
An Improved Safety Solver in Go

Using Partial Regions

Xiaozhen Niu and Martin Müller

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8

{xiaozhen,mmueller}@cs.ualberta.ca

Abstract. Previous safety-of-territory solvers for the game of Go have
worked on whole regions surrounded by stones of one color. Their appli-
cability is limited to small to medium-size regions. We describe a new
technique that is able to prove that parts of large regions are safe. By
using pairs of dividing points, even huge regions can be divided into
smaller partial regions that can be proven much easier and faster. Our
experimental results show that the new technique significantly improves
the performance of our previous state of the art safety-of-territory solver.
Especially in earlier game phases, the solver utilizing the new technique
outperforms the previous solver by a large margin.

1 Introduction

Evaluating the safety of territories is one of the most important components of a
Go program. The previous work in [4,5,6] introduces several search-based safety-
of-territory solvers that can determine the correct safety status of a given region.
One weakness of the previous solvers is that their applicability is limited to small
to medium-size regions. The reason is that the search space grows exponentially
with region size. In real games, most often a board contains very large regions.
When more and more stones are played, these large regions are gradually divided
into smaller regions. Therefore the safety-of-territory solver can only be applied
in the late stage of a game.

This paper introduces a new technique that can prove the safety of parts of
large regions. By applying a miai strategy to pairs of dividing points, a large
region can be divided conceptually into smaller partial regions. Separate safety
searches can then be performed on each of these smaller partial regions. The
experimental results show that the partial proving module improves the perfor-
mance of a state of the art safety-of-territory solver. Even early in games, when
there are only large regions on the board, the current system can prove the safety
of many partial regions and their surrounding blocks.

The structure of this paper is as follows. Section 2 briefly discusses related
work. Section 3 explains details of the partial proving module. Section 4 discusses
experimental results, and the final section provides conclusions and further re-
search directions.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 102–112, 2008.
c© IFIP International Federation for Information Processing 2008

An Improved Safety Solver in Go Using Partial Regions 103

2 Related Work

There are many successful approaches for safety recognition proposed in the
literature. The classical algorithm due to Benson statically recognizes uncon-
ditionally alive blocks and regions on board [1]. A number of papers address
the question of eye shape of a region surrounded by a single block. Vilà and
Cazenave’s static classification rules evaluate many such regions of size up to
7 points as safe [7]. Dyer’s eye shape library contains eye shapes up to size 7
[2]. Wolf and Pratola extend the analysis to size 11 regions, and compute many
interesting properties of such regions such as ko status [9].

Müller identifies regions that are safe by alternating play [3]. The work intro-
duces the notion of miaipairs for statically proving the safety of regions that can
make two eyes in two independent ways. Van der Werf presents a learning system
for high-accuracy heuristic scoring of final positions in the game of Go [8].

The current work extends the safety solvers described in [4,5]. SAFETY
SOLVER 1.0 is the previously best solver for evaluating the safety of completely
enclosed regions. It can solve regions with size up to 18 empty points in reason-
able time. SAFETY SOLVER 2.0, described in [5], can handle open boundary
regions. Its board partitioning is based on open boundary zones. Its size limi-
tation is similar. The current paper focuses on recognizing safe partial regions
inside large regions with no size limitation.

3 Using Partial Regions for Safety Recognition

This section describes the four major processing steps and the related algorithms
that are implemented to prove partial regions safe.

3.1 Find Dividing Miaipairs

To prove parts of a region R as safe, it must first be divided into reasonable
chunks. A simple miai strategy is utilized for this purpose. A miaipair [3] is a
pair of two empty points inside R, such that the defender playing at either of
these two points would split R into two subregions. A defender miai strategy
applied to these two points forces the defender to occupy at least one of these
points: whenever the attacker plays one point and the other one is still empty,
the attacker is forced to reply there.

This paper focuses on miaipairs containing two adjacent points which are also
adjacent to defender boundary stones. Let L(R) be the set of all splitting points
inside R which are liberties of boundary blocks of the region. In the example
on the left of Fig. 1, L(R) = {c1, e1, f1, j1}. The only miaipair is {e1, f1}. The
black region on the right of Fig. 1 contains two overlapping miaipairs {d1, e1}
and {e1, f1}.

3.2 Dividing a Single Region Using One Miaipair

The simplest approach uses a single miaipair to divide a region R. Figure 2
shows a large black region R with miaipair P = {o1, p1}. By following the miai

104 X. Niu and M. Müller

7
6 � � � �
5 � � � � � � � � �
4 � � � � � � � � � � �
3 � � � � � � �
2 � � � � � �
1 � �

a b c d e f g h j k l m n

7 � � � �
6 � � � �
5 � �
4 � � � � � � �
3 � � � � � � �
2 � � � � � �
1 � � �

a b c d e f g h j k l

Fig. 1. Examples of miaipairs inside black regions

7
6 � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � �
3 � � � � � �
2 � � � � A � � B
1 � � � � �� ��

f g h j k l m n o p q r s t

7
6 � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � �
3 � � � � � �
2 � � � � A � � B
1 � � � � �� ��

f g h j k l m n o p q r s t

Fig. 2. Single region dividing by using miaipair {o1, p1}

strategy, Black can divide R into two subregions, A on the left and B on the
right.

Assume a region R is divided into two open boundary subregions A and B by
a miaipair M = {pA, pB}, such that pA is adjacent to A and pB is adjacent to B.
Local safety searches are performed for A∪M and B ∪M . The safety search in
an open boundary region is similar to the one described in [6], but constrained
by the miai strategy outlined above as follows (shown for A ∪ M).

1. The attacker can select any legal move in A ∪ M , as long as both points in
M are empty.

2. The defender checks whether a forced miai reply exists. If the attacker just
occupied either pA or pB and the other miai point is still open, the defender
immediately replies there.

3. Otherwise, the defender can choose any legal move in A∪{pA} (but not pB).

For example, when searching A in Fig. 2, White as the attacker can select any
move in A as well as both moves from the miaipair {o1, p1}. Black can choose the
same moves except p1. If White plays first at o1 or p1, Black must take the other.
However if Black plays o1 first, the miai strategy is fulfilled and conditions need
not be checked in the future. The move p1 is also removed from White’s options.

The basic algorithm to prove that a dividable single region R is safe by using a
miaipair-constrained safety solver is shown below. The algorithm takes another
parameter S, the set of points (possibly including boundary blocks) previously
shown to be safe by using other regions.

An Improved Safety Solver in Go Using Partial Regions 105

1. Use miaipair M to divide region R into two open boundary subregions A
and B.

2. Run solver for A and compute new set of safe points: newS=solve(A, {M}, S).
3. A was proven safe iff newS �= S.

(a) If newS �= S, then use newS to try to prove subregion B:
S = solve(B, {M}, newS).

(b) If newS = S, then run solver on B: newS = solve(B, {M}, S).
If B is safe, then try to use the newly proven boundary blocks of B to
prove A again: S = solve(A, {M}, newS).

The result can be summarized as follows.

– If both A and B were proven safe, then R and all its boundary blocks are
proven safe.

– Otherwise, if exactly one subregion is proven safe, then that region, its sur-
rounding blocks, and the closer miai point are marked as safe. In the example,
if only A were proven safe, then A, its boundary blocks, and pA = o1, (a
total of 30 points) would be marked as safe.

– If both local searches fail, nothing is proven safe.

For the example in Fig. 2, both sides and therefore the whole region can be
proven safe by our system. In Fig. 3, the original large black region (size: 31) is
divided into two subregions by miaipair {o1, p1}. Only the subregion in the right
corner can be proven as safe. Its territory is marked by S and the safe boundary
block is marked by triangles.

7
6 � � � � �
5 � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � S
2 � � � � � � � S S S S
1 � � S S S S S

a b c d e f g h j k l m n o p q r s t

Fig. 3. Part of region is proven safe

3.3 Dividing a Single Region by Multiple Miaipairs

The basic method of Subsection 3.2 is restricted to single miaipairs within a
region. Regions with multiple miaipairs can potentially be subdivided in many
different ways. The easy case is independent miaipairs, where no two pairs are
adjacent or overlap.

Figure 4 shows an example. The black region R of size 40 contains two in-
dependent miaipairs P1 = {f1, g1} and P2 = {o1, p1} that divide R into three
partial regions, A to the left of P1, B between P1 and P2, and C to the right
of P2. Since B is bounded by two miaipairs, both will be passed to the search

106 X. Niu and M. Müller

8
7 � �
6 � � � � � � � � �
5 � � � � � � � � �
4 � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
2 � � � � � � � � � � �
1

a b c d e f g h j k l m n o p q r s t

Fig. 4. First case of using multiple miaipairs together to divide a large region

19 � � � � �
18 � � � � � � � �
17 � � � � � � � � � � � � � � � �
16 � � � � � � � � � � � � �
15 � � � �
14 � � � � � �
13 � � � � �
12 � � � � �
11 � � � � � �
10 � � � � �
9 � � � �
8 � � � � � �
7 � � � � �
6 � � � � �
5 � � � � � �
4 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � �
2 � � � � � � � �
1

a b c d e f g h j k l m n o p q r s t

Fig. 5. Using 10 miaipairs to prove safety of a large black region

solve(B, {P1, P2}, S). In general, a partial region bounded by n independent mi-
aipairs is divided into n+1 partial regions that can be searched separately. Every
time a partial region is proven safe, S is updated to include the region and its
safe boundary. Then, subregion searches continue until no further updates can
be made.

Figure 5 shows an extreme case from our test set, a huge black region of size
174. It contains 10 independent miaipairs. No previous search method can prove
its safety. Using only a single miaipair at a time, just two small partial regions
at the ends can be proven safe. The complete method proves the safety of the
whole region.

If miaipairs are adjacent to each other or overlap, they cannot all be used. For
example in the right of Fig. 1, the two miaipairs P1 = {d1, e1} and P2 = {e1, f1},
cannot divide the region into three subregions. In this case the current imple-
mentation first computes clusters of miaipairs which are adjacent or overlapping,

An Improved Safety Solver in Go Using Partial Regions 107

then selects a single pair from each cluster. The selection is originally biased to-
wards miaipairs that minimize the size of the largest subregion, but can be
modified by backtracking if subproblems fail. In this example, miaipair P1 is
chosen first to find the largest possible safe area. If the whole region cannot be
proven as safe by using P1, then other miaipairs in this cluster will be tried.

3.4 Dividing a Merged Region

A set of strongly or weakly related regions can be merged into a large region, as
described in [5]. After dividing a region, the resulting subregions may need to be
merged with their respective strongly or weakly related regions. Figure 6 shows
an example from the test set.

8 � �
7 � � � � � � � �
6 � � � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � � � � �
3 � � � � � � � � � � � �
2 � � � � � � �
1 � � � � �

a b c d e f g h j k l m n o p q

Fig. 6. Dividing a merged region

The original algorithm from [5] merges the regions r1 at a1, r2 at l3, and r3

at m4 into a single region. r1 contains the only miaipair {f1, g1}. The current
algorithm first splits r1 into subregions A on the left and B on the right. At this
point related regions need to be merged. In the example, A has no related regions
and can be tested on its own, but since B is strongly related to subregions r2 and
r3, the (sub)regions B, r1, and r2 are merged into a new partial region for testing.

4 Experimental Results

SAFETY SOLVER 3.0 enhances the previous SAFETY SOLVER 1.0 and SAFE-
TY SOLVER 2.0 with the new partial-region proving module.

There are two test sets for experiments to test the performance of SAFETY
SOLVER 3.0. The first set contains 21 test positions. Each position contains
either a large single region or a large merged region [5]. 17 of these test positions
are taken from master games. The remaining 4 positions were created by the
authors to test extreme cases with many miaipairs. The second test set is the
collection of 67 master games introduced in [6]. The test sets are available at:
http://games.cs.ualberta.ca/go/partial.

All experiments were performed on a Pentium IV/1.7GHz machine with 1 Gb
memory. The following abbreviations for the solvers and enhancements are used
in the text.

http://games.cs.ualberta.ca/go/partial

108 X. Niu and M. Müller

BENSON. Benson’s algorithm, as in [3].
STATIC. Static safety-of-territory solver from [6].
SOLVER 1.0. Search-based safety-of-territory solver as described in [5]. It uses

regions for board partitioning.
SOLVER 1.0 + P. Solver 1.0 + partial-region proving module.
SOLVER 2.0. Open boundary safety-of-territory solver as described in [6].
SOLVER 3.0. Solver 2.0 + partial-region proving module, the full solver.

4.1 Experiment One: Partial Region Solving

The purpose of this experiment is to test the performance improvements of the
partial-region proving module in SOLVER 1.0. Since SOLVER 2.0 uses heuris-
tically computed open boundary zones for board partitioning, many positions in
this experiment cannot be recognized. Therefore SOLVER 2.0 is not compared in
this subsection. For all 21 positions, the time limit is set to 200 seconds per search.

The only test position not solved by SOLVER 1.0 + P is shown in Fig. 7. The
white region (size: 25) can be nicely divided into two small subregions A (size:
11) and B (size: 12) by using miaipair {k19, l19}. However, neither subregion
can be proven safe due to the conservative assumption that no external liberties
of boundary blocks may be used to establish safety. For example, when searching
subregion A on the left, after move sequence (B : k19, W : l19) White’s boundary
block at k18 is considered to be in atari by the solver because the external
liberties at m18 and m19 may not be used. The situation for proving subregion
B is analogous.

For the remaining 20 positions, SOLVER 1.0 + P finds at least some safe par-
tial regions. Most of these 20 positions have size larger than 18 points. SOLVER
1.0 can only prove 4 of them safe within 200 seconds. For a further analysis of
the performance improvements, we divide these 20 positions into three groups.

Group 1 contains the 4 test positions that can be proven safe by both SOLVER
1.0 and SOLVER 1.0 + P. Table 1 compares the solution time and number of
expanded nodes for both solvers. In all 4 positions, the partial-proving module
greatly improves the solver’s performance. For example, Fig. 8 shows Position 21
at the top left corner and Position 11 at the bottom right corner. SOLVER 1.0
+ P is over 61 times faster than SOLVER 1.0. However when solving Position 21
(size: 18), SOLVER 1.0 + P is only 3.3 times faster. The partial-region proving
module first finds the most evenly dividing miaipair {r1, s1}, then performs

19 � �
18 � � � � � � � � � � �
17 � � � � � � � � � � � � � � � � � � �
16 � � � � � � � � � � � � � � �
15

a b c d e f g h j k l m n o p q r s t

Fig. 7. The only position in set 1 that can not be proven safe

An Improved Safety Solver in Go Using Partial Regions 109

Table 1. Comparison of performance improvements

Position SOLVER 1.0 SOLVER 1.0 + P

Name Size Time (Seconds) Nodes Expanded Time (Seconds) Nodes Expanded

No.2 15 8.5 25,993 2.10 1,785

No.8 16 25.55 70,133 1.64 1,752

No.11 18 120.13 236,786 35.7 45,123

No.21 18 156.57 232,332 2.53 3,506

19 � � �
18 � � � � � � � � � �
17 � � � � � � � � �
16 � � � � � � �
15 � � �
14 � � �
13 � � � �
12 � � � �
11 � � �
10 � � � � � � � � �
9 � � �
8 � �
7 � � � � �
6 � � � � �
5 � � � � � � �
4 � � � � � � � � � �
3 � � � � � � � � �
2 � � � � � � � �
1 � � �

a b c d e f g h j k l m n o p q r s t

Fig. 8. Examples from group 1

safety searches to prove the whole region safe in 35.7 seconds. Our conclusion
is that by using the miaipair {b19, c19}the division in Position 21 is quite even,
each partial region has a similar small size. Therefore each local search is very
fast. In contrast, the division in Position 11 is not that even. When using the
most evenly dividing miaipair {p1, q1}, the left and right partial regions have
the sizes of 4 and 12. Therefore the local search in the right partial region still
requires longer time.

Group 2 contains the 6 test positions that can only be proven partially safe by
SOLVER 1.0 + P. The top of Fig. 9 shows a real game position from this group.
The program cannot prove the whole black region (size: 50) safe. However, by
using the miaipair {p19, q19} it proves that the partial region S at the top right
corner and its boundary blocks (marked by triangles) are safe in 0.47 seconds.

Group 3 contains 10 test positions with either a large single region or a large
merged region. SOLVER 1.0 + P can prove the whole region safe for every
position. The bottom of Fig. 9 shows a real game position from this group. The
black merged region contains two subregions r1 at b2 and r2 at e3. The size

110 X. Niu and M. Müller

19 � � � S S S S
18 � � � � � � � S S
17 � � � � � � � � � � S � S
16 � � � � � � � � � � � � � S S
15 � � � � � � � � � � � � � �
14 � � � � � � � � � � � � �
13 � � � � � � � � � � � �
12 � � � � � � � � �
11 � � � � � � � �
10 � � � � � � � � �
9
8
7
6 � � � � � �
5 � � � � � � � � � � � � �
4 � � � � � � � � � � � � �
3 � � � � � � � � �
2 � � � �
1 � �

a b c d e f g h j k l m n o p q r s t

Fig. 9. Examples from group 2 and 3

of the merged region is 28. By using the miaipair {d1, e1}, SOLVER 1.0 + P
proves it safe in 72 seconds. A second example from this group is the position
shown in Fig. 5, which contains a huge region (size: 174) with multiple miaipairs.
SOLVER 1.0 + P proves this extreme case safe in 63 seconds.

4.2 Experiment Two: Comparison of Solvers

This experiment compares the performance of solvers BENSON, STATIC, SOL-
VER 1.0, SOLVER 2.0, SOLVER 1.0 + P and SOLVER 3.0 on 67 completed
games. The time limit is set to 20 seconds per search. As in [6], each solver com-
putes the proven safe points starting from the end of the game, then backwards
every 25 moves. Table 2 shows the total number of proven safe points for all six
solvers.

Table 2. Comparison of solvers on 67 games

Game Phases End-100 End-75 End-50 End-25 End

BENSON 19 63 257 600 2,571
STATIC 106 242 587 1,715 5,584

SOLVER 1.0 234 462 1,138 3,189 10,285
SOLVER 2.0 594 838 1,651 3,653 10,815

SOLVER 1.0 + P 292 540 1,704 3,765 11,299
SOLVER 3.0 606 884 2,179 4,227 11,725

An Improved Safety Solver in Go Using Partial Regions 111

SOLVER 3.0 can prove the most points safe in all game phases. Interestingly,
in earlier game phases such as End - 100 and End - 75, the open boundary
SOLVER 2.0 beats SOLVER 1.0 + P by a large margin. It seems that in such
early stages, there are not enough miaipairs. Thus the open boundary solver is
more useful. By End - 50, SOLVER 1.0 + P has caught up to SOLVER 2.0’s
performance. The combined SOLVER 3.0 proves 27% more safe points than
SOLVER 2.0. In End - 25 and End stages, the improvements of SOLVER 3.0
are 15% and 8% respectively.

5 Conclusions and Future Work

In this paper we have presented a partial-region safety-proving technique. From
the experimental results presented above we may concluded that SAFETY SOL-
VER 3.0 enhanced with this technique significantly outperforms previous solvers.

Below we provide two promising ideas for further enhancements.

1. Generalize region splitting techniques. The current technique is limited to
adjacent miaipairs. (1a) An extension would be utilizing all possible single
splitting points to divide a region. For example, in the left of Fig. 1, all four
splitting points at c1, e1, f1 and j1 could be used in the safety search. (1b)
A second extension would be to divide a region by other, larger gaps such
as diagonal and one point jumps.

2. The aim of the current safety solver is to prove the safety status of territories.
Applying the prover to real game playing and building a quick and strong
heuristic safety analyzer for attacking or defending territory is a second
interesting topic.

References

1. D.B. Benson. Life in the game of Go. Information Sciences, 10(2),17–29, 1976; Levy,
D.N.L. (ed.): Reprinted in Computer Games, Vol. II, pp. 203-213. Springer, New
York (1988)

2. Dyer, D.: An eye shape library for computer Go,
http://www.andromeda.com/people/ddyer/go/shape-library.html

3. Müller, M.: Playing it safe: Recognizing secure territories in computer Go by using
static rules and search. In: Matsubara, H. (ed.) Game Programming Workshop in
Japan 1997, Tokyo, Japan, pp. 80–86. Computer Shogi Association (1997)

4. Niu, X., Kishimoto, A., Müller, M.: Recognizing seki in computer Go. In: van den
Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS,
vol. 4250, pp. 88–103. Springer, Heidelberg (2006)

5. Niu, X., Müller, M.: An improved safety solver for computer Go. In: van den Herik,
H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 97–112.
Springer, Heidelberg (2006)

6. Niu, X., Müller, M.: An open boundary safety solver in computer Go. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630,
pp. 37–49. Springer, Heidelberg (2007)

http://www.andromeda.com/people/ddyer/go/shape-library.html

112 X. Niu and M. Müller

7. Vilà, R., Cazenave, T.: When one eye is sufficient: a static classification. In: van
den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games 10, pp.
109–124. Kluwer, Dordrecht (2003)

8. van der Werf, E.C.D.: AI techniques for the game of Go. PhD thesis, Maastricht
University (2005)

9. Wolf, T., Pratola, M.: A library of eyes in Go, II: Monolithic eyes, In: Games of No
Chance 3 (to appear, 2006)

	An Improved Safety Solver in Go Using Partial Regions
	Introduction
	Related Work
	Using Partial Regions for Safety Recognition
	Find Dividing Miaipairs
	Dividing a Single Region Using One Miaipair
	Dividing a Single Region by Multiple Miaipairs
	Dividing a Merged Region

	Experimental Results
	Experiment One: Partial Region Solving
	Experiment Two: Comparison of Solvers

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

