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Abstract

Go is a game of creating territories. Evalua-
tion, or counting territory, is to a large extent a
local process. Combinatorial game theory pro-
vides tools which are more efficient for local-
ized analysis of games than full-board minimax
search. One of these tools, thermography, has
recently been generalized to local games that

contain ko loops in their game graph.

Generalized thermography computes a mast
value and a temperature for such games, which
can be used to estimate the full board game
score and the value of moves precisely.

We report the first implementation of an algo-
rithm for generalized thermography, which can
be used to evaluate almost arbitrary local Go
positions. To illustrate the power and scope of
our program, we give examples of ko positions
and their thermographs.

1 Local Analysis of Go Positions

Solving full-board Go positions by traditional minimax
search methods is feasible only for very small board sizes
[Thorp and Walden, 1972] or extremely late endgames.
A program based on combinatorial game theory can do
much better: it can solve ko-free Go positions containing
many independent local games of moderate size [Miiller,
1995].

A drawback of previous combinatorial game methods
was that they could not handle ko. Ko fights often af-
fect the evaluation of local situations [Miiller and Gasser,
1996].

Generalized thermography [Berlekamp, 1996] is a pow-
erful new method for analyzing local Go positions, in-
cluding those that contain ko. For each local game a data
structure called thermograph is computed. This informa-
tion i1s not enough to guarantee perfect full-board play,
but it yields simple and good local algorithms. There
is evidence that the move chosen by such algorithms is
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Figure 1: A simple ko and its game graph

sound in the large majority of real game situations, and
it is provably optimal in several simplified models of play.

We report the first implementation of generalized ther-
mography. Such an algorithm can be used as a building
block for evaluation in Computer Go. It can be used to
count the score and find the value of moves.

The structure of this paper is as follows: Section 1
explains the combinatorial game approach to Go and re-
views the theoretical background of combinatorial game
theory and generalized thermography. Section 2 de-
scribes the algorithm and discusses some limitations in
case of multiple ko. Section 3 contains a catalog of rep-
resentative examples taken from textbooks and master
games, proceeding from simple kos to iterated ko, man-
nen ko and the famous “3 Points Without Capturing”.

1.1 The Combinatorial Game Approach to
Go

Necessary steps for playing Go by the methods of com-
binatorial game theory are board partition, local search,
local evaluation, and move selection. We give a brief
overview of these phases. Detailed descriptions can be

found 1n [Miﬂler, 1995].

Board Partition and Subgame Identification

The precondition for applying combinatorial game the-
ory to a game is that it decomposes into subgames. In
Go, this happens when parts of the board are separated
by walls of safe stones. Moves in one part have no effect
on other parts across such a wall.



Figure 2: Board partition

Local Search

Local search differs from minimax search because suc-
cessive moves by the same player have to be considered.
Search builds a game graph, which is a directed cyclic
graph in Go. We avoid using the traditional term game
tree because it is misleading here.

Local Evaluation

Each local game graph can be evaluated by computing
its thermograph, which yields the mast value and the
temperature. This step is explained in detail below.

Full Board Move Selection

Algorithms such as Berlekamp’s Sentestral estimate the
score and decide a move by using the results of local
evaluation.

Heuristic Game Play
In analogy to minimax search, the ideas of combinatorial
game theory can be used in a heuristic setting [Miiller,
1995]. Before walls of safe stones are complete, heuristic
partitioning methods can be used to define local games.
Selective local search expands only some lines of play,
and statically evaluates stable-looking positions. This
yields approximate mast values and temperatures. In-
tegrating such techniques into a full scale heuristic Go
program remains a challenging research topic. The tech-
nique presented here is the first evaluation procedure
that makes such an approach to Computer Go seem fea-

sible.

1.2 Combinatorial Game Theory and
Thermography

The basic combinatorial game concepts of temperature
and thermographs have been known for a long time
[Berlekamp et al., 1982]. Generalized thermography
[Berlekamp, 1996] is a new extension to this theory.

Leftscore and Rightscore form a connection between
combinatorial games and minimax theory: they are the
minimax values of a game that result if players move
alternately and Left (Black) or Right (White) play first,
respectively.

Cooling 1imposes a tax t on every move. This technique
simplifies a game while retaining much of its structure.
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Figure 3: Sample thermograph

The temperature of a game 1s the smallest nonnegative
amount ¢ that makes Leftscore and Rightscore of the
cooled game equal. This score is called the mast value of
the game. The thermograph shows the process of cooling:

Let G be the game G cooled by ¢. The thermograph of
G shows both Leftscore(G:) and Rightscore(Gy) plotted
along the reversed x-axis, as a function of the tempera-
ture t on the y-axis.

Thermographs provide a powerful tool for determining
mast values and temperatures. The thermograph of a
game (G can be computed from the thermographs for its
options G* and G by applying the tax and selecting
the best option at each t:

LeftScaf fold(G) = mazge (Rightscore(GE) —t)

RightScaf fold(G) = mingr(Leftscore(GE) +t)

The temperature of (G is the value of ¢ at which the
scaffolds meet. At values of ¢ less than the temperature
of (&, the scaffolds become the walls of the thermograph
of G'. At higher values, the left and right walls coincide
to form a wvertical mast, which starts at the point where
the scaffolds meet.

1.3 Komaster and Pass-ban

Komaster is a player that is able to win all kos because
of a surplus of ko threats. The opponent 1s the koloser.
Komaster cannot win ko fights for free, however: after
starting to play a ko, komaster has to continue to play
locally. This rule ensures that once a ko is started, it will
be won at the same temperature. Komaster has enough
ko threats to win the ko but not enough threats to lower
the temperature during the ko fight.

In classical thermography, players have the option of
passing locally at each move. If Komaster had this op-
tion as well, she could win all ko fights too easily: she
would move into a position where the opponent could
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Figure 4: The balloon’s path through a cave

not win in one move, then wait until the overall tem-
perature is very low to play the remaining moves and
resolve the ko. Whenever the opponent tried to play the
ko, she would just use her surplus of threats to revert
the ko to the previous state.

To calculate the mast value for a ko, Berlekamp’s pass
ban rule states that once komaster starts playing in a ko
she has to go ahead and win it.

1.4 Generalized Thermography for Games
with Loops

Generalized thermographs differ from classical thermo-
graphs. This is a consequence of the fact that the mast
of pass-banned thermographs is non-vertical.

In thermographs of loopfree games, the slopes of the
walls indicate whether the difference in the number of
moves played by both players is zero or one. In sente
regions, the difference is zero, and the wall is vertical.
In gote regions, the difference is one, and the wall is
diagonal. A player’s profit increases as the tax decreases.

Generalized thermography allows other differences in
the number of moves played by both players at a given
temperature. The ko ban rule may force komaster to
spend two or more moves in a row locally to win a ko.
Slopes such as 2,3,4, ... result.

Generalized thermographs can also bend backwards,
in situations where the koloser starts the ko, then forces
komaster to spend two or more moves to win and elim-
inate 1t. In this case, koloser gains profit as the tax
increases.

With ko, the scaffolds used to construct a thermo-
graph can intersect more than once, leading to several
cave and hill regions. A hill region corresponds to the
classical case, with the scaffolds defining the walls of the
thermograph. In a cave, the left scaffold is to the right
of the right scaffold. The left and right walls of the ther-
mograph coincide and follow a “balloon’s path” through

Figure 5: 3 at 1. Suicidal two-move White-only loop

the cave, as shown in Figure 4.

Placid and Hyperactive Ko

Given a komaster, we can compute the thermograph of
a loopy game. The start of the vertical mast defines the
temperature of the game. In contrast to loopfree games,
the mast value cannot always be interpreted as the mean
value of a game. Kos that have the same mast value
independent of who 1s komaster are called placid. The
mast value of hyperactive ko depends on who is komaster.
Examples for both types of ko are given in section 3.

2 An Algorithm for Generalized
Thermography

Classical thermographs for ko-free games can be com-
puted recursively directly from the definition. This di-
rect approach does not work for ko because of the loops
in the game graph. In generalized thermography, loops
are broken by the pass ban rule.

2.1 Pass-banned Thermographs

Because of the komaster and pass ban rules some nodes
in the game graph obtain two different states: if a node
in a loop is entered for the first time, all moves from it
are allowed. The thermograph of the node is computed
recursively from its options in the standard way. How-
ever, when a node is reentered, both the komaster rule
and the pass ban rule change the computation:

e The komaster rule removes loop-closing moves by
the koloser.

e The pass ban rule removes the option of passing for
komaster.

2.2 Preliminaries: Elimination of
Single-Player Loops and
Thermographs of Ko-free Subgames

In Go, single-player loops are possible when the rules
allow suicide (see Figure 5). Such loops contain at least
one bad move and can be eliminated by pruning the loop-
closing move [Miiller, 1995]. After this preprocessing,
each remaining loop in the game graph contains moves
by both players.



If the game graph reachable from a node contains no
ko, 1.e. if it is a tree, we can compute thermographs
in this subtree using the classical recursive algorithm.
Such loopfree subtrees always exist, for example terminal
nodes of a game.

2.3 Computing Generalized Thermographs

Before a thermograph can be computed, a loop-breaking
move must be selected for each loop in the game. In the
most common case of 2-move loops the choice is unique:
there is only one move by each player in the loop. After
marking loop-breaking nodes, thermograph computation
starts. ComputeNode() determines whether all necessary
thermographs of options needed to compute pass-banned
or non-banned thermographs are known.

If a game graph contains several stages of loops, the
order of computation of thermographs can be intricate.
Our program repeatedly traverses the game graph, call-
ing ComputeNode to identify nodes where new thermo-
graphs can be computed.

boolean ComputeNode (node, komaster)
{
canCompute = FALSE;
if (retrieve all komaster options:
pass-banned thermographs of nodes in loop,
non-banned thermographs of all others)
{
if (retrieve pass-banned thermograph)
compute non-banned thermograph next:
koOptions = {};
else
find koOptions of koloser;

if (retrieve all non-banned thermographs
of {koloser options - koOptions} )
{
canCompute = TRUE;
compute Black (White) scaffold
from maximum (minimum) of walls
of all options;
apply taxes to both scaffolds;

determine type of new thermograph:
if (koOptions = {})

type = non-banned;
else

type = pass-banned;

generate thermograph;
store(node, thermograph, type);
b
b
return canCompute;

}
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Figure 6: Double ko

Limitations for Multiple Ko

Generalized thermography works well in local games
where at most one ko is relevant at any given time. The
ko-ban methodology computes a value of playing in this
ko by comparing it with the value of moves elsewhere.
If there is more than one concurrent ko locally, it must
be clear which one is currently being fought: a move in
this ko must dominate all moves in other local kos.

The algorithm fails in positions with two or more si-
multaneous ko, as in Figure 6. In normal ko, komaster
can eventually win any ko or series of ko by ignoring
sufficiently many threats. In double ko or triple ko, the
only good moves for both players are to stay in the loop.
Such a ko can never be resolved into a terminal position
where there are no more good moves. Since all loops are
broken by the algorithm, the capture of one ko cannot
be balanced by taking another ko.

3 Examples

The format of the examples 1s as follows: Each example
shows the picture of a Go position, followed by its game
graph. For complex games, only selected lines of play
are shown. Omitted parts of the game graph are indi-
cated by dots. The third picture in each example shows
the thermographs for Black as komaster using solid lines,
and for White as komaster using dashed lines. For dis-
play purposes, White’s thermographs have been shifted
slightly to the left, in order to see both thermographs in
regions where they coincide.

All examples presented here were computed using
Japanese scoring. To give an indication of the values
and temperatures involved, a scale with integer unit is
drawn at temperature 1. A much larger collection of
examples is given in [Miiller et al., 1996].

Diagrams showing the game graph are similar to those
used for game trees in combinatorial games [Berlekamp
et al., 1982]. Non-loop moves are represented by a
straight line. A two move loop is drawn as an arc. It can
be traversed in both directions. Lines for black moves
initially lead down and to the left, white moves lead down
and to the right. Terminal positions such as 0 and 1 in
Figure 7 are marked by their value. The scores in the
game graph don’t show dame points.



The simple ko of Figures 7 and 8 contain just one
loop. They differ only in the size of the ko. Iterated ko
have two or more stages. The 2-iterated ko in Figures 9
and 10 appears frequently as a subgame of other, more
complicated situations.

Figures 11 to 14 show an approach move ko (yose ko).
Scoring of multi-move approach ko depends on whether
the rules demand capturing the stones. The examples
were computed under the assumption that stones must
be captured eventually.

Ten-thousand year ko (mannen ko) in Figures 15 to
17 contain a latent big ko fight, yet their temperature is
low because it is difficult to start the ko. The position in
Figure 16 is unusual: if Black is komaster then White is
as good as dead. Both players pass even at temperature
zero. Scoring depends on the rules of the game, whether
Black has to capture White or not and whether this costs
any points.

Figures 18 and 19 show small hyperactive ko. They
contain a position where one player can choose to in-
crease the stakes in the ko fight. The “rogue” position
of Figure 18 was the first hyperactive ko to be studied
in detail. Figure 19, Kao’s ko, is a hyperactive ko in a
very small area. After taking the ko, White can increase
the stakes by pushing in from the right side.

“3 Points Without Capturing” in Figures 20 to 21 is
a classical position which appears in every rulebook.

4 Summary and Outlook

Combinatorial game theory provides tools for efficient
local analysis of Go. The most recent development, gen-
eralized thermography, allows the analysis of positions
containing ko, which is crucial for developing a general
purpose evaluation procedure for Computer Go. We
have presented an implementation of this method and
shown that it can compute masts and temperatures for
a wide range of local Go positions. This makes it possi-
ble to apply efficient combinatorial game algorithms to
Computer Go.

In this paper we present precise computations for
tightly surrounded areas. We think that heuristic meth-
ods based on the same approach can produce good eval-
uations for more open local situations. This is a topic
for future research.

5 Glossary

Cooling A technique for simplifying a combinatorial
game by applying a tax

Game graph A graph showing the moves and final po-
sitions of a game

Gote Opposite of sente, losing the initiative

Hyperactive ko A ko where mast value depends on
who is komaster

Komaster A player who can win a ko

Koloser Opposite of komaster

Leftscore Minimax score if Left (Black) plays first
Mast value A measure of the score of a local game
Placid ko Opposite of hyperactive

Rightscore Minimax score if Right (White) plays first

Scaffold The taxed options of a combinatorial game,
used to compute the walls of the thermograph

Sente The initiative, the right to move

Tax A real number, the amount that a player has to
pay for making a move

Temperature A measure for how urgent it is to move
in a combinatorial game

Thermograph A data structure consisting of walls
that can be used to determine temperature and
mast value of a combinatorial game

Wall The left (right) wall of a thermograph shows the
Leftscore (Rightscore) of a cooled game.
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Figure 7: One point ko, node A
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Figure 9: 2-iterated ko, node B
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Figure 8: 33 point ko, node A

Figure 10: 2-iterated ko, node C
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Figure 16: Mannen ko (2), node A

Figure 15: Mannen ko (1), node A

Figure 17: Mannen ko (2), node B



Figure 18: Rogue, node A
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Figure 19: Kao’s ko, node A. Node B in the game graph Figure 21: 3 Points Without Capturing, node C
is equivalent to B in Fig. 9



