

AlphaZero Documentations

AlphaZero

7x7 NoGo Example Workflow
for each iteration {

• 400 self-play games
for each self-play game {

o 75 MCTS simulations per move
o first 15 moves use probabilistic policy from MCTS
o 16th move and onwards play best move (argmax)

}
• 20000 training examples will be sampled over all self-play games for this iteration
• training examples from the latest 10 iterations preserved
• 20000 * 10 examples feed into NN

 In NN:
o 10 epochs
o batch size = 64 randomly sampled
o 20000 * 10 / 64 forward-and-backward propagation per epochs
o lr = 0.001

• 160 arena games between old and new
 for each arena game {

o 25 MCTS simulations per move
o first 5 moves use probabilistic policy from MCTS
o 6th move and onwards play best move (argmax)

}
• 55% wins against old version, accepting new model

}

Core Functions

Coach.py
Handles the general workflow of AlphaZero.

Coach
class Coach(game, nnet, args)
Handles the general workflow of AlphaZero.
Parameters:
 game : NogoGame
 A NoGo game to provide game-specific APIs.
 nnet : NNetWrapper
 A neural networks wrapper to provide nn-specific APIs.
 args : dotdict

A dictionary of all the parameters used during training. For example, number of
training iterations, number of self-play games, CUDA support etc.

Returns:
 None

- Coach.learn
method Coach.learn()
Performs some number of training iterations. Each iteration involves: self-play games ->
retrain neural networks -> pit against the old version and decide whether to accept the
new version.
Parameters:
 None
Returns:
 None

- Coach.getCheckpointFile
method Coach. getCheckpointFile(iteration)
Returns the checkpoint file name of iteration.
Parameters:
 iteration : int
 The current index of iteration.
Returns:
 None

- Coach.saveTrainExamples
method Coach. saveTrainExamples(iteration)
Saves the training examples of iteration to file.
Parameters:
 iteration : int
 The current index of iteration.
Returns:
 None

- Coach.loadTrainExamples
method Coach.loadTrainExamples(iteration)
Loads the training examples of iteration from file.
Parameters:
 iteration : int
 The current index of iteration.
Returns:
 None

MCTS.py
Executes simulations with Monte Carlo tree search.

MCTS
class MCTS(game, nnet, args)
A MCTS class that executes simulations and handles tree search.
Parameters:
 game : NogoGame
 A NoGo game to provide game-specific APIs.
 nnet : NNetWrapper
 A neural networks wrapper to provide nn-specific APIs.
 args : dotdict

A dictionary of all the parameters used during training. For example, number of
training iterations, number of self-play games, CUDA support etc.

Returns:
 None

- MCTS.getActionProb
method MCTS.getActionProb(canonicalBoard, temp=1,

verbose=False)
Executes number of simulations and formulate a probabilistic policy based on the visted
counts. If the temperature is low (deep in the game), formulate the policy with one hot
encoding corresponding to the most played move. For example, pi = [0,0,0,1,0,0,0,0,0] if
A2 is the most played move.
Parameters:
 canonicalBoard : numpy.ndarray
 The input board.
 temp : int

Temperature of the game. Temperature is high = 1if the game is shallow;
temperature is low = 0 if the game is deep (some number of moves have
been played).

 verbose : bool
An option to print the policies given by neural networks and simulations to
stderr. Default is False to not print.

 Returns:
 probs : list or None

The policy vector if there is at least one valid move to play. None if the
game ended.

	

- MCTS.search
method MCTS.search(canonicalBoard)
Performs one simulation.
Parameters:
 canonicalBoard : numpy.ndarray
 The input board.
Returns:
 -v : int
 The negative value of the win/loss w.r.t. the current player.

- MCTS.clear
method MCTS.clear()
Clears the tree.
Parameters:
 None
Returns:
 None

SelfPlay.py
Executes self-play games and collect games records

init_processes
function init_processes(_counter)
The process initialization function for multiprocessing.
Parameters:
 _counter : multiprocessing.sharedctypes.Synchronized
Returns:
 None

SelfPlay
class SelfPlay(mcts, game, args)
Handles the executions of self-play games.
Parameters:
 mcts : MCTS
 game : NogoGame
 args: dotdict

- SelfPlay.playGame
method SelfPlay.playGame(total_beg)
Executes one episode of self-play, starting with player 1. As the game is played, each turn
is added as a training example to trainExamples. The game is played till the game ends.
After the game ends, the outcome of the game is used to assign values to each example in
trainExamples.
Parameters:
 total_beg : float
 The total duration since the beginning of the whole self-play process.
Returns;
 trainExamples: list

A list of examples of the form (canonicalBoard, pi, v). pi is the MCTS
informed policy vector, v is +1 if the player eventually won the game, else
-1.

- SelfPlay.playGames
method SelfPlay.playGames()
Handles the whole self-play process with multiprocessing.
Parameters:
 None
Returns:
 iterationTrainExamples : list
 A list of examples from trainExamples of every self-play game.

Arena.py
Handles the arena games between the new version and the old version.

init_processes
function init_processes(_counter)
The process initialization function for multiprocessing.
Parameters:
 _counter : multiprocessing.sharedctypes.Synchronized
Returns:
 None

Arena
class Arena(player1, player2, game, numPs, display=None)
An Arena class where any 2 agents can be pit against each other.
Parameters:
 player1 : MCTS
 Player with the old neural networks.
 player2: MCTS
 Player with the new neural networks.
 game : NogoGame
 A NoGo game to provide game-specific APIs.
 numPs : int
 Number of processes for multiprocessing.
 display : function
 A function that takes board as input and prints it. (not used)

- Arena.playGame
method Arena.playGame(eps, num, total_beg, verbose=False)
Executes one episode of an arena game.
Parameters:
 eps : int
 The index of this arena game.
 num : int
 The total number of arena games to play.
 total_beg : float
 The total duration since the beginning of the arena process.
 verbose : bool
 An option to print the game result. (not used)
Returns:
 win : -1, 0, or +1
 +1 if player1 won; -1 if player2 won; 0 if draw.

	

- Arena.playGames
method Arena.playGames(num)
Plays num games in which player1 starts num/2 games and player2 starts num/2 games.
Parameters:
 Num : int
 The number of arena games.
Returns:
 oneWon : int
 The number of games that player1 won.
 twoWon : int
 The number of games that player2 won.
 draws : int
 The number of games that ended up in a draw.

utils.py
Stores some utility classes and functions.

dotdict
class dotdict(**kwargs)
A subclass of python <class ‘dict’> in addition to support dot operator for accessing values of
keys.
Parameters:
 **kwargs : dict
 In our usage, the input is a usual python dictionary object.

print_pi
function print_pi(pi, size, label)
Prints the policy pi to stderr.
Parameters:
 pi : list
 The policy pi.
 size : int
 Size of the board.
 label : str
 Label to be printed out.
Returns:
 None

Game-specific Designs

Game.py
A template of game-specific APIs.

Game
class Game()
This class specifies the base Game class. To define your own game, subclass this class and
implement the functions below. This works when the game is two-player, adversarial and turn-
based. Use 1 for player1 and -1 for player2.

- Game.getInitBoard
method Game.getInitBoard()
Generates and returns the initial board.
Returns:
 startBoard : numpy.ndarray
 Canonical board.

- Game.getBoardSize
method Game.getBoardSize()
Returns a tuple of board dimensions.
Returns:
 (x, y) : tuple
 Board dimensions.

- Game.getActionSize
method Game.getActionSize()
Returns the number of all possible actions (including invalid actions).
Returns:
 actionSize : int
 The number of actions.

- Game.getNextState
method Game.getNextState(board, player, action)
Takes the action on the board and returns the next state.\
Returns:
 nextBoard : numpy.ndarray
 Canonical board after applying action.
 nextPlayer : int
 Player who plays in the next turn (should be -player).

- Game.getValidMoves
method Game.getValidMoves(board, player)
Returns a binary vector of length self.getActionSize(), 1 for moves that are valid from the
current board and player, 0 for invalid moves.
Returns:
 validMoves : numpy.ndarray
 A vector of valid moves.

- Game.getGameEnded
method Game.getGameEnded
Checks whether the game has ended and returns the winner: 0 if game has not ended. 1 if
player won, -1 if player lost, small non-zero value for draw.
Returns:
 r : int

End game result.

- Game.getCanonicalBoard
method Game.getCanonicalBoard(board, player)
Returns the canonical form of the board. The canonical form should be independent of
player. For e.g. in chess, the canonical form can be chosen to be from the pov of white.
When the player is white, we can return board as is. When the player is black, we can
invert the colors and return the board.
Returns:
 canonicalBoard : numpy.ndarray
 Canonical form of the board.

- Game.getSymmetries
method Game.getSymmetries(board, pi)
Returns a list of [(board,pi)] where each tuple is a symmetrical form of the board and the
corresponding pi vector. This is used when training the neural network from examples.
Returns:
 symmForms : list
 List of (board, pi)

- Game.stringRepresentation
method Game.stringRepresentation(board)
Does a quick conversion of board to a string format, required by MCTS for hashing.
Returns:
 boardString : str
 String format of the board.

- Game.beginSearch

- Game.inSearch

- Game.endSearch
	

NeuralNet.py
A template for nn-specific APIs.

NeuralNet
class NeuralNet()
This class specifies the base NeuralNet class. To define your own neural network, subclass this
class and implement the functions below. The neural network does not consider the current
player, and instead only deals with the canonical form of the board.

- NeuralNet.train
method NeuralNet.train(examples)
This function trains the neural network with examples obtained from self-play.
Parameters:
 examples : list

A list of training examples, where each example is of form (board, pi, v).
pi is the MCTS informed policy vector for the given board, and v is its
value. The examples has board in its canonical form.

- NeuralNet.predict
method NeuralNet.predict(board)
Execute a forward pass of nn and returns the results.
Parameters:
 board : numpy.ndarray
 Current board in its canonical form.
Returns:
 pi : numpy.ndarray

A policy vector for the current board.
 v : float
 A float in [-1,1] that gives the value of the current board.

- NeuralNet.save_checkpoint
method NeuralNet.save_checkpoint(folder, filename)
Saves the current neural network (with its parameters) in folder/filename.

- NeuralNet.load_checkpoint
method NeuralNet.load_checkpoint(folder, filename)
Loads parameters of the neural network from folder/filename.

