodes
in the open list have lower h-values, and will be expanded
first, along with much of their subtrees. However, in this ex-
ample, none of those nodes leads to a solution. The open list
is flooded with a large number of useless nodes with unde-
tected dead ends.

e-GBFS (Valenzano et al. 2014) samples nodes uniformly
over the whole open list. This is not too useful when entries
are heavily clustered in bad subtrees. In the example above,
e-GBFS has a less than 1% probability to pick a node with
h-value 18 or more in its exploration step, which itself is
only executed with probability €. Furthermore, the algorithm
must potentially select several good successor nodes before
making measurable progress towards a solution by finding
an exit node with a lower h-value.

The instance 2011-nomystery #12, with 6 locations and
6 packages, has a relatively small search space, and both
GBFS and e-GBFS eventually solve it after exhaustively
enumerating the dead ends. However, a larger problem like
2011-nomystery #19, with 13 locations and 13 packages,
is completely out of reach for GBFS or ¢-GBFS. This in-
stance was solved by only 2 planners in IPC-2011. Figure
1(b) shows the h-value distribution in LAMA-2011’s reg-
ular A*F queue after 20,000, 100,000 and 500,000 nodes.
The node with A = 39 from a solution found by Arvand-
2011 (Nakhost and Miiller 2009) is marked at the far right
tail of the distribution in the figure.

Adding Exploration via a Type System

Can the open list be sampled in a way that avoids the over-
concentration on a cluster of very similar nodes? A type sys-
tem (Lelis, Zilles, and Holte 2013), which is based on earlier
ideas of stratified sampling (Chen 1992), is one possible ap-
proach.

Type System
A type system is defined as follows:

Definition 1 (Lelis, Zilles, and Holte 2013) Let S be the set
of nodes in search space. T = {t1,...,t,} is a type system
for S if T is a disjoint partitioning of S. For every s € S,
T(s) denotes the unique t € T with s € S.
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Figure 1: (a)(b): h-value distribution in the regular hEF open list of LAMA-2011.

Types can be defined using any property of nodes. The
simple type system used here defines the type of a node s
in terms of its h-value for different heuristics A, and its g-
value. A simple and successful choice is the pair T'(s) =
(h¥F(s), g(s)). The intuition behind such type systems is
that they can roughly differentiate between nodes in differ-
ent search regions, and help explore away from the nodes
where GBFS gets stuck.

Figure 2(a) views a LAMA-2011 search of instance 2011-
nomystery #19 through the lens of a (b, g) type system.
The horizontal z- and y-axes represent A" -values and g-
values respectively. The number of nodes in the open list
with a specific (b7, g) type is plotted on the vertical z-axis.
The graph shows the frequency of each type in the regular
hFF open list of LAMA-2011 at the time when the open
list first reaches 100,000 nodes. After initial rapid progress,
search has stalled around a single huge peak. Most of the
open list is filled with a large number of useless nodes.

Type-GBFS: Adding a Type System to GBFS

Type-GBFS uses a simple two level type bucket data struc-
ture tb which organizes its nodes in buckets according to
their type. Type bucket-based node selection works as fol-
lows: First, pick a bucket b uniformly at random from among
all the non-empty buckets. Then pick a node n uniformly at
random from all the nodes in b. Type-GBFS alternately ex-
pands a node from from the regular open list O and from ¢b,
and each new node is added to both O and tb.

Multi-Heuristic type systems (h1(s), ha(s),....) have
been explored before using a Pareto set approach (Roger and
Helmert 2010). The main differences of their approach are:
1) only Pareto Optimal buckets are selected; 2) the proba-
bility of selecting each Pareto optimal bucket is proportional
to the number of nodes it contains; 3) only heuristics are
used to define types, whereas the current approach also con-
siders g and potentially any other relevant information; and
4) nodes in a bucket are selected deterministically in FIFO
order, not uniformly at random.

Diverse Best-First Search (DBFS) (Imai and Kishimoto
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Algorithm 1 TypeBuckets.Insert(n)

Input TypeBuckets b, node n

t <+ T(n)

if not b.types. Contains(t) then
b.types.Insert(t)

end if

b.nodes|t].Insert(n)

return

A e

Algorithm 2 TypeBuckets.SelectNode()

Input TypeBuckets b
Output Node n

t < b.types.SelectRandom()

n « b.nodes|t].SelectRandom()

b.nodes[t]. Remove(n)

if b.nodes[t]. IsEmpty() then
b.types. Remove(t)

end if

return n

A A o S

2011) is another closely related high performance search
algorithm which includes an exploration component. This
two-level search algorithm uses a global open list O, a lo-
cal open list Oy, and a shared closed list.

Like Type-GBFS with the (hrp(s),g(s)) type system,
DBFS picks nodes based on their h- and g-values. There are
three major differences between these algorithms. 1) DBFS
performs a sequence of local searches while Type-GBFS
defines a single global search; 2) DBFS uses g to restrict
its node selection, while Type-GBFS can use g as part of
its type system; 3) DBFS biases its node selection using h,
while the type buckets in Type-GBFS sample uniformly over
all types.
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e-GBFS(e = 0.5), Type-GBFS and DBFS.

Exploration in Type-GBFS, e-GBFS and DBFS

Type-GBFES and e-GBFS with ¢ = 0.5 both spend half their
search effort on exploration. However, the distribution of
types of the explored nodes is very different. In Nomystery-
2011 #19, GBFS in LAMA-2011 grows the single peak
shown in Figure 2(a). Figure 2(b-d) show the frequency of
explored node types for e-GBFS with ¢ = 0.5, Type-GBFS?
and DBEFS after 20,000 nodes in the same format. Note that
while Figure 1 shows the distribution of all nodes in the open
list, Figure 2 shows the types of only those nodes that were
chosen in the exploration step.

e-GBFS mainly explores nodes close to the GBFS peak
types, while Type-GBFS explores much more uniformly
over the space of types. DBFS explores more types than e-
GBFS. Unlike type buckets in Type-GBFS, which sample
types uniformly, DBFS is biased towards low h and high g

2Some explored types are outside the (h, g) range shown in Fig-
ure 2(b).

3Unlike e-GBFS and Type-GBFS, there is no clear exploration
step in DBFS. All visited nodes are shown in the figure.
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values.

Note that the z-axis scales are different for the three plots.
The single most explored type contains around 800 nodes
for e-GBFS and 600 for DBFS, but only 40 for Type-GBFS.
The presence or absence of exploration helps explain the rel-
ative performance in 2011-Nomystery. The coverage for the
20 instances of this domain for one typical run with 4 GB
memory and 30 minutes per instance is 9 for GBFS, 11 for
e-GBFS with € = 0.5, 17 for Type-GBFS and 18 for DBFS.
Table 1 shows detailed search time results. While e-GBFS
slightly improves over GBFS, Type-GBFS outperforms both
other algorithms. DBFS’s exploration strategy also performs
very well in 2011-Nomystery.

Experiments

The experiments use a set of 2112 problems (54 domains)
from the seven International Planning Competitions, and
were run on an 8-core 2.8 GHz machine with 4 GB memory
and 30 minutes per instance. Results for planners which use
randomization are averaged over five runs. All algorithms



problem# GBFS e-GBFS, e = 0.5 Type-GBFS DBFS
1 0.02 0.03 0.03 0.02
2 0.03 0.54 0.32 0.05
3 58.97 0.1 3.45 1.17
4 42.7 100.85 9.11 2.05
5 31.47 54.21 1.9 1.36
6 1.44 DNF 79.92 8.21
7 160.54 466.89 121.2 3.56
8 DNF DNF 1257.13 249.84
9 DNF 18.46 32.78 33.23
10 DNF DNF 382.24 971.4
11 0.3 0.06 0.19 0.11
12 224 2.78 29 0.28
13 DNF 19.73 1.54 7.42
14 DNF 639.35 9.41 4.64
15 DNF DNF 11.72 1.09
16 DNF DNF 26.25 19.65
17 DNF DNF DNF DNF
18 DNF DNF DNF DNF
19 DNF DNF 460.62 396.18
20 DNF DNF DNF 1287.59

total 9 11 17 18

Table 1: The search time (in seconds) of GBFS, e-GBFS
(0.5), Type-GBFS and DBFS on IPC-2011 Nomystery.
"DNF" means "did not finish" within 30 minutes with 4G
of memory.

are implemented using the Fast Downward code base FD-
2011 (Helmert 2006). The translation from PDDL to SAS+
was done only once, and this common preprocessing time is
not counted in the 30 minutes.

Performance of Baseline Algorithms

The baseline study evaluates the two algorithms GBFS
and Type-GBFS without the common planning enhance-
ments of preferred operators, deferred evaluation and multi-
heuristics. It uses three popular planning heuristics - FF
(Hoffmann and Nebel 2001), causal graph (CG) (Helmert
2004) and context-enhanced additive (CEA) (Helmert and
Geffner 2008). We use the distance-base versions for the
three heuristics. They estimate the length of a solution path
starting from the evaluated state. Table 2 shows the cover-
age results. Type-GBFS outperforms GBFS by a substantial
margin for each tested heuristic.

Heuristic GBFS Type-GBFS
FF 1561 1755.6
CG 1513 1691.4
CEA 1498 1678.8

Table 2: Baseline GBFS vs. Type-GBFS - coverage of 2112
IPC instances.

Figure 3 compares the time performance of the baseline
algorithms with A", Every data point represents one in-
stance, with the search times for GBFS on the x-axis plotted
against Type-GBFS on the y-axis. Only problems for which
both algorithms need at least 0.1 seconds are shown.

Points below the main diagonal represent instances that
Type-GBFES solves faster than GBFS. For ease of compar-
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ison, additional reference lines indicate 2x, 10x and 50 x
relative speed. Data points within a factor of 2 are greyed
out in order to highlight the instances with substantial dif-
ferences. Problems that were only solved by one algorithm
within the 1800 second time limit are included at z = 10000
or y = 10000.

Beyond solving almost 200 more problems, Type-GBFS
shows a substantial advantage over GBFS in search time for
problems solved by both planners. There are many more
problems where Type-GBFS outperforms GBFS by more
than a factor of 10 or 50 than vice versa. Still, while Type-
GBFS outperforms GBFS overall, it does not dominate it
on a per-instance basis. Sometimes the extra exploration of
Type-GBFS wastes time or even leads the search astray for
a while.
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Performance with Different Enhancements

How do GBFS and Type-GBFS compare when common
planning enhancements are added? All combinations of De-
ferred Evaluation, Preferred Operators and Multiple Heuris-
tics are tested, with A'F" as the primary heuristic.

o With Deferred Evaluation, nodes are not evaluated be-
fore adding them to open lists and type buckets. Instead,
the heuristic value of their parents is used (Richter and
Helmert 2009).

o With Preferred Operators, nodes that are reached via
preferred operators, such as helpful actions in A", are
also stored in a separate open list (Richter and Helmert
2009). Boosting of preferred open lists with a parameter
of 1000 is used as in LAMA-2011 (Richter and Westphal
2010). In case of deferred evaluation, preferred operators
are ranked before other siblings for tie-breaking, using the
so-called pref_first ordering (Richter and Westphal 2010).
Type-GBFS uses only a single set of type buckets for all
nodes. There are no separate type buckets containing pre-
ferred nodes only.

o Multi-Heuristics maintains multiple priority queues
sorted by different heuristics. Following LAMA, the
Landmark count heuristic A" (Richter, Helmert, and
Westphal 2008) is used as the second heuristic here. Type-
GBFS with Multi-Heuristics uses two open lists, one for
each heuristic, plus type buckets for the (b7, g) type sys-
tem.

When both Multi-Heuristic and Preferred Operators are
applied, GBFS uses four queues, two regular and two pre-
ferred ones. Type-GBFS uses the same queues plus (R, g)
type buckets.

Enhancement GBFS Type-GBFS
(none) 1561 1755.6
PO 1826 1848.6
DE 1535 1834.6
MH 1851 1789.8
PO + DE 1871 1906.4
PO + MH 1850 1846.2
DE + MH 1660 1729.0
PO + DE + MH 1913 1949.8

Table 3: Number of IPC tasks solved out of 2112. PO = Pre-
ferred Operators, DE = Deferred Evaluation, MH = Multi-
Heuristic.

Table 3 shows the experimental results on IPC domains
for all 8 combinations of enhancements. When used as
a single enhancement, Preferred Operators and Multiple
Heuristic improve both algorithms. Deferred Evaluation also
strongly improves Type-GBFS, but causes a slight decrease
in coverage for GBFS, mainly due to plateaus caused by
the less informative node evaluation (Richter and Helmert
2009). Apparently, Type-GBFS gets stuck in such plateaus
less often.

When combining any two enhancements, both algorithms
achieve their best performance with Preferred Operators
plus Deferred Evaluation, as observed for GBFS in Richter
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and Helmert’s work (2009). Figure 4 shows details of time
usage for GBFS and Type-GBFS for this combination. Mul-
tiple Heuristics have a negative effect on Type-GBFS when
combined with either Preferred Operators or Deferred Eval-
uation, but work very well when combined with both. Find-
ing an explanation for this surprising behavior is left as fu-
ture work. The last row in Table 3 lists coverage results when
all three enhancements are applied as in LAMA.

Comparing State of the Art Planners in Terms of
Coverage and Search Time

The performance comparison in this section includes the fol-
lowing planners:

e LAMA-2011: only the first iteration of LAMA using
GBES is run, with deferred evaluation, preferred opera-
tors and multi-heuristics (h*F, h™) (Richter and West-
phal 2010).

o Type-LAMA: LAMA-2011 with GBFS replaced by
Type-GBFS, uses the same four queues as LAMA-2011,
plus (R g) type buckets.

e DBFS2: DBFS2 (Imai and Kishimoto 2011), an en-
hanced version of DBFS which adds a second global
open list for preferred operators only, was re-implemented
by Imai on the LAMA-2011 code base, which is much
stronger than the LAMA-2008 code base used in (Imai
and Kishimoto 2011). The parameters P = 0.1,7 = 0.5
from the same paper are used.

LAMA-2011 and Type-LAMA correspond to PO+DE+MH
in Table 3.

Table 4 shows detailed coverage differences of these three
planners. Type-LAMA outperforms the other two planners,
solving 36.8 more problems than LAMA-2011 and 54.4
more than DBFS2. The 5 runs for Type-LAMA had nearly
identical coverage of 1952, 1950, 1950, 1948 and 1949.
The percentage of unsolved problems is reduced from 9.4%
for LAMA to 7.6%. This is comparable to the improve-
ment from adding the Landmark count heuristic (Richter
and Westphal 2010) - from 11.4% to 9.4% unsolved. Con-
sidering that only the hardest problems were left unsolved,
adding the type system makes the planner substantially
stronger.

Figures 5(a) and (b) compare the search time of Type-
LAMA against LAMA-2011 and DBFS2 in the manner de-
scribed for Figure 3. Between Type-LAMA and LAMA-
2011, many results are very close, presumably for instances
where exploration plays only a small role. Type-LAMA has
a large time advantage of over 10 x more often. Results for
Type-LAMA and DBFS2 are much more diverse. Besides its
coverage advantage, Type-LAMA also wins the time com-
parison for a large number of instances by factors of over
2%, 10x and 50x.

For further comparison, the coverage results of some
other strong planners from IPC-2011 on the same hardware
are: FDSS-2 solves 1912/2112, Probe 1706/1968 (failed on
":derive" keyword in 144 problems), Arvand 1878.4/2112,
fd-auto-tune-2 1747/2112, and Lama-2008 1809/2112.
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domain size LAMA-2011 Type-LAMA DBFS2
98-logistics 35 35 35 34
98-mystery 30 19 19 19
00-miconic-full 150 136 139 138.6
02-depot 22 20 21.6 18.2
02-freecell 80 78 77.8 79.8
04-airport-strips 50 32 34.6 41
04-notankage 50 44 44 43.2
04-optical-tele 48 4 54 5
04-philosopher 48 39 48 48
04-psr-large 50 32 31.6 15.6
04-satellite 36 36 35.2 27
06-pathways 30 30 30 28.4
06-storage 30 18 23.8 234
06-tankage 50 41 42 36.8
06-trucks-strips 30 14 20.8 24
08-scanalyzer 30 30 30 29.6
08-sokoban 30 28 27 28
08-transport 30 29 30 29.8
08-woodworking 30 30 29.8 30
11-elevators 20 20 20 18.8
11-floortile 20 6 5.6 7.6
11-nomystery 20 10 17.8 17.8
11-openstacks 20 20 20 12.8
11-parking 20 18 17.6 12.6
11-scanalyzer 20 20 20 19.8
11-sokoban 20 19 18.2 18
11-tidybot 20 16 16.4 16.2
1 1-transport 20 16 15.6 12.4
11-visitall 20 20 20 7
Total 2112 1913 1949.8 1895.4
Unsolved 199 162.2 216.6

Table 4: Number of instances solved. 25 domains with 100%
coverage for all three planners omitted.

Although type buckets cause some change in solution
costs, the influence is not clear-cut. If we compare LAMA-
2011 and one typical run Type-LAMA’s results, there are
1907 problems solved by both planners. The IPC scores for
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LAMA-2011 and Type-LAMA are 1895.1 vs 1892.5, only
2.6 difference over the 1907 problems. For 1698 problems,
both planners achieve the same solution cost.

Effect of Different Type Systems

The results above for both Type-GBFS and Type-LAMA are
for the (h'F, g) type system. Table 5 summarizes results for
these two planners when using several other simple type sys-
tems. (1) is the trivial single-type system T'(s) = 1.

Among single-element type systems, (g) performs better
than either heuristic, and (h"™) solves around 10 more prob-
lems than (h¥F). Since Type-GBFS only uses h7', hi™ is
only tested for Type-LAMA.

Compared to GBFS, (g) explores much more on nodes
with low g-values, typically at shallow levels of the search
tree. Many such nodes will be expanded very late in GBFS.
In contrast, an (h)-only type system focuses on exploring
different estimated goal distances and ignores g. Interest-
ingly, (g) is even slightly better than (RfF g) in Type-
GBFS, but (hfF | g) is better in Type-LAMA. Among two-
element type systems, (h'F, g) and (h'™, g) are the top
two configurations, while (hfF', h!™) is just slightly better
than (h'™). The three-element type system (hF hl™ g)is
worse and might be too fine-grained for this test set. The
question of the right granularity is important and needs fur-
ther study.

Type | T-GBFS | T-LAMA Type | T-LAMA

none 1561 1913 (h'™) 1921.6

(1) 1529.6 1916.2 (h'™, g) 1942.4

(9) 1758.2 1935.0 (hFF | nimy 1925.6

(RFF) 1729.0 19186 || (hFF,n™, g) 1939.0
(hF g) 1755.6 1949.8

Table 5: Coverage of Type-GBFS (T-GBFS) and Type-
LAMA (T-LAMA) with simple type systems.



Type-LAMA Works Better as an Integrated
System than as a Simple Portfolio

This experiment compares Type-LAMA, which integrates
type-based exploration directly into LAMA’s search process,
with a portfolio which independently runs LAMA and a sim-
ple type-based planner ST'. ST selects nodes exclusively
from type buckets, using a (b, g) type system as defined
above. For consistency with LAMA, Deferred Evaluation is
used for type buckets as well.

By itself, ST  solves 1266 out of 2112 IPC problems. Con-
sider a portfolio planner that uses = seconds for LAMA-
2011, followed by 1800 — z seconds for ST'. The best cover-
age of 1926 is achieved for x = 1279. Type-LAMA , whose
performance is shown as a horizontal line near the top of
the plot, solves 23.8 problems more than this best portfolio.
This shows the synergy between exploitation-based search
in LAMA and exploration using a type system.

rrrrrr type-Tama coverage|
1960 { —— portfolio coverage

1940 |

1920 |- — —

1900 |

Coverage of portfolio planner

1880/

|
1860

200 400 600 800 1000 1200 1400 1600 1800

Time (in seconds) assigned to LAMA-2011

Figure 6: Coverage of LAMA+ST portfolio planner with
varying time allocation.

Conclusion and Future Work

The primary contributions of this paper are an investiga-
tion of the problem of inefficient exploration in previous
GBFS-type planners, and the solution of using type-based
exploration. The new algorithm Type-GBFS samples nodes
uniformly over a type system instead of uniformly over all
nodes in an open list. By replacing GBFS with Type-GBFS,
the planner Type-LAMA can solve 36.8 more problems than
LAMA-2011 on average, decreasing the number of unsolved
problems over all past IPC domains from 199 to 162.2.

One obvious direction for future work is to test many
more type systems, including others proposed by Lelis,
Zilles and Holte (2013). Different forms of boosting and
non-uniform exploration of different types could also be in-
vestigated. Regarding experimental results, it is unclear why
the combination of multiple heuristics with either one of pre-
ferred operators and deferred evaluation fails, and yet suc-
ceeds when combined with both.

One potential problem of Type-LAMA is that the type
system might not be able to explore deeply enough when
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the distance from current nodes in the open list to heuris-
tically promising nodes is large. One potential solution for
this problem is to use a larger local search (Imai and Kishi-
moto 2011; Xie, Miiller, and Holte 2014), or other forms
of exploration such as random walks (Nakhost and Miiller
2009).
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