
Version 0

Scripts were written independently of each other, which creates tons of logical errors so that the
system was not doing anything meaningful or even crashed. To make the system run, several
fundamental things have to be consistent among all scripts: board representation, player
representation, and board-to-cell mapping.

- Representations
In this AlphaZero for NoGo, four essentially related but different representations can be found;
each is a one-to-one and onto mapping of the other three:

(1) the 1-D Go board with border points,
(2) the 2-D Go board,
(3) the 2-D canonical board that will be fed into the neural networks, and
(4) the 1-D policy vector 𝝅 across all the points on the board.

All these four representations essentially give different numbering of the same points, but the
rule of mapping has to be made clear and consistent.

- Experiment results
Version 0 may not crash, but it did not give the expected result.

Version 1

Version 1 focused on fixing bugs in game-specific APIs and MCTS. The functions of these APIs
also heavily rely on the consistency of board representation. Most of problems occurred in the
MCTS algorithm.

- Game-specific APIs
These APIs should be implemented according to the representations from Version 0.

- MCTS and in-search move selection
The original design was to let the system learn on the fly: when an invalid move was selected by
PUCT, the system masked this move out with 0 in the policy vector and valid moves vector, then
continuing the search without disruption. However, the handling of tryouts of moves seems to be
problematic. The try clause where the play command resides broke the program flow, making the
search consume more recourse. It also introduced instability that could cause the search to go
infinitely deep recursively until python aborts. To fix those issues, some new code has to be
deployed for checking states, but they were hard to understand and very expensive, slowing
down the whole search process dramatically. For simplicity and efficiency, the system eventually
uses get-valid-moves API and do PUCT only among valid moves.

- Endgame result
Backing up the endgame result is also subject to error in the first implementation. Checking the
returned value of the terminal state is especially important. Printing the selected moves and final
policy on the screen is good for debugging.

- Experiment results
Version 1 ran without errors, but the win rate against UCB player was stuck at 20%.

Version 2

In version 2, a new script was added solely for self-play. Self-play was originally embedded in
the Coach script, but a stand-alone self-play script is much easier for understanding, debugging,
and, most importantly, multiprocessing.

- Self-play game records
It is crucial that all self-play game records being generated are correct. These game records as
input will be fed into the neural networks. Garbage in garbage out. Checking correctness
involves checking the value and symmetries for each state. A stand-alone script provides the
convenience to generate and return sample game records for human inspection. In particular, the
records should be checked for symmetries: the board must match the policy still after rotating or
flipping the two. Since game APIs are needed to get symmetries, it is a good time to once again
check board representations to make sure that rotation and flipping are working correctly.

- Multiprocessing
Majority of the PCs today have at least a 6-core CPU and 8 GB of memory, so it is very
compelling to harness the full power of the hardware and do multiprocessing. Each of the self-

play games or arena games is an independent game and suitable for multiprocessing. In training
7x7 NoGo, multiprocessing with 4 processes can reduce the time needed for 400 self-play games
to less than 22% on Cirrus. The number of parallel processes that can be initialized depends on
the size of the model. Each process will create a copy of the model for its own inference, so the
bottleneck is likely to be the GPU memory size. If all code is correct but the system throws an
error, then this error may be caused by running out of GPU memory and may be fixed by
reducing the number of processes.

The Arena script was modified to support multiprocessing as well in Version 2.

- Experiment results
Version 2 is the first working system that can produce a very strong player as shown in Fig. 7. It
turns out that the low win rate of Version 1 is caused by the incorrect symmetries mechanism.
After fixing this bug, Version 2 reaches a win rate of 79% against UCB player in 5x5 games.
However, the win rate flattens out and even starts to decrease after reaching the peak.

Fig. 7: Experiment results of AlphaZero Version 2 against UCB player on 5x5 NoGo board. The
x-axis indicates the number of iterations of AlphaZero. The experiment settings were: (1) both
players had the same simulation budget – 100 Sims/valid move (2) the search tree in AlphaZero
was cleared between its turns to play.

Version 2.5

Version 2.5 adds the feature of attaching the program to GoGui for visual analysis. This version
is worth being documented because it really shows the importance of retrieving and analyzing
game records for further debugging or improvement.

- Interface for GoGui
If playing only the NN policy without MCTS, Version 2 gives a win rate of 27%, which is
significantly lower than expected. However, only the experiment results were preserved, and the
system did not collect any generated policy at each step. No further analysis but merely
speculations could be proposed.

For the sake of easy and detailed analysis, an interface of the system for GoGui was
implemented. After being attached to GoGui, the system can, at each step, print out the NN and
MCTS policies which can then be visually compared with current board and human intuition.

During the tests on GoGui, a weird phenomenon was observed. The NN policy was not
symmetric: the two symmetric points w.r.t. the current board at that state had two different
values produced by NN. Since all symmetries bugs had been fixed, this type of error should not
exist. This implied that there was error at a “lower” level. It eventually turned out to be an error
in 2D board representation which was taken for granted at the beginning.

Version 3

The main improvement of Version 3 is adding two features: ResNet and Dirichlet noise.

- ResNet
ResNet is used so that the neural networks can learn the training examples more accurately. It
also prevents the model from overfitting. The difference between the original architecture and
the new one is shown in Fig. 8 and 9.

- Dirichlet noise
Dirichlet noise is added to the policy 𝜋 during self-play games to facilitate more explorations
and, hopefully, mitigate the degradation issue. Fig. 7 shows some degradation in AlphaZero
towards the end of the training process, which contradicts what Silver et al claimed in their
AlphaGo Zero paper.

- Experiment results
Version 3 can produce very strong players. However, the degradation issue can still be observed
in Fig. 10 and 11.

- Concluding remarks
The performance of AlphaZero player also depends on the properties of a game. For those games
with more obscure strategic patterns or hard to be represented or comprehended in nature, it will
be much harder for neural networks to learn the features in those games, hence less strong.

Fig. 8: Original architecture Fig. 9: New architecture

Fig. 10: Experiment results of AlphaZero Version 3 against UCB player on 5x5 NoGo board.
The x-axis indicates the number of iterations of AlphaZero. The experiment settings were: (1)
both players had the same simulation budget – 100 Sims/valid move (2) the search tree in
AlphaZero was cleared between its turns to play.

Fig. 11: Experiment results of AlphaZero Version 3 against MCTS player on 7x7 NoGo board.
The x-axis indicates the number of iterations of AlphaZero. The experiment settings were: (1)
both players had the same simulation budget – 100 Sims/valid move (2) the search tree in
AlphaZero was cleared between its turns to play.

