Solving 5x5 Amazons

Martin Müller
University of Alberta
Edmonton, Canada
5x5 Amazons

- The game of Amazons
- Board partition: active areas and territories
- Upper and lower bounds for an area
- Pruning dominated moves in the search
- Solving 5x5
- How about 6x6?
The Game of Amazons

- Amazons move and shoot like chess queens
- Cannot move or shoot across burned-off squares (X)
- Last player who can make a move wins
Why work on 5x5?

- 4x4 too easy, 2nd player win
 - Proof needs only about 6000 nodes
- 6x6 too hard?

- 5x5 search space:
 - 25 points, 8 occupied - at most 17 ply deep
 - Branching factor 262 at root, about 80 after 5 moves
 - Hard for a basic brute force search, but…
 …solvable with a bit of work
Board Partition

- Find sets of points connected horizontally or diagonally (8-connected)
- Identify connected components
- Improve partitioning by blocking queens
Territories and Active Areas

- **Active area:**
 queens of both players

- **Territory:**
 only queens of one player

- **Neutral:**
 no queens at all

- **Dead:**
 only queens, no empty spaces
Search

- Brute force search tree too big
- Reduce depth: recognize wins and losses early
- Reduce width: prune dominated moves
- Added rules to my program *Arrow 0.09*
- Disabled *Arrow's* inexact pruning heuristics
Recognizing Wins and Losses Early

- Basic idea:
 player with more moves wins
 - If both have same number of moves, the second player wins

- Method:
 - compute *upper and lower bounds* on number of moves in each area
 - Add up estimates, compare with 0
 - Similar to Nathan's work in *Domineering*
Example:
A Winning Position for Black

- W to play here
- W is already lost!

Proof:
- B territory is worth 5 moves
- The active area at the top is worth at most 5 moves
- W must play first
Finding the Size of Territories

- How many moves can player make in a territory?
- *Defective* areas: cannot fill all empty points
- Simple lower bound: *plod* - now used in solver
- Better: 1 ply search with heuristic - now used in heuristic player
- Best: use Theo's databases - future
Handling Multi-territory Blockers

- Problem: blocker that blocks off two or more territories
- Cannot fill all territories
- Safe: assume she can only fill the biggest one
Improved Bounds for Active Areas

- n empty: $-n \leq \text{value} \leq +n$
- Improve: guaranteed moves
 - Single move: *if we play first*, improve bound by 2
 - Pair of *independent* moves: improve bound by 2
- Combine several areas
 - Two single moves: improve bound by 2
Example: Improving the Bounds can Lead to an Exact Value

- Starting bounds: [-4,4]
- Each queen has a safe move
- Both players can improve their bounds by 2*2
- Final bounds: [0,0]
- Exact value: 0
Pruning Moves in the Search

- Exact solver: may prune only irrelevant or equivalent moves
- Main reduction: filling territories
- If can fill completely, generate only one optimal move
- Problem: blockers
Pruning Moves (2)

Rule:
If value of area is constant and value ≤ 0 for us, then do not generate any moves there.

0

-1 for Black
Move Ordering

- Embedded prover in my normal Amazons program *Arrow*
- Used *Arrow's* heuristic evaluation function
- Move sorting for new node: 1 ply lookahead, call static evaluation function
- Move sorting for old node: get old search value from iterative deepening
Useful Observations

- Looking at positions near the end of the PV often suggested improvements to the bounds calculation: if position looks easy for human, but is not recognized by the program, formulate a new rule to cover this case.

- Number of nodes needed in proof is an excellent measure of the quality of the heuristic evaluation function
Effects

- Success: average depth reduction 6-7 ply
- Many bad moves disproven *very* quickly, even on 6x6 board
- Proven first-player win on 5x5 by a 7 ply search from the root
- 21.7M moves, 1.7M node expansions
- Lucky: simple greedy strategy enough to win
- Some other 5x5 positions are much harder, need 10 ply (or maybe more)
Sample Sequence (1)
PV for 1.B1-B3xD3
Sample Sequence (2)
PV for 1.B1-D3xB3
Ongoing and Future Work

- *Opening book* for 5x5 with Tom Lincke
 - Classify all openings as wins or losses

- Interface to *databases* for defective territories and combinatorial games

- Tom also started solving 6x6:
 - After 1. B1-B4xC5, about 5% of replies are proven losses…
 - …but these are the *really* bad moves!
 - My guess: >100,000 times harder
Future Work (1) - Improve Bounds

- Use blocker in the outside area
- Use pairs of local minimax searches
- Use combinatorial game databases
Future Work (2) - Prune Moves

- Use combinatorial game databases to find dominated moves
- Play equivalent *abstract* combinatorial game instead of game on Amazons board
- Better rules for identifying locally *forced* moves
Future Work (3) -
Heuristics or Exact Rules?

- Plausible rules
- Almost always true
- Used in heuristic program, but not in prover

Challenge:
can you prove that they are correct in special cases?
Heuristic 1: A Blocker Should Block

- Heuristic rule: if a blocker moves towards the inside, it must shoot back to its starting square (or to the outside). It should not shoot to the inside.
- Not always true.
- When is it true?

Counter-example:
Heuristic 2: Take it all - if You Can

- Heuristic rule:
 if you can block off an area from the opponent completely, then that's the best move locally.

- Potential problems:
 - If opponent moves away, we might get more if we don't block
 - Block might make area defective
Final Words...

- 5x5 Amazons proven a first player win
- Main idea: reduce search depth and width by computing bounds on value of subgames
- Lucky - on 5x5 a simple conservative strategy is good enough. This simplifies proof a lot.
- 6x6 is the real challenge!