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Move Evaluation Tree System

Hiroto Yoshii
hiroto-yoshii@mrj.biglobe.ne.jp

Abstract
This paper discloses a system that evaluates moves in Go. The system—Move Evaluation Tree

System (METS)—introduces a tree architecture algorithm, which is a popular algorithm in the field
of pattern recognition. Using the METS algorithm, we can get emergency values of every empty
position at any situation of the game. The experiment using a large database shows that the METS
algorithm has a great ability to recognize a configuration of stones and evaluate the significance of
empty positions.

1 Introduction
Among various board games, game of Go is one of the most difficult games because of its huge

search space. Many researchers don't believe that Go can be solved by an exhaustive search such as
that carried out by Chess algorithms: we must select good moves among all possible—hundreds of—
moves in some other way. Some researchers have challenged this problem and showed successful
results [1], [2], however their algorithms couldn't cope with selecting problem as a general pattern
recognition problem and seem to lack strong theoretical supports. In this paper, we re-define Go as a
pattern recognition problem and propose a novel pattern recognition algorithm—Move Evaluation
Tree System (METS). Then this paper gives a full description of the new algorithm and an evaluation
of its significance.

2 Description of the Algorithm

2.1 Pattern Recognition Problem in the Game of Go
Before describing an algorithm, we must define the pattern recognition problem in the game of Go.

In our approach, training data is N game records that contain totally X moves. Of course, game states
are sequentially changing, and players may decide their moves in the series of moves. However, in
this paper, we simplify the training data as snap-shots: we treat the training data as a just assembly of
information which consists of a game state and a move point. Then the question is “where should we
put a new move in a given unknown game situation?”.

An outline of the METS algorithm is as follows: at first, we collect patterns around only move
positions from training data; when training data contains X moves, the number of patterns are X. Next,
we cluster them using a system resembling a “decision tree classifier”. Finally, we give every cluster
a score, or priority. In the following sub-sections, we define training patterns, and next we describe
the tree making phase and the score making phase of the algorithm.

2.2 Training Patterns
Training patterns are patterns around move positions, which have two-dimensional topology. The

maximum range of pattern is a 37x37 square, because the size of a board is 19x19 and the pattern
around the upper-right corner of the board must contain the lower-left corner of the board, for
example. Practically, we don’t need such wide range of patterns; we limit the size of patterns to 17
Manhattan distance around the move position. Each pattern consists of digits, where each digit is
digit represents either a white stone ( ), a black stone ( ), empty ( ) or off-board ( ); strictly

speaking, we deal with black turn and white turn symmetrically, and stone types are not white or
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black but self or opponent. For example, a pattern around the first-move position is a pattern that
consists of only digits of either empty or off-board. A pattern around the position A of the Fig. 3 has
four black stones and four white stones in the near side and seven black stones and seven white
stones totally. Notice that the digits that construct patterns themselves are just digits with two-
dimensional topology and they have no order. Order of digits is put through the tree making phase.

Fig. 1: A Decision Tree
Circles with lines indicate “nodes”. The apex node is the “root node”.

States of nodes are shown right-hand side of circles (white, black, empty, and off-board from left to
right). The three nodes below the root node are “null nodes”.

2.3 The Tree Making Phase
The algorithm, which we call the Move Evaluation Tree System (METS), is like a ‘decision tree’

classifier (see, for example, [3]). The final result of the algorithm is a tree such as that of Fig. 1; the
tree divides all training patterns step by step. The tree consists of three kinds of nodes; internal nodes,
leaf nodes and null nodes. At each internal node, we put a decision about a state of digit—“which
state the digit is either white, black, empty, or off-board, at the target position”—which results in
four branches. For example, at the apex node—the root node—in Fig. 1, all training patterns remains
and we must divide them. Each internal node includes some training patterns and we divide or cluster
them into child nodes if necessary. The full algorithm is as follows.

step 1. At each node, select one position—the target position—to watch
step 2. Divide training patterns into four groups (white, black, empty, and off-board)

according to the state of the digit at the chosen position in step 1
step 3. At each child node

step 3.1 If a child node has no training patterns, the node become null node.
step 3.2 If a child node has less training patterns than the threshold, the node

become leaf node.
step 3.3. If neither of the above case hold, goto step 1

When there remains no internal node, we stop making the tree
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We pass through n decisions until we reach an internal node in the n-th depth of the tree: i. e. the
internal node can be identified with the pattern that consists of digits of passed decisions. Finally, a
leaf node can be identified with a pattern with digits of all passed decisions, and there are less
training patterns than the threshold, which have the same pattern.

Still unsettled problem is which position we should choose at step 1 . Choosing process is
illustrated in Fig. 2. In Fig. 2, the move position is “kakari” position against a white “hoshi” stone. A
priori, we group positions in terms of Manhattan distances: the first group consists of one position—
the move position—and the second group consists of four positions, and the n-th group consists of
4*(n-1) positions.

The algorithm has two rules—range constraint and entropy constraint—to choose position at step
1. The former is that we surely select positions in accordance with the above grouping: i. e. we can
not select positions in (n+1)-th group until all positions within n-th group have been selected. This
constraint is derived from the intuition that the closer a board intersection is to the center of a patter,
the more critical its state becomes. Note that at the root node, we necessarily watch the move position,
i. e. empty position, which results in the three null nodes of Fig. 1.

The latter is that we select a position among a group in terms of an entropy, which can be

calculated as follows; )log( branchbranch ppentropy ∑−= , where Pbranch is the probability of a

branch. This constraint is for the purpose that we want to make a tree as compact as possible.
Through the tree making phase, we can get a tree system that clusters training patterns. If the

number of all leaf nodes is L, training patterns turn out to be divided into L clusters. Next, we put
scores on each leaf nodes.

2.4 The Score Making Phase
Almost every empty position can be classified into a leaf node of the tree. In the score making

phase, we use this phenomenon. We scan all X game states in training data: at each state, all empty
positions are classified by the tree which was made in the tree making phase. Thus each positions
have own leaf node numbers, otherwise drop into null node—we ignore positions which were
classified into null nodes. Then if a position is move position, we increment a “positive count” of the
leaf node, and if a position is not-move position, we increment a “negative count”. After we scan all
empty position in the training data, we can get total positive and negative count at each leaf nodes.

Finally, we give a leaf node a 
countpositive

countnegative
score= , where a smaller score is better. Note that

positive count must be more than zero, because a leaf node contains some training patterns. The score
reflects a kind of negative emergency: if a position which has a high score, the position has remained
untouched through a considerable amount of states in the training data.

When we give all leaf nodes scores, we can put each positions scores at a given unknown game
situation, and positions are sorted increasingly in terms of the scores. Now we can put a new move
according to the priority.

3 Experimental Results

3.1 Tree Structures
In the experiments, training data consists of 34,266 game records and 7,067,744 moves, and test

data consists of other 346 game records and 70,817 moves from “Kifu Database 96”. By changing the
threshold of step 3.2 of the algorithm, we can get different trees with various sizes. We made three
kinds of METS in the experiments: METS A with the threshold 50, METS B with the threshold 500,
and METS C with the threshold 5,000. Tree sizes and numbers of whole leaf nodes of each METS are
shown in Table 1. Approximately, sizes of trees are inversely proportional to the values of threshold.
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Examples of leaf nodes in METS A are shown in Fig. 3. Both A and B position are on black turns.
The leaf number of position A is #536959 whose score is 0 which means high emergency, while the
leaf number of position B is #314275 whose score is 28656 which means low emergency. Before
reaching each nodes, we check all positions within the closed area by dotted lines: i. e. each nodes
can be identified with patterns within the area.

3.2 Recognition Rates
To evaluate significance of METS, we check recognition rates for the test data. At all situations of

the test data, we put scores on all positions by METS and sort positions increasingly in terms of
scores: note that the score indicates negative emergency, and positions with low scores are high
emergency points. In fact, each situation in the test data has a move position—i. e. each situation has
an answer position. If the position with the lowest score hit the answer, pattern recognition succeeded.
Fig. 4 shows cumulative recognition rates of METS A, B and C; “n-th” means that the target move is
contained in the n moves with lowest scores. Recognition performance increases from METS C to
METS A.

3.3 Discussion
At first, we must notify that METS classifies patterns with extremely high speed. For example, an

average depth of leaf nodes in METS A is 46.86, which means that an average of matching time per a
position become less than 47*(read time + seek time). The time becomes in the order of msec in
200Mhz CPU computers. The system mainly owes the high recognition speed to the tree structure,
and the speed doesn’t decrease so much however large a tree becomes.

Secondly, METS gives us objective and quantitative significance of positions: the METS algorithm
scores all positions at any situation of the game of Go. Though some researchers succeeded in
selecting positions by using database, they seem to have difficulty in giving scores and the algorithms
of scoring are a little ad-hoc [1], [2]. In fact, we tried some values within the structure of trees—
number of training patterns of leaf nodes or depth of leaf nodes, however the values didn’t give us
good scoring. Consequently, in order to give a leaf node an adequate score, we must consider
negative data—patterns around not-move positions.

Thirdly, we discuss recognition rates of METS. The recognition rate—25%—of METS A seems a
very high recognition rate, however it is difficult to evaluate recognition rates which METS showed
in the experiments; an experiments of this type—using a huge database—is very unique and we have
no references. Qualitatively speaking, the recognition rates of METS are not enough for program of
Go but very helpful for selecting candidates. The program—“Monkey Jump”—decides a new move
using almost only METS, i. e. “Monkey Jump” always put moves at the position with the lowest
score, and fought at the third FOST cup ranking 26-th (program number is No. 25, 4 wins and 6
loses) [4]. Indeed “Monkey Jump” played well in the beginning of games, but in the middle of games
it started giving very wrong moves. The fact means that stone configurations are not enough for
deciding moves in the middle of games. The system must watch structures of Go; for example
strength of stone groups, life and death of stones, etc. I have improved METS and developed a new
system that overcomes the deficits, which will be disclosed in the near future.
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Fig. 2
Target position is "kakari" against "hoshi". Positions are grouped in terms of Manhattan distances.

Numbers of positions are an order for watching for example.

Fig. 3
Examples of leaf nodes; a pattern around position A is classified to a leaf node #536959 and B to

#314275. Areas closed by dotted lines indicate areas to watch in each leaf nodes.
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Fig. 4
In the graph, a recognition rate of n-th means a ratio in which move positions are within n-th

candidates

Table 1: the list of the tree size and the number of leaf nodes
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Memory-Based Approach in Go-program \KATSUNARI"

Shinichi Sei Toshiaki Kawashima
ssei@ssl.fujitsu.co.jp kawkaw@ssl.fujitsu.co.jp

Fujitsu Social Science Laboratory Ltd.

Abstract

To make a strong Go-program, programmers
analyze the thinking process of expert play-
ers and devise some algorithms to make good
moves based on the result. However, such work
is very di�cult and there isn't a strong Go-
program. We had proposed a new method
which makes good move by using a large quan-
tity of pattern knowledge extracted from pro-
fessional players' games. And we had devel-
oped a Go-program \KATSUNARI"1 which in-
cluded the method. Because our method can
make good moves by using pattern knowledge
directly, we don't need di�cult work of usual
way. To make KATSUNARI stronger, we are
improving mainly its database which has pat-
tern knowledge. We classi�ed pattern knowl-
edge into two categories: the knowledge which
show basic skill and the knowledge di�cult
to understand validity. Examples of former
knowledge are pattern of JOSEKI and pat-
tern of local competition and examples of latter
knowledge are professional players' moves. We
made two types of databases which included
each knowledge. By using these databases
properly, KATSUNARI can make good moves
under any board situation than before. In
this paper, we describe about new databases
of KATSUNARI and how KATSUNARI uses
them.

1 Introduction

The chess program \DeepBlue" defeated the human
world champion Kasparov in 1997. However, the
strongest Go-program has only strength of intermedi-
ate player of amateur2. Chess program became strong
mainly by using search method, but the same method
isn't suitable to Go-program. Reasons of it are the very

1This name is in Japanese.
2The 1997's champion program \HandTalk" and 1998's

champion program \Silver IGO" were given a 3-kyu diploma
by Nihon-Kiin.

large search space of Go-game compared with Chess and
the di�culty of the evaluation of the board situation.
Therefore, the new method to make strong Go-game pro-
gram is necessary.
Most of Go-programs adopt the approach of imitating

human strong player's thinking process. Programmers
of these Go-programs analyze how human expert play-
ers recognize board situation and how they make moves.
And they devise original algorithms to make move like
expert players' and implemented those algorithms in
their programs [Fotland, 1993][Chen, 1990][Sanechika,
1988][Fost, 1997][Fost, 1998]. However, this approach
has a problem that all knowledge to make good move
cannot be represented because the analysis of expert
players' thinking process is too di�cult. Although moves
created by their original algorithms are sometimes good
in typical situations, they aren't good in complicated
situation like actual games. From these reasons, Go-
programs have only strength of intermediate player of
amateur.
Recently, there are some programs that adopt

approach using learning functions[Br�ugmann, 1994]
[Cazenave, 1996][Enderton, 1991][Stoutamire, 1991], but
these programs are not strong yet.
We had proposed a new method which makes good

move by using a large quantity of pattern knowledge ex-
tracted from professional players' games[Sei, 1994]. And
we had developed a Go-program KATSUNARI which
included the method[Sei, 1996]. A pattern knowledge
consists of the professional players' move and local ar-
rangement of stones around the move. We collected
a large quantity of patterns automatically from profes-
sional players' games and make database retained them.
KATSUNARI's process to make move is (1) compare
stone arrangement on board with each pattern (2) pro-
pose written move in similar pattern as candidates (3)
evaluate each candidate (4) select the best candidate by
result of evaluation. Because KATSUNARI makes good
move by using directly pattern knowledge extracted from
professional players' games, we don't need analysis and
devising original algorithms of usual way.
KATSUNARI participated in 1996 and 1997 World

Open Computer Go Championship, FOST-CUP, to eval-
uate our method. However, we couldn't leave good

1



records: ranking were 13th in 19 programs ( 4 wins
and 5 loses ) in 1996, and 20th in 38 programs ( 5
wins and 5 loses ) in 1997. As a result of our investi-
gation about why records were not good, we found that
our method has some defects[Sei, 1998]. To make KAT-
SUNARI stronger, we are improving mainly database
which has pattern knowledge. In this paper, we describe
about new databases of KATSUNARI and how KAT-
SUNARI use them.

2 Memory-Based Approach

To make a strong Go-program, programmers analyze the
thinking process of expert players and devise some algo-
rithms to make good moves based on the result. How-
ever, such work is very di�cult and there isn't a strong
Go-program. It is easy to devise only some algorithms
to accomplish single-purpose such as to surround terri-
tory or to capture stones. However, those algorithms
can't frequently make a suitable move at complicated
situation like actual game. Moreover, it is di�cult to
devise some algorithms to accomplish multi-purpose at
same time. Therefore, the new method to make a strong
Go-game program is necessary.
We had proposed to apply memory-based approach

to make a strong Go-program. Memory-based approach
means directly using a lot of knowledge which consists
of problem and its solution to solve problems. Typical
example which adopted this approach is Memory-Based
Reasoning(MBR)[Stan�ll, 1986]. The method retains a
lot of previous experiences, retrieves the best similar ex-
perience from a collection and outputs it as the solution
of a given problem. MBR has the feature that it can
outputs good answer in a �eld where methods to solve
problems are not established. There are some research
reports using MBR in the pronunciation of word[Stan-
�ll, 1986], machine translation[Kitano, 1993][Sato, 1993],
and so on.

2.1 Pattern Knowledge

It is said that to make good stone arrangement is one of
important tactics in Go-game. And we also know that
strong human players make moves by considering local
arrangement of stones. In Tsumego problem, there is a
report that strong players use pattern knowledge that is
the pair of move and local arrangement of stones around
of move[Yoshikawa, 1996]. Therefore, we considered that
using pattern knowledge is e�ective to make strong Go-
program.
We show a example of KATSUNARI's pattern knowl-

edge in Figure1. We de�ned a octagon shape as shape
of pattern3. Reasons why we decided this shape are fol-
lowings. Strong players usually don't consider positions
of long distance from the position of candidate. Many
of words( Keima, Ogeima, Ikken-Tobi, Niken-Tobi,... )
which show the relation of stones in Go-terms are in-

3This shape is the shape of improving KATSUNARI. The
shape of old KATSUNARI is a little di�erent from this.

cluded in this shape. And we set center of pattern as
the the position of candidate.

�iy yi
: Position of candidate
at Black's turn
It is the position where
professional player put
in actual game.

Figure 1: Example of Pattern

2.2 Database Creation

Programs which adopted memory-based approach need
a lot of knowledge. However, it is di�cult to represent
strong player's various knowledge into pattern. More-
over, we can't write down a lot of pattern knowledge by
ourselves.
Before creating database, we classi�ed pattern knowl-

edge into two categories(Figure2): the knowledge which
show basic skill and the knowledge di�cult to under-
stand validity. Examples of former knowledge are pat-
tern of JOSEKI and pattern of local competition. Exam-
ples of latter knowledge are professional players' moves
because those moves are so advanced that we can't un-
derstand their meaning and worth. We collected former
knowledge from some textbooks and dictionaries about
Go-game. We extracted latter knowledge from many
professional players' games. We made the program to ex-
tract patterns automatically and collected about 50,000
patterns from about 400 games by professional players.

Patterns

Patterns di�cult to understand validity�
�

�
�Moves by expert players : They are

collected from professional players' games.

Patterns which represent basic skill'

&

$

%

� FUSEKI : standard sequence in opening stage

� JOSKEI : standard sequence in corner

� TESUJI : standard sequence in �ghting

� Local Competition : Cut,Connect,HANE,� � �

Figure 2: Classi�cation of Pattern

3 Go-program KATSUNARI

In this section, we describe about method of KAT-
SUNARI which adopted memory-based approach.

2



3.1 Process to Make Move

We show the KATSUNARI's process to make move in
Figure3. The detail of process is following.

1. Pattern Candidate Creation

for each empty point on board

(a) compare with arrangement of stones around the
point and arrangement of stones of each pattern
in database, and �nd out same pattern

(b) propose this point as pattern candidate, if same
arrangement of stones is found

2. Capture Candidate Creation

for each stone on board

(a) investigate status of stone (alive/dead/neutral)

(b) propose move to capture/escape the stone, if
status is neutral

3. Next Move Selection

for each candidate

(a) image a board where a candidate is temporary
put, and estimate the board situation

(b) adjust the value from considering the degree of
importance of stone

(c) select candidate with the highest value as next
move

Candidate
Creation'
&

$
%

Pattern
Database'
&

$
%

Local
Lookahead

Next Move
Selection

� Calculate
Importance
of Stone

� Estimate
Situation
after Move

-

Pattern
Candidates

-

Capture
Candidates

-

�

�

�

�
Next
Move

Figure 3: Process to Make Move

3.2 Candidates

KATSUNARI creates two kinds of candidates, these
are Pattern Candidate and Capture Candidate. Pat-
tern Candidate means candidates which created by us-
ing pattern knowledge, and it makes good arrangement
of stones. Capture Candidate means candidates to cap-
ture enemy's stones and the candidates to escape family
stones. And KATSUNARI creates some kinds of Pat-
tern Candidate, these are JOSEKI Candidate, FUSEKI
Candidate, TESUJI Candidate, Small Pattern Candi-
date and Large Pattern Candidate.

Capture Candidate

Capture Candidate means candidates to capture en-
emy's stones and the candidates to escape family stones.
This candidate is created by local lookahead. Although
some of candidates to capture/escape stones are created
in creating Pattern Candidates, most of candidates to
capture/escape stones aren't created. Because, KAT-
SUNARI doesn't need to mind to make good arrange-
ment of stones but to reduce DAME( liberty points ) of
stones to create Capture Candidate.

FUSEKI Candidate

FUSEKI is one of Go-terms and it is a standard sequence
in the opening stage. FUSEKI is so analyzed in de-
tail by human player and it is published as FUSEKI
dictionary. We collected FUSEKI patterns from pub-
lished FUSEKI dictionary and made FUSEKI pattern
database. The bounds of FUSEKI pattern is larger than
another kinds of pattern because program needs to con-
siders wide scope( the size of the most large pattern is
same as whole board ). This candidate is established to
overcome one of defects in old KATSUNARI. Old KAT-
SUNARI was weak in the opening stage because it didn't
have such large pattern.

JOSEKI Candidate

JOSEKI is one of Go-terms and it is a established or
standard sequence at corner. It is so analyzed in detail
by human player and it is published as JOSEKI dictio-
nary as FUSEKI. We collected JOSEKI patterns from
published JOSEKI dictionary and made JOSEKI pat-
tern database.

TESUJI Candidate

TESUJI is one of Go-terms and a standard sequence
to accomplish speci�c purpose. We collected TESUJI
patterns from published TESUJI dictionary and some
textbooks.
KATSUNARI estimates the worth of each candidate

to select the best one. For estimation, KATSUNARI
images a board where the candidate move is temporar-
ily put and calculates how many points KATSUNARI
leads. However, in this method, it is di�cult to �nd out
the move where the e�ect appears afterwards, such as
sacri�ce move. Then, to calculate the worth accurately,
we added the pattern for evaluation to TESUJI pattern.
We show examples in Figure4. When KATSUNARI es-
timates this candidate, it images the board where the
pattern for evaluation is set. This candidate is estab-
lished to overcome one of defects in old KATSUNARI,
too.

Small Pattern Candidate

This is the candidate for local competition, e.g. Cut,
Connect, HANE, NOBI, OSAE, TSUKIDASHI, FUKU-
RAMI, etc. To make such moves, human players usually
consider only arrangement of stones in small area. Then,
we prepared pattern with small bounds to create these
moves. We designed square( 3 � 3 ) as the shape of
pattern, and we set position of move at center of shape.

3



Figure of Black's

Candidate Position
Pattern for Evaluation

iy ii
�
i iyyiii iyi

Figure 4: TESUJI Pattern

This candidate is established to overcome one of defects
in old KATSUNARI, too. When there are many stones
in small area, the size of old KATSUNARI's pattern is
too wide to �nd same pattern. It often occurs especially
in middle stage and end stage.
We added the degree of emergency to each Small

Pattern. The degree is used to prune unnecessary
candidates. KATSUNARI saves Small Pattern Can-
didates with high degree and abandons another. To
calculate the degree of emergency accurately, KAT-
SUNARI checks several items, these are arrangement
of stones, amount of liberty of each stone, status of
each stone(alive/dead/neutral) and each stone's distance
from edge. We show examples in Figure5.
The technique of these moves is basic in Go-game.

Even amateur player knows their meaning and worth.
We could write all patterns by ourselves because the
amount is small ( about 1,000 ).

yi
�
i

if( Left white's liberty � 2 )f
Emergency = 80;

gelse if( Top left black's liberty � 2 )f
Emergency = 0;

gelsef
Emergency = 60;

i iy� if( Bottom line is edge )f
Emergency = 80;

gelsef
Emergency = 60;

Figure 5: Small Pattern

Large Pattern Candidate

This patterns are extracted from professional players'
games. We described about this candidate in previous
section and showed a example pattern in Figure1.

Pattern Candidate Pruning

After KATSUNARI creates many Pattern Candidate, it
prunes unnecessary candidates before evaluating each
candidate.
The bounds of pattern is used to decide whether to

prune or not. We explain about it in Figure6. When the

left �gure's board situation is given, KATSUNARI cre-
ates two kinds of di�erent Pattern Candidate, there are
Large Pattern Candidate at position A and Small Pat-
tern Candidate at position B. However, if KATSUNARI
don't create Large Pattern Candidate at B, Small Pat-
tern Candidate of B is pruned. We can expect that the
move created by considering wide scope is better than
the move created by considering small scope. KAT-
SUNARI considers that the candidate of B is not better
than the candidate of A, because the bounds of Large
Pattern Candidate of A covers Small Pattern's of B com-
pletely in this case.
KATSUNARI does this pruning for another kinds of

candidate, too.

ggww ggwgAgBg
gww ggwg

�g wgg�
Board in Game

Matched
Large Pattern Matched

Small
Pattern

A: Position of Large Pattern Candidate
B: Position of Small Pattern Candidate
KATSUNARI prunes candidate of B

Figure 6: Pattern Candidate Pruning

4 Evaluation of KATSUNARI

4.1 FOST CUP

Because we are in the middle of improvement of KAT-
SUNARI, we can't evaluate our method at the present.
Indeed, a part of Small Pattern Candidate was imple-
mented on 1997, and FUSEKI Candidate and TESUJI
Candidate were implemented on 1998. Pruning function
hasn't been implemented yet. We are still collecting pat-
tern knowledge, there are only about 400 FUSEKI pat-
terns and about 200 TESUJI patterns in KATSUNARI.
However, KATSUNARI participated in 1998 World

Open Computer Go Championship, FOST-CUP, to eval-
uate the strength at that time. Although the record
of present KATSUNARI isn't good, the record becomes
better every year(Table1). We can expect that KAT-
SUNARI become stronger after improvement.

Table 1: Results in FOST-CUP

Rank wins - loses year

1996 13th in 19 programs 4 - 5
1997 20th in 38 programs 5 - 5
1998 15th in 38 programs 4 - 2
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4.2 Versus \The Strongest Game of Go"
\The Strongest Game of Go" is the name of commercial
version of \Go4++". \Go4++" is one of top class Go-
programs, 2nd in 1996 and 3rd in 1997World Open Com-
puter Go Championship. We did test matches with it in
several times. Although KATSUNARI could win a few
times and the average of score was about 20 points be-
hind. But, the strength of advanced player commented
that the di�erence of 20 points is small di�erence. We
show one of scores in Figure7. i84 i90 i82i
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Figure 7: KATSUNARI(Black) vs The Strongest Game
of Go

5 Related Go-Programs

Although most of Go-programs use a kind of original
pattern knowledge, the aim of it is limited. It is generally
used to create JOSEKI candidate or to create move to
make/break eyes.
Recently, there are several programs which adopted

memory-based approach like KATSUNARI. \Monkey
Jump" and \KuruKuru" have a huge decision tree cre-
ated from a lot of professional players' games, and they
make move by using them[Fost, 1998][Fost, 1997]. To
our regret, detailed reports about the method haven't
been published yet.

6 Conclusion

We are improving Go-program KATSUNARI which
adopted memory-based approach. KATSUNARI has
various pattern databases created from di�erent type
of knowledge and makes good move by using these
databases properly.
KATSUNARI's record in Computer Go Championship

became better by our improvement every years. We can
expect that KATSUNARI to become stronger after im-
provement.
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Extended Abstract

1 Introduction

For simplicity, we restrict attention to 2-player, 0-sum perfect information games
without chance moves which are acyclic. Further, we consider normal play, i.e.,
the player making the last move wins, and the opponent loses. The tool for
providing a polynomial strategy for this class of games is the Sprague-Grundy
function [2], g-function for short: for a general digraph with n edges, the g-
function can be computed in O(n) steps.

A game is succinct if its input size is O(log n) rather than O(n). An example
of a succinct game is Nim, in which a �nite number n of tokens (marbles, stones
or the like) is arranged in k � 1 heaps (piles). A move consists of selecting
a heap and removing from it a positive number of tokens, possibly the entire
heap. The input size is

Pk

i=1 logni, where n1; : : : ; nk are the sizes of the k heaps.
Because of succinctness, an additional property of the g-function is required to
reduce the complexity from O(

Pk

i=1 ni) to O(
Pk

i=1 logni). The fact that the
g-values of Nim are arranged in a simple arithmetic sequence constitutes this
additional property. For the polynomial subclass of the class of octal games [9],
polynomiality is usually established by showing that the g-function is periodic,
though the period and/or preperiod can sometimes be very large [8].

In this note we show that for certain succinct games for which the g-function
is highly chaotic, polynomiality can nevertheless be established by resorting to
special numeration systems. We close with a question.

In any game, anN -position is any position from which the Next (�rst) player
can win, independent of the moves of the opponent. A P -position is any position
such that the Previous (second) player can win, independent of the moves of
the opponent. The set of all N -positions of a game is denoted by N , and the
set of all P -positions by P .

1



2 An Example

Denote by Z0 the set of nonnegative integers, and by Z+ the set of positive
integers. De�ne a family of succinct games, played on two heaps of tokens,
which depends on two parameters s; t 2 Z

+. There are two types of moves:
I. Take any positive number of tokens from a single heap, possibly the entire
heap. II. Take k > 0 and l > 0 from the two heaps, where, say, 0 < k � l. This
move is constrained by the condition 0 < k � l < sk + t, which is equivalent to
0 � l � k < (s � 1)k + t, k 2 Z+. The case s = t = 1 is known as Wytho�'s

game [10], [4], [11].
For s = t = 2, the �rst few P -positions are listed in Table 1. What's its next

entry?

Table 1: The �rst few P -positions for s = t = 2.

n An Bn

0 0 0
1 1 4
2 2 8
3 3 12
4 5 18
5 6 22
6 7 26
7 9 32
8 10 36
9 11 40
10 13 46
11 14 50
12 15 54
13 16 58

Let S be any �nite subset of Z0. De�ne mexS = Z0 nS = least nonnegative
integer not in S. In [7], where the game has been proposed and analyzed, the
following was proved:

Theorem 1. P =
S1

i=0f(Ai; Bi)g, where An = mexfAi; Bi : 0 � i < ng and

Bn = sAn + tn (n � 0).

It is easy to see that if A =
S1

n=1An, B =
S1

n=1Bn, then A and B are
complementary , i.e., A [B = set of all positive integers, and A \ B = ;.

Given any two heaps of the game, containing x and y tokens with x � y.
The complementarity of A and B implies that either x = An or x = Bn for some
n. Hence Table 1 has to be computed only up to the encounter of x. Moreover,
it is not hard to see that n � x, and if x = An, then x=2 < n, so the table
has to be computed up to at most 
(x), which implies a strategy computation
linear in x. But because of succinctness, this is an exponential strategy! We

2



now show that a linear strategy of complexity O(log x) exists, which is based
on a special numeration system.

For �xed s; t 2 Z+, put u�1 = 1=s, u0 = 1, and let un = (s + t� 1)un�1 +
sun�2 (n � 1). Denote by U the numeration system with bases u0, u1, : : : and
digits di 2 f0; : : : ; s+ t�1g, with the additional requirement di+1 = s+ t�1)
di < s (i � 0). Every positive integer has a unique representation over U , [5].

Consider the special case s = t = 2. Then u�1 =
1

2
, u0 = 1, u1 = 4, u2 = 14,

u3 = 50, u4 = 178, : : : . The representations of the integers 1 to 60 in this
numeration system are displayed in Table 2.

Table 2: A quaternary representation of the �rst few integers in Z+.

50 14 4 1 n 14 4 1 n
2 0 3 31 1 1
2 1 0 32 2 2
2 1 1 33 3 3
2 1 2 34 1 0 4
2 1 3 35 1 1 5
2 2 0 36 1 2 6
2 2 1 37 1 3 7
2 2 2 38 2 0 8
2 2 3 39 2 1 9
2 3 0 40 2 2 10
2 3 1 41 2 3 11
3 0 0 42 3 0 12
3 0 1 43 3 1 13
3 0 2 44 1 0 0 14
3 0 3 45 1 0 1 15
3 1 0 46 1 0 2 16
3 1 1 47 1 0 3 17
3 1 2 48 1 1 0 18
3 1 3 49 1 1 1 19

1 0 0 0 50 1 1 2 20
1 0 0 1 51 1 1 3 21
1 0 0 2 52 1 2 0 22
1 0 0 3 53 1 2 1 23
1 0 1 0 54 1 2 2 24
1 0 1 1 55 1 2 3 25
1 0 1 2 56 1 3 0 26
1 0 1 3 57 1 3 1 27
1 0 2 0 58 2 0 0 28
1 0 2 1 59 2 0 1 29
1 0 2 2 60 2 0 2 30
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A question we just might ask at this point is whether there is any connection
between Tables 1 and 2. If we scan the �rst few entries of both, we may be
tempted to conclude that all the entries under An in Table 1 have representations
ending in no 0 in Table 2. But then 14 is a counterexample, whose representation
ends in two 0s. Also it appears that the Bn all have representation ending in
a single 0. But 50, with representation 1000 is a counterexample, in fact, the
only counterexample in the range of the two tables.

It turns out, however, that the following two remarkable, �sthetically pleas-
ing, properties hold in general:

a. All the An have representations ending in an even number of 0s, and all
the Bn have representations ending in an odd number of 0s.

b. For every (An; Bn) 2 P , the representation of Bn is the \left shift" of
the representation of An.

Thus (1; 4) of Table 1 has representation (1; 10), and (6; 22) has representa-
tion (12; 120): 10 is the \left shift" of 1, 120 the left shift of 12. We remark that
the second part of a follows from its �rst part, since A and B are complementary.

We leave it to the reader to show that these observations lead to an easy
polynomial strategy for our class of games. We remark that for Wytho�'s
game (s = t = 1), and even for a generalization thereof [6] (s = 1; t � 1),
there is another polynomial strategy, based on the fact that then An = bn�c;
Bn = bn�c, where � = (2� t+

p
t2 + 4)=2; � = (2 + t +

p
t2 + 4)=2. But for

s > 1, there exist no such �, �, and we don't know whether there is a polynomial
strategy other than the one based on the above numeration system.

3 Another Numeration System

A special case of a numeration system considered in x4 of [5] is based on the
even-indexed Fibonacci numbers, namely, 1; 3; 8; 21; 55; 144; : : : . They satisfy
the recurrence pn = 3pn�1 � pn�2 (n � 1), where p�1 = 0, p0 = 1. Every
positive integer N has a unique representation in a ternary numeration system
of the form N =

P
i�0 dipi, where the digits satisfy di 2 f0; 1; 2g (i � 0), and

the additional condition: if for some 0 � k < l � n, dl = dk = 2, then there is
j with k < j < l such that dj = 0. The representations of the �rst few positive
integers are given in Table 3. This numeration system has also been used in [3].

In Table 4 we display the �rst few positive integers An whose representa-
tion in this ternary numeration system ends in an even number of 0s, and the
numbers Bn whose representation ends in an odd number of 0s.

The following property seems to hold: An = mexfAi; Bi : 0 � i < ng;
Bn = 2An + n� rn, where rn = jfk : Bk �Bk�1 = 2; k � ngj. Is there a game
with two heaps and simple rules such that P =

S1
i=0f(Ai; Bi)g? That is, the

rules should be independent of the size of either heap.
Remarks.

� The special case s = t = 2 of the (s; t)-sequences considered above was re-
cently put into Neil Sloane's On-Line Encyclop�dia of Integer Sequences
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Table 3: A ternary representation of the �rst few integers in Z+.

55 21 8 3 1 n 21 8 3 1 n
1 1 0 0 29 1 1
1 1 0 1 30 2 2
1 1 0 2 31 1 0 3
1 1 1 0 32 1 1 4
1 1 1 1 33 1 2 5
1 1 1 2 34 2 0 6
1 1 2 0 35 2 1 7
1 1 2 1 36 1 0 0 8
1 2 0 0 37 1 0 1 9
1 2 0 1 38 1 0 2 10
1 2 0 2 39 1 1 0 11
1 2 1 0 40 1 1 1 12
1 2 1 1 41 1 1 2 13
2 0 0 0 42 1 2 0 14
2 0 0 1 43 1 2 1 15
2 0 0 2 44 2 0 0 16
2 0 1 0 45 2 0 1 17
2 0 1 1 46 2 0 2 18
2 0 1 2 47 2 1 0 19
2 0 2 0 48 2 1 1 20
2 0 2 1 49 1 0 0 0 21
2 1 0 0 50 1 0 0 1 22
2 1 0 1 51 1 0 0 2 23
2 1 0 2 52 1 0 1 0 24
2 1 1 0 53 1 0 1 1 25
2 1 1 1 54 1 0 1 2 26

1 0 0 0 0 55 1 0 2 0 27
1 0 0 0 1 56 1 0 2 1 28
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Table 4: The �rst few P -positions | of which game?

n An Bn

1 1 3
2 2 6
3 4 11
4 5 14
5 7 19
6 8 21
7 9 24
8 10 27
9 12 32
10 13 35
11 15 40
12 16 42
13 17 45
14 18 48

at http://www.research.att.com/~njas/sequences/index.html , sequence
numbers A045671, A045672.

� A sequence de�ned quite di�erently, namely A026366, turns out to be
equivalent to an (s; t)-sequence with s = 2, t = 1. In [7] this de�nition
was generalized to any s; t 2 Z+, and the equivalence to the above (s; t)-
sequences was proved.

� In [1], an interpretation for the recurrence fn+1 = 6fn � fn�1 was found.
Other interpretations, in terms of numeration systems belonging to the
same family as the system considered last, can be given. We give a few
examples. Consider this recurrence with f0 = 1 throughout. If we put
f1 = 7, we get a numeration system with digits satisfying 0 � di � 5
(i � 1), 0 � d0 � 6 and: if dk and dl are maximal, then there is j with
k < j < l such that dj < 4. If f1 = 6, the numeration system digits satisfy
0 � di � 5 (i � 0)and the same additional condition. If f1 = 9, then
0 � di � 5 (i � 1), 0 � d0 � 8 and the same additional condition.
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Abstract

In the case of two individuals in a competitive situation, or
“game,” the game itself (i.e. the players, the rules, the
equipment) can be considered to constitute a distributed
cognitive system. However, the dominant model of
competitive behavior is game theory (VonNeumann &
Morgenstern, 1944), which has traditionally treated
individuals as isolated units of cognition. By simulating
game playing with neural networks, and also by using human
subjects, it is demonstrated that the interaction between two
players can give rise to emergent properties which are not
inherent in the individual players.

Recent work in distributed cognition (e.g. Hutchins, 1994;
Norman, 1993; Zhang, 1997; Zhang & Norman, 1994) has
indicated that cognitive processing can take place across
distributed systems composed of multiple, interacting
cognitive systems. For example, navigating a large ship,
such as a naval vessel, is accomplished through interactions
amongst specially trained humans and specialized
equipment (Hutchins, 1994). Distributive systems involving
more than one agent are prototypically cooperative in
nature, in that the agents involved benefit from the function
of the distributed system (e.g. a ship avoids sinking).
However, distributed systems may also result in situations
in which some individuals benefit at a cost to others. The
simplest example of this is the case of two individuals in a
zero sum game (i.e. a game in which only one player can
win). Games such as this can be thought of as distributed
cognitive systems with the goal of choosing one player as
the winner.

Although game playing clearly involves interactions
between the players, it does not necessarily follow that we
need to consider the distributed properties of a game in
order to understand the behavior of a player. This depends
on whether the functionality of the cognitive mechanism
used by an individual player can be understood in isolation,
or needs to be interpreted in terms of the role it plays in the
distributed system. The answer to this question will depend
to some degree on our assumptions concerning the game
playing process. For example, game theory (VonNeumann
& Morgenstern, 1944) describes how rational players
should behave in a competitive situation prescribed by rules
and with payoffs for certain results. However, in order to do
this it is necessary to make assumptions concerning the
cognitive mechanisms available to the players. One
assumption that is frequently made is that players have the
ability to generate random responses (i.e. to draw responses
at random from a predetermined distribution). For
example, the game theory solution for Paper, Rocks and
Scissors (hence forth PRS) is to play randomly, 1/3 paper,
1/3 rocks, and 1/3 scissors (in PRS play: paper beats rocks,

rocks beats scissors, and scissors beats paper). With this
assumption in place there is nothing to be gained by
viewing PRS as a distributed system because players'
interactions are limited to tossing out and receiving random
responses. However, the assumption of random responses is
problematic for two reasons. The first is that people are
normally quite bad at generating random responses (see
Tune, 1964, and Wagenaar, 1972 for reviews), and the
second is that when people guess what is coming next in a
series they attempt to capitalize on sequential
dependencies, regardless if they are present or not (e.g.,
Anderson, 1960; Estes, 1972; Restle, 1966; Rose & Vitz,
1966; Vitz & Todd, 1967; Ward, 1973; Ward & Li, 1988).

Given the above research, a more realistic model of PRS
play would have players trying to detect each others
sequential dependencies. Note that the story is now
different if we consider the players in isolation or if we
consider them within the context of the distributed system
formed by the game. Taken in isolation, a player's strategy
appears passive, limited to searching for sequential
dependencies in their opponents responses. However, from
the distributed perspective the situation is highly interactive
as each player both drives, and is driven by, their
opponent's responses (i.e. my behavior would be based on
my beliefs about sequential dependencies in my opponents
play, which would be driven by my opponents behavior,
which in turn is driven by my behavior in a similar way) .
The question is, whether this highly interactive situation
can impart an alternative functional significance to a
sequential detection mechanism?

The Decoy Strategy
Given an opponent who is using the strategy of searching
for sequential dependencies, we can ask the game theory
question of how a rational opponent should respond.
Generating random responses will certainly avoid any
disadvantage, but it will also fail to produce an advantage.
The ideal strategy under these conditions would be to use
one's own responses to lure the opponent into a predictable
pattern of play which could somehow be exploited.
Interestingly, this agrees well with peoples' reports of how
they play games such as PRS. Aside from a minority who
claim to respond randomly, most people claim to deceive
their opponents by allowing them to detect biases which
are, in reality, decoys drawing their opponents into a
predictable pattern of play. This strategy of using ones own
pattern of responses to exert control over one's opponent's
responses will be referred to as the decoy strategy.

What I will endeavor to show in this paper is that the
function of sequential detection mechanisms within a game
situation is not to passively detect sequential dependencies,
but to execute the decoy strategy. Furthermore, it will be



demonstrated how the ability to do this is mediated by
working memory.

Simulating the Decoy Strategy
The sequential detection mechanisms assumed to be used
by human game players were modeled using two layer
neural networks with one layer for input and one for output
(i.e. perceptrons, Rosenblatt, 1962). The output layer
consisted of three nodes, to represent paper, rocks, and
scissors. The input layer consisted of a variable number of
three node sets. Each set represented the previous outputs
of the opponent network at a particular lag, with the three
nodes in each set again representing paper, rocks, and
scissors. Thus the networks could be set to "remember" any
number of trials back from the current trial. To represent
this the networks are be referred to in terms of how many
lags back they could recall (i.e. a lag1 network can
remember one trial back, and a lag2 network, two trials
back). Outputs were determined by summing the weights
associated with the activated connections. If two or more
output nodes were equally weighted the tie was resolved
through  random selection. Learning was accomplished
through back-propagation in which a win was rewarded by
adding 1 to the activated connections leading to the node
representing the winning response, and a loss was punished
by subtracting 1 (ties were treated as losses). In all trials,
both networks began with all weights set to zero.

The neural network mechanisms used in this study were
deliberately made as simple as possible in order to keep the
process as transparent as possible. Also, the use of
perceptrons means that the individual networks can be
treated as linear systems, an important consideration for
game theorists.

Simulation Results
The effect of memory was clear, networks that could
remember more always won in the long term. Figure 1
displays a representative result of a lag2 network versus a
lag1 network. However, as would be expected by symmetry,
when a lag2 was pitted against another lag2 network no
advantage emerged.

According to the decoy strategy a player wins through
controlling the opponent's responses. This strategy can be
seen in the causal nature of the simulation results. The
network with the higher lag factor was able to win not by
passively detecting sequential dependencies but by creating
them. Unlike humans who might be predisposed to
generating sequential dependencies, the networks based
their responses solely on each others play. Thus any
tendencies for one network to be predictable were caused
by the other network.

The Decoy Strategy in Humans
The next step was to find out if human subjects could
execute the decoy strategy. To do this, human subjects
played PRS against a lag1 network. There were two reasons
for having them play against the network instead of against
each other. First, it seemed likely that they would be
approximately equal in ability which, according to the

simulation results above, would produce an unremarkable
outcome in the long run (i.e. a 50/50 chance of winning).
Second, under these conditions the only sequential
dependencies present in the computer would be ones
created by the subject. In order to win subjects would have
to both create and exploit sequential dependencies in the
lag1 network.

Method
Subjects The subjects were 13 volunteers from the
University of British Columbia and the University of Hong
Kong.

Apparatus Subjects played against a lag1 network
implemented in Visual Basic (the simulations were also
done using the same program). Subjects selected their PRS
outputs by using a mouse to click on three different icons.
Following this they clicked on a button to reveal the
computer's response. The score and the number of trials
were displayed so subjects could monitor their progress.

Procedure Each subject played for approximately 20
minutes. The number of trials varied based on each
subject's playing speed. All subjects played at least 250
trials (mean number of trials = 441). Subjects were
instructed that the computer was programmed to play like a
human, and that it was possible to beat it. They were also
told that the program was very complex and that they
should play by intuition.

Results
Figure 2 displays the subject's score minus the computer's
score across trials. The data was combined so that each
subject's game picks up where the previous subject left off
(e.g. subject 1 finished with a lead of 44 points after 800
trials so subject 2 was plotted as though he began with a 44
point lead starting at trial number 801). This was done in
order to get a sufficient number of trials (total number of
trials = 5727) to indicate an unambiguous trend. The
upward trend in Figure 2 is very clear and demonstrates
that the human subjects were able to execute the decoy
strategy.

Discussion
The neural networks used in this study were designed to
passively detect sequential dependencies. The decoy
strategy was not implicit in the design of these networks,
but emerged from the interaction between them. Although
it is possible that the human subjects were able to win by
some other means it is unclear how this could be achieved.
Also, it is  doubtful if other explanations could achieve the
same level of parsimony, or consistency with previous
research.

The implications of these results go far beyond
describing a good strategy for playing PRS, as it is possible
that a considerable amount of competitive behavior is based
on this type of process. More generally, the results of this
study are consistent with the view that human cognition
needs to be understood within in the environmental context



Figure 1: A Lag2 network versus Lag1 network

in which it developed (e.g. Gibson, 1986). For humans this
entails understanding an individual within a social context
that is both cooperative and competitive. As demonstrated
in this study, the benefit of an individual cognitive system
may reside in the type of distributed system it creates when
joined with other systems, rather than in its function as an
isolated unit.

The advantage of the methodology used in this study is
that it reconciles distributive and individual cognitive
research for this type of behavior. Using the detailed
findings of traditional cognitive research on individuals,
tentative models can be constructed and placed in
interactive situations. The emergent patterns from such
simulations can then be compared to simulations in which
one of the simulated agents is replaced with a human agent,
or to interactions between two humans. In this way we can
begin to understand the relationship between individual
cognitive agents and the emergent, distributed systems in
which we live.
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+RZ�SOD\HUV�OHDUQ�DW��.$162�6(1�

7DNHVKL�,WR��7HLML�)XUXJRUL

'LYLVLRQ�RI�,QIRUPDWLRQ�(QJLQHHULQJ��7KH�8QLYHUVLW\�RI�(OHFWUR�&RPPXQLFDWLRQV

��,QWURGXFWLRQ

� � 7KLV�SDSHU�UHSRUWV�VRPH�RI�RXU�ZRUN�RQ�XQGHUVWDQGLQJ�KRZ�SOD\HUV�OHDUQ�DW�.$162�

6(1�� .$162�6(1� LV� WKDW� WKH� SOD\HUV� H[FKDQJH� WKHLU� RSLQLRQV� DERXW� HDFK� RWKHU
V

LPSUHVVLRQV�RQ� WKH�JDPH�DIWHU� WKH�JDPH� LV�RYHU��0RVW�RI� ,*2�DQG�6+2*,�SOD\HUV�GR

.$162�6(1��:H�UHJDUG�WKH�.$162�6(1�DV�RQH�RI�FR�RSHUDWLYH�OHDUQLQJ�SURFHVV��&R�

RSHUDWLYH�OHDUQLQJ�LV�FRPPRQ�ZRUNV�LQ�HGXFDWLRQDO�RU�FRJQLWLYH�UHVHDUFKHV��)RU�H[DPSOH�

FR�RSHUDWLYH� OHDUQLQJ� DUH� QRW� YHU\� HIIHFWLYH� DW� VRPH� VPDOO� JURXSV� LQ� PDWKHPDWLFV

�0XOU\DQ�� ������� $QRWKHU� ZRUNV� WKDW� FR�RSHUDWLYH� OHDUQLQJ� LV� PRUH� HIIHFWLYH� WKDQ

LQGLYLGXDO�OHDUQLQJ��(OOLVRQ�	�%R\NLQ���������+RZHYHU��PRVW�RI�WKHVH�ZRUNV�DUH�OHDUQLQJ

RQ�HDV\�RU�FRQYHUJHQW�SUREOHPV��7KHVH�DUH�QRW�VXLWDEOH�IRU�UHVHDUFKLQJ�WKH�HIIHFW�RI�FR�

RSHUDWLYH�OHDUQLQJ�

� � ,Q� RXU� UHVHDUFK� ZH� DUH� LQWHUHVWHG� LQ� 6+2*,� DQG� WKH� .$162�6(1� DV� D� GLIILFXOW

SUREOHP�WR�XQGHUVWDQG�KRZ�KXPDQ�OHDUQ�DW�FR�RSHUDWLYH�VLWXDWLRQ��,W
V�EURDGO\�NQRZQ

IURP�H[SHULHQFH� WKDW�.$162�6(1�LV�JRRG�WR� LPSURYH� WKH�SOD\HUV
�6+2*,� WHFKQLTXH�

7KH�FXUUHQW�VWXG\�LV�DQ�LQYHVWLJDWLRQ�RI�VXEMHFWV
� OHDUQLQJ�RI�6+2*,�DW�.$162�6(1

EHWZHHQ�QRYLFHV��H[SHUWV�DQG�ERWK�

,Q�WKLV�ZD\��ZH�DUH�DVVXUHG�WKDW�WKH�EHKDYLRUV�ZH�REVHUYH�DUH�PDQ\�OHYHOV�RI�SOD\HUV


FR�RSHUDWLYH�OHDUQLQJ�SURFHVVHV�

���7KH�IHDWXUHV�RI�.$162�6(1

� � :H� KDYH� DOUHDG\� H[SODLQHG� WKDW� .$162�6(1� LV� WKDW� WKH� SOD\HUV� H[FKDQJH� WKHLU

RSLQLRQV�DERXW�HDFK�RWKHU
V�LPSUHVVLRQV�RQ�WKH�JDPH�DIWHU�WKH�JDPH�LV�RYHU��:H�PXVW

DGG�WKDW�LW�LV�DOORZHG�WKDW�VRPHRQH�ZKR�ZDWFKHV�WKH�JDPH�MRLQV�WKH�GLVFXVVLRQ�RQFH�LQ�D

ZKLOH��,W�JRHV�ZLWKRXW�VD\LQJ�WKDW�SOD\HUV�GRQ
W�VSHDN�ZLWK�HDFK�RWKHU�ZKLOH�SOD\LQJ�WKH

JDPH�� 3OD\HUV
� H[FKDQJLQJ� D� IHZ� ZRUGV� ZLWK� VRPHRQH� ZKR� ZDWFKHV� WKH� JDPH� LV

SURKLELWHG��WRR��0RVW�SOD\HUV�WKHUHIRUH�KDYH�WKH�PRWLYDWLRQ�WKDW�ZDQW�WR�NQRZ�LI�WKHLU

PRYHV�WKDW�WKH\�FKRVH�ZKLOH�SOD\LQJ�WKH�JDPH�ZHUH�FRUUHFW��)XUWKHUPRUH��DW�JDPHV�RI

IDFH�WR�IDFH�W\SH�OLNH�6+2*,��FKHVV��FKHFNHU�DQG�VR�RQ�HDFK�SOD\HU�KDV�HDFK�YLHZSRLQW�RI



WKH� RSSRVLWH� VLGH�� 6R�� SOD\HUV� DUH� SUHVHQW� DW� .$162�6(1� ZLWK� D� JUHDW� WKULOO� RI

H[SHFWDWLRQ�WKDW�PLJKW�FRPH�LQ�FRQWDFW�ZLWK�DQRWKHU�YLHZSRLQW�

� � ,W�LV�DOPRVW�LPSRVVLEOH�WKDW�ZH�ILQG�RXW�D�FRUUHFW�PRYH�DW�D�VLWXDWLRQ�RI�GLIILFXOW�JDPHV

OLNH�6+2*,��:H�RIWHQ�XVH�D�NLQG�RI�LQWXLWLRQ�WR�GLIILFXOW�VLWXDWLRQV�OLNH�6+2*,��:H�FDOO

WKH� LQWXLWLRQ� �7$,.<2.8.$1��� ,W� LV� LPSRUWDQW� IRU� SOD\HUV� WR� KDYH� EHWWHU

7$,.<2.8.$1�� 7R� LPSURYH� LW�� SOD\HUV� QHHG� WR� GLVFXVV� WKHLU� RSLQLRQV� RI� PDQ\

VLWXDWLRQV�DERXW�JDPHV�

� � 7KHVH� H[SHFWDWLRQV� JLYH� .$162�6(1� WKH� WRQH� IRU� LGHDO� FR�RSHUDWLYH� OHDUQLQJ��:H

LQWHUSUHWHG�.$162�6(1�DV�D�JRRG�H[DPSOH�RI�FR�RSHUDWLYH�OHDUQLQJ��,W�LV�EHFDXVH�WKDW

LW� JLYHV� WZR� SOD\HUV� GLIIHUHQW� YLHZSRLQWV� QDWXUDOO\� DQG�PDNHV� WKH� SOD\HUV�PRWLYDWHG

YHU\�PXFK�

���([SHULPHQWV

�����2EMHFWLYHV

� � %\�H[DPLQLQJ�SOD\HUV�OHDUQLQJ�SURFHVVHV�IRU�.$162�6(1�RI�6+2*,��ZKDW�NLQGV�RI

LQIRUPDWLRQ� DUH� H[FKDQJHG� DQG� KRZ� WKH\� OHDUQ� DUH� LQYHVWLJDWHG�� :H� GHVLJQHG� WZR

FRQGLWLRQV� WR� H[DPLQH� WKH� LQIOXHQFH� RI� SDUWQHU
V� OHYHO�� /HDUQLQJ� SURFHVVHV� RI� QRYLFH

6+2*,�SOD\HU�ZLWK�ZKR�ZHUH�WKH�VDPH�OHYHO�SDUWQHU�DQG�WKH�KLJKHU� OHYHO�SDUWQHU�DW

.$162�6(1�ZHUH�REVHUYHG�

�����0HWKRG

� � 7KH� VXEMHFWV� LQ� WKLV� H[SHULPHQW� ZHUH� WZR� VWXGHQWV� LQ� WKH� 6+2*,� FOXE� RI� RXU

XQLYHUVLW\��7KH\�ZHUH�QRYLFH�SOD\HUV�RI�6+2*,��DPDWHXU���N\XX���:H�SUHSDUHG�DQRWKHU

SOD\HU� IRU� WKHLU� SDUWQHU� DW� .$162�6(1� ZKR� ZDV� D� PLGGOH�JUDGH� SOD\HU� RI� 6+2*,

�DPDWHXU���GDQ��

� 7KH�DFWXDO�H[SHULPHQWV�ZHUH�FRQGXFWHG�LQ�WKH�IROORZLQJ�RUGHU�

����3OD\LQJ�ZLWK�D�FRPSXWHU�SURJDP

� � ,Q�RUGHU�WR�NHHS�WKH�HTXDO�SDUWQHU
V�OHYHO�RI�WKH�6+2*,��D�VXEMHFW�SOD\HG�D�JDPH�ZLWK

D�FRPSXWHU�SURJUDP��7KH�VXEMHFW�ZDV�DOORZHG�XQUHVWULFWHG�WKRXJKW�WLPH�IRU�WKH�JDPH�

7KH�SDUWQHU�IRU�.$162�6(1�ZDWFKHG�WKH�JDPH�

����6HOI�H[SODLQLQJ�WKH�JDPH

� � 7KH�VXEMHFW�ZDV�SDUWHG�IURP�WKH�SDUWQHU�IRU�.$162�6(1�IRU�D�ZKLOH�DIWHU�WKH�JDPH

LV�RYHU�

7KH� VXEMHFW�ZDV� DVNHG� WR� WKLQN� DORXG�ZKLOH� UHFRQVWUXFWLQJ� WKH� JDPH�ZLWK� XVLQJ� WKH

FRPSXWHU�UHSOD\�IXQFWLRQ��DQG�DOO�SHUIRUPDQFHV�DUH�UHFRUGHG�E\�D�YLGHR�



����)LOOLQJ�RXW�WKH�ILUVW�TXHVWLRQQDLUH

� � 7KH�VXEMHFW�ZDV�DVNHG�WR�ILOO�D�TXHVWLRQQDLUH�DIWHU�KH�ILQLVKHG�H[SODLQLQJ�WKH�JDPH�

7KH�FRQWHQWV�RI�WKH�TXHVWLRQQDLUH�ZHUH���:KDW�LV�D�SRLQW�RQ�WKLV�JDPH"������:KDW�DUH

JRRG�PRYHV�RQ�WKLV�JDPH"���DQG�VR�RQ�

����3OD\LQJ�.$162�6(1

� � 7KH�VXEMHFW�DQG�WKH�SDUWQHU�IRU�.$162�6(1�ZHUH�DVNHG�WR�GLVFXVV�DERXW�WKH�JDPH�

DQG�DOO�SHUIRUPDQFHV�DUH�UHFRUGHG�E\�D�YLGHR�

����)LOOLQJ�RXW�WKH�VHFRQG�TXHVWLRQQDLUH

� � 7KH�VXEMHFW�ZDV�DVNHG�WR�ILOO�DQ�DQRWKHU�TXHVWLRQQDLUH�DIWHU�KH�ILQLVKHG�WKH�.$162�

6(1��7KH�FRQWHQWV�RI�LW�ZHUH�WKH�VDPH�RI�WKH�ILUVW�TXHVWLRQQDLUH�

� � :H� GHVLJQHG� WZR� FRQGLWLRQV�� 2QH� ZDV� WKDW� QRYLFH� VXEMHFW� GLVFXVVHG� ZLWK� QRYLFH

SDUWQHU� �11���$QRWKHU� ZDV� WKDW� QRYLFH� VXEMHFW� GLVFXVVHG� ZLWK�PLGGOH�JUDGH� SDUWQHU

�10��� :H� H[DPLQHG� WZR� FRQGLWLRQV� HDFK� �� WLPHV� IRU� �� PRQWKV� DQG� DQDO\]HG� WKHVH

YHUEDO�SURWRFRO�GDWD�DERYH����������

�����5HVXOWV�DQG�'LVFXVVLRQ

�5HVXOW��!�2QH�VXEMHFW�FRXOG�EHDW�WKH�FRPSXWHU�SURJUDP�WKDW�KH�KDG�QHYHU�EHDWHQ�

� � 7KLV�UHVXOW�LQGLFDWHV�WKDW�WKHUH�DUH�VRPH�HIIHFWLYH�OHDUQLQJ�SURFHVVHV�WKDW�FDQ
W�REWDLQ

LQ�RUGLQDU\�SOD\LQJ��:H�FDQ
W�DVVHUW�WKDW�WKH�SURFHVV�LV�.$162�6(1��,W�PLJKW�EH�VD\LQJ

WKDW�VSHDNLQJ�DORXG�DERXW�RZQ�JDPH�KDV�VRPH�VLJQLILFDQFH�IRU�HIIHFWLYH�OHDUQLQJ��7KH

VXEMHFWV�ZHUH�REVHUYHG�WKDW�UHIOHFWHG�WKH�WUDFH�RI�WKHLU�RZQ�JDPHV�WR�OHDUQ�D�OHVVRQ�IURP

LW�

�5HVXOW� �!� ,Q� ERWK� FRQGLWLRQV�� VXEMHFWV� FKDQJHG� WKHLU� RSLQLRQV� EHIRUH� DQG� DIWHU

.$162�6(1�

� � 7KLV� UHVXOW� ZDV� DFTXLUHG� IURP� H[DPLQLQJ� WZR� TXHVWLRQQDLUHV� EHIRUH� DQG� DIWHU

.$162�6(1�� ,W� LQGLFDWHV� WKDW�PRVW� VXEMHFWV� DUH� FKDQJHG� WKHLU� WKRXJKW� E\�.$162�

6(1�� H[DPLQLQJ�SURFHVV�ZDV� REVHUYHG�DW�PRVW�.$162�6(1��ZKLOH� LW�ZDVQ
W� VHHQ�DW

6HOI�H[SODLQLQJ�SURFHVV��$�VXEMHFW�DQG� WKH�SDUWQHU�GLYLGHG� WKHLU� UROHV�RI�REVHUYHU�DQG

LQYHQWRU�YHU\�QHDWO\��7KDW�KHOSHG�WKH�H[DPLQLQJ�RSHUDWLRQ�

�5HVXOW� �!� WKH\� ZHUH� WDONLQJ� RQ� GLIIHUHQW� ZDYHOHQJWKV� DW� 10�FRQGLWLRQ�� ZKLOH� WKH\

PDGH�D�SHUIHFW�SDLU�DW�11�FRQGLWLRQ�

� � 7KLV� LV� EHFDXVH� QRYLFH� DQG�PLGGOH�JUDGH� SOD\HUV
� LQWXLWLRQV� DUH� WRR� GLIIHUHQW�� 7KH

LGHDV� WKDW� PLGGOH�JUDGH� SOD\HU� QDWXUDOO\� JHQHUDWHG� ZHUHQ
W� DOPRVW� XQGHUVWRRG� E\



QRYLFH�SOD\HU��2Q�WKH�RWKHU�KDQG��WKH�FRQYHUVDWLRQ�JUHZ�OLYHO\�EHWZHHQ�QRYLFH�SOD\HUV�

�5HVXOW��!�,Q�ERWK�FRQGLWLRQV��SOD\HUV�ZLQQRZHG�WKH�FDQGLGDWHV�RI�PRYHV�GRZQ�DERXW

IURP���WR���

� � 0DQ\� UHVHDUFKHV� RQ� SUREOHP� VROYLQJ� KDYH� LQVLVWHG� WKDW� QRYLFH� VHDUFKHV� DOO

SRVVLELOLWLHV�IRU�GUXJV��+RZHYHU��QRYLFH�DV�ZHOO�DV�PLGGOH�JUDGH�SOD\HUV�FRXOG�VHOHFW�D

IHZ�FDQGLGDWHV�EHIRUH�WKH\�GHFLGHG�WKHLU�PRYHV��7KLV�UHVXOW�LQGLFDWHV�WKDW�QRYLFH�OHDUQ

WKH�ZD\�RI�WKLQNLQJ�DERXW�6+2*,�DW�ILUVW��7KH�RXWOLQH�RI�WKLQNLQJ�ZD\�WR�VHOHFW�WKHLU

PRYH�LV�D�VHTXHQWLDO�RI�WKLQNLQJ�WKDW�WKH\�JHQHUDWH�VRPH�FDQGLGDWHV�DW�D�VLWXDWLRQ�DQG

UHDG�WKH�WLSV�WR�VHOHFW�D�PRYH��:H�FDOO�LW��6+2*,�SOD\HUV
�VFULSW���7KLV�LV�EHFDXVH�WKDW

WKH\�PXVW�ZLQQRZ�WKH�FDQGLGDWHV�RI�PRYH�DV�SOD\HUV�FDQ
W�VHDUFK�IRU�GUXJV�LQ�GLIILFXOW

SUREOHPV�OLNH�6+2*,�

�5HVXOWV� �!� 0HWD�FRJQLWLYH� XWWHUDQFHV� DUH� REVHUYHG� DW� WKH� ODWWHU� SHULRG� RI� WKLV

H[SHULPHQW�

� � 6XEMHFWV�UHIHU�WR�WKH�PHWD�FRJQLWLYH�XWWHUDQFH�OLNH��,�WHQG�WR�FRXQWHU�ZLWK�D�GHIHQVLYH

IDOO���µ��6XFK�PRYH�LV�SDUWLFXODU�WR�WKH�FRPSXWHU�����DQG�VR�RQ�DW�WKH�ODWWHU�SHULRG�RI�WKLV

H[SHULPHQW��7KLV�LV�EHFDXVH�WKDW�WKH�H[SHULHQFHV�WKDW�WKH\�UHSOD\�DQG�UHIOHFW�WKHLU�RZQ

JDPH�KHOS�WKHLU�PHWD�FRJQLWLYH�YLHZV�RI�6+2*,�

���6+2*,�SOD\HUV
�VFULSW

� � %DVHG� RQ� WKH� UHVXOWV� RI� WKH� H[SHULPHQW� D� FRJQLWLYH� PRGHO� �6+2*,� SOD\HUV
� VFULSW

�636���LV�SURSRVHG�ZKLFK�VLPXODWHV�6+2*,�PRYH�VHOHFWLQJ��6+2*,�SOD\HUV�PXVW�OHDUQ

WKH�UXOHV�RI�6+2*,�DW�ILUVW�WLPH��7KH\�EHJLQ�WR�OHDUQ�636�DW�WKH�VDPH�WLPH��WRR�

� � )URP�WKH�UHVXOWV�RI�WKH�H[SHULPHQW�WKH�636�FRQVLVW�RI�WKUHH�VWDJHV�RI��*HQHUDWLQJ�WKH

FDQGLGDWHV� SURFHVV��� �:LQQRZLQJ� WKH� FDQGLGDWHV� SURFHVV�� DQG� �6HOHFWLQJ� RQH� PRYH

SURFHVV��

� � ,Q�JHQHUDWLQJ�WKH�FDQGLGDWHV�SURFHVV�WKH�FDQGLGDWHV�DUH�JHQHUDWHV�XVLQJ�LQWXLWLRQ��$W

VXFK�GLIILFXOW�SUREOHPV�OLNH�6+2*,�KXPDQ�DOZD\V�XVH�LQWXLWLRQ�QDWXUDOO\��7KHQ�LQ�WKH

QH[W�ZLQQRZLQJ�WKH�FDQGLGDWHV·�SURFHVV��SOD\HUV�VHDUFK�WKH�PDQ\�VLWXDWLRQV� IURP�WKH

FDQGLGDWHV��)LQDOO\��LQ�WKH�6HOHFWLQJ�RQH�PRYH�SURFHVV��WKHVH�FDQGLGDWHV�DUH�FRPSDUHG

ZLWK�XVLQJ�SOD\HUV
�HYDOXDWLRQ�VWDQGDUG�

� � 8VLQJ� 636�PRGHO� KHOSV� H[SODLQ� WKH� OHDUQLQJ� SURFHVVHV� DW� .$162�6(1�� /HDUQLQJ

SURFHVVHV�DUH�UHJDUGHG�DV�UHILQLQJ�SURFHVVHV�RI�LQWXLWLRQ�DQG�HYDOXDWLRQ�VWDQGDUG�

���&RQFOXVLRQ



� � ,Q� WKLV� UHVHDUFK� E\� REVHUYLQJ�.$162�6(1� WKURXJK� D� SV\FKRORJLFDO� H[SHULPHQW�� D

FRJQLWLYH�PRGHO�636�KDV�EHHQ�SURSRVHG��,W�KDV�EHHQ�H[SODLQHG�WKH�OHDUQLQJ�SURFHVV�ZLWK

636�PRGHO�

� � ,Q� WKH� H[SHULPHQW� RI� WKLV� UHVHDUFK� ��N\X�JUDGH� QRYLFH� KDV� EHHQ� XVHG� WR� REWDLQ

SUHOLPLQDU\� LQIRUPDWLRQ�DERXW� OHDUQLQJ�SURFHVVHV�DW�.$162�6(1��%XW� VOLJKWO\�PRUH

ORZ�JUDGH� QRYLFH� H[SHFWV� QRW� WR� KDYH� WKH� 636�PRGHO�� ,Q� WKH� IXWXUH� LW� LV� KRSHG� WKDW

SV\FKRORJLFDO�H[SHULPHQWV�KRZ�WKH�ORZHU�JUDGH�SOD\HUV
�OHDUQ�WKH�636�PRGHO�

5())(5(1&(

���(OOLVRQ�&�0�	�%R\NLQ��$�:�����&RPSULVLQJ�RXWFRPHV�IURP�GLIIHUHQWLDO�FRRSHUDWLYH�DQG

LQGLYLGXDOLVWLF�OHDUQLQJ�PHWKRGV����6RFLDO�%HKDYLRU�DQG�3HUVRQDOLW\����SS�������������

���0XOU\DQ�&�0����6WXGHQW�SDVVLYLW\�GXULQJ�FRRSHUDWLYH�VPDOO�JURXSV�LQ�PDWKHPDWLFV���

-RXUQDO�RI�(GXFDWLRQDO�5HVHDUFK������SS�������������
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A new AND/OR Tree Search Algorithm Using Proof Number and
Disproof Number
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Abstract

The proof number and the disproof number are
signi�cant ideas used to search an AND/OR
tree. This paper presents a new depth-�rst al-
gorithm, which behaves nearly best-�rst. The
basic idea is to �nd (dis)proof solutions selec-
tively when it seems better to (dis)prove the
root by looking at both the proof number and
the disproof number. The experimental results
on random trees show this algorithm is very
useful under memory space constraint and es-
pecially in the case when the solution is un-
known whether it is proof or disproof.

1 Introduction

In searching an AND/OR tree or an AND/OR graph,
AO*[Nilson, 1980] is intensively studied as an algorithm
of searching optimum proof solution. Some new algo-
rithms for searching AND/OR trees using the ideas of
the proof number or the disproof number were recently
proposed.
The origin of these ideas are the idea of the con-

spiracy numbers which was invented in the context of
minimax tree (multi-valued tree) searching [McAllester,
1988]. The large conspiracy numbers show that the min-
imax value is stable. The proof and disproof number are
the ideas obtained by applying the idea of the conspir-
acy numbers to an AND/OR tree (two-valued tree)[Allis,
1994]. In the early study only the idea of the proof num-
ber was taken into account, however in the recent study
both the ideas of the proof and disproof number became
to taken into account.
The best-�rst algorithm has a defect in spending a

large quantity of memory space without any counter-
measures. On the other hand, the algorithm using only
the proof number also has a defect that it relatively takes
long time in solving a problem with a disproof solution.
In order to overcome these defects, we suggest a new al-
gorithm taking a mixture of a good point of best-�rst
algorithm using both the proof and disproof number[Al-
lis, 1994] and a good point of depth-�rst algorithm using
only the proof number[Seo, 1995].

Section 2 explains some terms associated with
AND/OR tree search especially the proof number and
the disproof number. Section 3 classi�es the algorithms
for searching an AND/OR tree. Section 4 describes our
new search algorithm. Experimental results appear in
Section 5. Section 6 describes our conclusions.

2 Proof number and disproof number

An AND/OR tree is composed of nodes each of which
is whether an AND node or an OR node. The children
of OR nodes must be AND nodes, and vice versa. The
evaluation of each node results in one of the three val-
ues: true, false or unknown. A terminal node is a
node with the evaluation of true or false who cannot
be expanded any more. An internal node is a node who
can be expanded. A frontier node is a node at the tip of
the current search tree with the evaluation of unknown
or which has not yet been evaluated.
An AND/OR tree is solved if its root obtains the value

of true or false by minimax propagation under the as-
sumption of the ordering false < unknown < true.
A solved AND/OR tree with value true at its root is

called proved, while a solved tree with value false at its
root is called disproved. A solution tree is composed by
the nodes which are necessary to verify that the value of
its root is true or false. As to the proved solution tree,
at least one of the children of each OR node belongs
to the solution tree, and all the children of each AND
node belong to the solution tree. To the contrary, as
to the disproved solution tree, all the children of each
OR node belong to the solution tree, and at least one of
the children of each AND node belongs to the solution
tree. The aim of searching an AND/OR tree is to �gure
out whether the tree ultimately has proof or disproof
solution, and to obtain a solution tree.
The indicator that is showing the di�culty to be

(dis)proved is (dis)proof number. (Dis)proof number is
de�ned as the least number of frontier nodes of the cur-
rent search tree, which must be evaluated to true(false)
in order to ensure that the game-theoretical value of the
root is true(false).
The concrete method to calculate the proof and dis-

proof number is as follows. (In the following, n:pn and



n:dn stands for the proof number and the disproof num-
ber at node n respectively)

1. For a terminal node n

(a) When game-theoretical value is already known

i. When game-theoretically proof

n:pn = 0

n:dn = 1

ii. When game-theoretically disproof

n:pn = 1

n:dn = 0

(b) When game-theoretical value is not known yet

n:pn = 1

n:dn = 1

2. For an internal node n

(a) For an OR node

n:pn = Min
ni 2 children of n

ni:pn

n:dn =
X

ni 2 children of n

ni:dn

(b) For an AND node

n:pn =
X

ni 2 children of n

ni:pn

n:dn = Min
ni 2 children of n

ni:dn

3 Classi�cation of AND/OR tree search
algorithms

Proof-number search for AND/OR trees can be done
by only looking at the proof number or by looking at
both the proof number and the disproof number. There-
fore, it is possible to classify search algorithms from
the viewpoint of what kind of criteria is used for the
evaluation. Roughly speaking, proof-number search us-
ing both the proof and disproof number is the same as
conspiracy-number search with three possible values for
the conspiracy numbers(three-valued conspiracy-number
search), while proof-number search without using the
disproof number is the same as two-valued conspiracy-
number search. Because both the proof and disproof
number appears when conspiracy numbers are three-
valued, while either the proof number or the disproof
number only appears when conspiracy numbers are two-
valued. It is also possible to classify search algorithms
whether it is best-�rst search or depth-�rst search. As a
result, AND/OR tree search algorithms can be classi�ed
into four regions (see Table 1).
Elkan's depth-�rst algorithm is put into brackets in

Table 1. This is because this algorithm relatively doesn't
have a good performance. Due to limitation of space, we

criteria of evaluation used
only proof number and

proof number disproof number
best-�rst Elkan[1989] Allis[1994]

(AO*[Nilson, 1980])
depth-�rst Seo[1995] PDS

(Elkan[1989]) [this paper]

Table 1: Classi�cation of AND/OR tree search algo-
rithms

can't show the experimental results. In this paper, let
Elkan's algorithm indicate Elkan's best-�rst algorithm.
Best-�rst algorithm AO* is also put into brackets in

Table 1. This is because AO* uses information of the cost
from the root and the heuristic estimate of the cost to
a goal(terminal node with trivial proof solution) at each
node. Moreover, AO* is a search algorithm for searching
a graph.

3.1 Allis's Algorithm

Best-�rst search algorithm selects the frontier node, ex-
pands it, and update the information of the expansion
toward the root. Allis's algorithm arrives to the frontier
node by selecting the child of minimum proof(disproof)
number at each OR(AND) node.
In our implementation, a small improvement is added

when updating the proof and disproof numbers. As Al-
lis has mentioned [Allis, 1994], updating process can be
terminated when the new proof number is equal to the
old proof number, and at the same time, the new dis-
proof number is equal to the old disproof number. Our
improvement is to terminate the updating process when
the new proof number is not more than the old proof
number, and at the same time, the new disproof number
is not more than the old disproof number. The similar
improvement is done to Elkan's algorithm.

3.2 Elkan's Algorithm

The selection algorithm of the frontier node di�ers from
Allis's algorithm. Elkan's algorithm arrives to the fron-
tier node by selecting the child of minimum proof number
at each OR node, while selecting any child (except for
already proved child) at each AND node.
In our implementation, Elkan's algorithm is modi�ed

to select minimum proof number at each AND node,
too. The reason for this will be mentioned during the
explanation of Seo's algorithm.
Elkan's algorithm correspond to AO* with the follow-

ing assumptions as long as it is searching AND/OR tree,
under the de�nition of h(n) is the heuristic estimate of
the cost of going from node n to a goal, and the de�ni-
tion of cost(m, n) is the cost of going from node m to
node n.

8n; cost(nparent; n) = 0

8n; h(n) =

�
0 n 2 goal
1 n =2 goal



3.3 Seo's Algorithm

Seo's algorithm uses the proof number as a threshold
of iterative deepening. Therefore, this algorithm be-
haves nearly best-�rst manner (in the concrete, Elkan's
algorithm). The relation between Elkan's algorithm and
Seo's algorithm is similar to the relation between A* and
IDA* [Korf, 1985].
However the ordinary iterative deepening iterates only

at the root, it is possible to iterate at any node. This
method is called multiple iterative deepening [Seo, 1995;
1998]. Seo's algorithm performs multiple iterative deep-
ening at each AND node and the root. Basically, once
the threshold is given to the node, the subtree rooted
at that node is continued to be searched while the proof
number of that node is below the given threshold. (Seo
mentions in his thesis [Seo, 1995] that at an AND node,
even after the proof number exceeds the threshold, it
doesn't stop searching the subtree rooted at the AND
node for a while, in order to minimize the e�ort of node
reexpansions. However, because it is not clear when to
stop searching the subtree, and because it seems some
kind of gambling, in our implementation, it stops search-
ing right after the proof number exceeds the threshold.)
Each OR node assigns the given threshold to all its

child, while each AND node assigns the threshold to its
child iteratively starting from 2. Practically, because of
the multiple iterative deepening, each OR node selects
the child with nearly minimum proof number. How-
ever, it is not clear what kind of selection each AND
node is making. Seo mentions in his thesis [Seo, 1995;
1998], at each AND node that it is e�cient to select the
child which have never been expanded at the previous it-
erations. This is also performed in order to minimize the
e�ort of node reexpansions. In our implementation, each
AND node selects a child with minimum proof number,
expecting that it is not expanded at the previous itera-
tions. Because the proof number of the node which have
been searched deeper tends to become larger.
Seo also mentions of his replacement scheme of the

transposition table. In our experimental results, the ta-
ble size is so large that no replacement scheme is nec-
essary. Besides, Seo uses some other improvements, but
most of them is specialized to tsume-shogi, the Japanese
chess problem. As we have experimental results on ran-
dom trees, these improvements are of no use.

3.4 The Necessity of a new Algorithm

In general, the best-�rst algorithms preserve the whole
search tree in transposition table. Therefore without any
countermeasures, they unavoidably run out of memory
quickly and must terminate the search. On the other
hand, in general, the search algorithms using only proof
number actively search for proof solutions, but not for
disproof solutions. Disproof solutions are seriously de-
layed to be solved or even can not be solved in prac-
tice. Therefore, the depth-�rst algorithm using both
the proof and disproof number is very signi�cant. A
new search algorithm PDS(Proof-number and Disproof-
number Search) is exactly such an algorithm.

4 PDS(Proof-number and
Disproof-number Search) algorithm

We suggest a new depth-�rst algorithm using both the
proof and disproof number. We call this new algorithm
PDS. As mentioned above, Seo's algorithm performs
multiple iterative deepening at each AND node and the
root. PDS performs multiple iterative deepening at all
nodes. Therefore, PDS behaves nearly best-�rst manner
(in the concrete, Allis's algorithm). Once the thresholds
are given to the node, the subtree rooted at that node
is continued to be searched while either the proof or dis-
proof number of that node is below the given thresholds.
Each OR(AND) node assigns the thresholds to its child
with minimum proof(disproof) number. If the threshold
of (dis)proof number is incremented in the next iteration,
the search continues mainly using (dis)proof number for
selectively �nding (dis)proof solution. If the proof num-
ber is smaller(larger) than the disproof number, it means
that it seems to have a proof(disproof) solution. There-
fore, PDS looks at the proof and disproof number in
the transposition table, increments the threshold of the
proof(disproof) number in case when the proof number
is smaller(larger) than the disproof number, and contin-
ues searching. In this way, by using the information of
both the proof and disproof number, the course of the
search can be controlled to some degree.
PDS can be simply modi�ed into Seo's algorithm by

changing the strategy of incrementing the thresholds of
the iteration. Moreover, all improvements mentioned by
Seo can also be applied to PDS.
The proof number at an OR node and the disproof

number at an AND node are essentially equivalent. Sim-
ilarly, the disproof number at an OR node and the proof
number at an AND node are essentially equivalent. As
they are dual to each other, an algorithm equivalent
to negamax algorithm in the context of minimax tree
searching can be constructed by naming the former �
and the latter �. We call this algorithm NegaPDS. The
concrete Memory-Enhanced NegaPDS algorithm is as
follows. (In the following, �Sum() is a function to calcu-
late the sum of � of all the children. �Min() is a function
to calculate the minimum of all the children. PutInTT()
and LookUpTT() is a function to record and refer the
transposition table respectively.)

// Iterative deepening at the root r

procedure NegaPDS(r) f
r:� = 1; r:� = 1;
while (r:� 6= 0 && r:� 6= 0) f
MID(r);

// If the solution ultimately seems to be
// (dis)proof, the search is continued mainly

// using (dis)proof number in the next iteration

if (r:� � r:�) r:�++;
else r:�++;

g
g



// Expansion of the node n

procedure MID(n) f
// 1. Refer the transposition table and
// terminate searching when it is unnecessary

LookUpTT(n, &�, &�);
if (� = 0 k � = 0 k (� � n:� && � � n:�)) f
n:� = �; n:� = �;
return;

g
// 2. Terminate searching if n is a terminal node,
// otherwise generate all the legal moves

if (n is a terminal node) f
if ((n:value = true && n is an AND node) k
(n:value = false && n is an OR node)) f
n:� =1; n:� = 0;

g else f n:� = 0; n:� =1; g
PutInTT(n, n:�, n:�);
return;

g
generate all the legal moves;

// 3. Avoidance of cycles by using transposition table

PutInTT(n, n:�, n:�);

// 4. Multiple iterative deepening

while (1) f
// Terminate searching if both proof number and
// disproof number is over or equal to their thresholds

if (�Sum(n) = 0 k �Min(n) = 0 k
(n:� � �Sum(n) && n:� � �Min(n))) f
n:� = �Min(n); n:� = �Sum(n);
PutInTT(n, n:�, n:�);
return;

g
� = max(�, �Min(n));
nchild = SelectChild(n, �);
LookUpTT(nchild, &�child, &�child);
// If the solution ultimately seems to be
// (dis)proof, the search is continued mainly
// using (dis)proof number in the next iteration

if (n:� > �Sum(n) &&
(�child � �child k n:� � �Min(n))) f
nchild:� = �child + 1; nchild:� = �child;

g else f
nchild:� = �child; nchild:� = �child + 1;

g
MID(nchild);

g
g

// Selection among the children

procedure SelectChild(n, �) f

for (each child nchild) f
�child = nchild:�;
if (�child 6= 0) �child = max(�child, �);

return the child with minimum �child;
(If there are plural children with minimum �child,
return the child with minimum nchild:� among them)

g

A search algorithm for an AND/OR tree can also be
applied to a minimax tree by the method Allis [Allis,
1994] and Schijf [Schijf, 1993] have mentioned. The ba-
sic idea is to take notice of the fact that the process of
determining whether the game-theoretical value of the
minimax tree is over v or not is two-valued. If true is
de�ned as the minimax value that is over v, and if false
is de�ned as the minimax value below or equal to v, the
minimax tree is equivalent to an AND/OR tree. Then
AND/OR tree search algorithm is available. In this way,
by applying AND/OR tree search algorithm like binary
search, the game-theoretical value can be identi�ed.
Another extension is possible to PDS. As mentioned

above, AO* uses the information of the cost from the
root to each node, and the heuristic estimate of the cost
from each node to a goal. PDS can be extended by
using the information similar to these. The cost from
the root to each node as a part of the (dis)proof solution,
and the heuristic estimate of the cost from each node to
a (dis)proof goal(terminal node with trivial (dis)proof
solution). When this kind of extension is made, PDS
terminates in the optimal solution either the problem
has a proof solution or a disproof solution [Nagai, 1999].

5 Performance measures on random
trees

We used random trees for experiments. In general, when
playing two-player games, the one who is more advanta-
geous than the other has a tendency to have relatively
more moves and has wider range of selection than the
other. Our random tree has the feature re
ecting this
fact.
avg stands for the average branching factor. N(�, �)

stands for normal distribution with the average of � and
the variance of �2 (In this paper, let � equal 0). P(�)
stands for Poisson distribution with the average and the
variance of �. The basic idea is that each node n has
an internal value n:v and if n:v becomes over 1(under
0), n:value is set to true(false), otherwise n:value is
set to unknown. If n:value is either true or false, n
is made to be a terminal node. n:v which is invisible
from the search routine shows the degree of advantage
and depends on nparent:v. n:bf stands for the branching
factor, or the number of children. If n:value is equal to
unknown, n:bf is set to P(�bf �1) + 1 which is over or
equal to 1, while �bf depends on n:v in order to re
ect
the degree of advantage. For example, if n:v is equal to
0.5, �bf is set to avg. If n:v is over 0.5, �bf is set to the
value over avg at each OR node and is set to the value
under avg at each AND node. If n:value is either true
or false, n:bf is set to 0 because n is a terminal node.
The large avg makes the random tree tend to become

wider. The small � makes the random tree tend to be-
come deeper. The value root:v close to 1(0) makes the
probability that the random tree has a proof(disproof)
solution tend to become larger. The outline for making
a random tree is as follows.

n:v = nparent:v +N(�; �)



1. For a terminal node n

(a) n:v � 1 n:value = true

n:bf = 0

(b) n:v � 0 n:value = false

n:bf = 0

2. For an internal node n

(a) At an OR node

n:value = unknown

n:bf = P(�bf � 1) + 1

while �bf = 2(avg � �bfmin)�n:v + �bfmin

(b) At an AND node

n:value = unknown

n:bf = P(�bf � 1) + 1

while �bf = �2(avg � �bfmin)�n:v

+2avg � �bfmin

We have implemented four algorithms for the exper-
iments, Elkan's algorithm(as limited version of AO*),
Seo's algorithm, Allis's algorithm, and PDS.
As for time requirement, we use the ratio of the num-

ber of node generations to that needed by Allis's algo-
rithm. This is because if we use the average of the actual
numbers of node generations itself, the average will no
longer be an average of all the problems, since the prob-
lems which need much e�ort to solve have more in
uence
on it. Therefore, we use the number of node generations
needed by Allis's algorithm as a standard. At this time,
if the same node is generated more than two times, the
number of node generation in this experiment contains
them in duplication. As for memory space requirement,
we used the ratio of the number of recorded positions
in the transposition table to that needed by Allis's al-
gorithm. Note that because results of Allis's algorithm
is always taken as a standard, its performance is always
1.0 in this experimental results.
In general, the number of terminal nodes is most com-

monly used as a performance measurement. It seems to
be proper when node-evaluating time is the main fac-
tor of the elapsed CPU time. However when searching
an AND/OR tree, node-evaluating time is usually short,
e.g., mate at chess. Therefore, we concluded that the
number of node generations and the number of recorded
positions in the transposition table are more proper cri-
teria.
In our implementation, if an OR(AND) node ulti-

mately become proved(disproved), all subtrees rooted at
its children except the only proved(disproved) child are
eliminated. In other words, after each node being solved,
the partial solution tree is left in the transposition table.
All the other descendants of the solved node are elim-
inated. Furthermore, in order to see the experimental
results in the situation under memory space constraint,
we implemented an easygoing method to restrict the us-
age of the transposition table. At each node n, all the

children nchild are eliminated under some condition just
before the search process goes up to nparent. In other
words, at each node n, if its proof number or disproof
number becomes not less than its threshold, the search
process terminates searching under that node and goes
up to its parent nparent. At that time, all the children
nchild are eliminated from the transposition table if they
didn't satisfy the surviving condition. The node which
does not satisfy the surviving condition can only be in
the transposition table temporarily. The strict surviving
condition makes the usage of the transposition table be
smaller. The defect of this easygoing restriction is that
it can not be applied to Elkan's algorithm and Allis's
algorithm. As with PDS, we use the surviving condition
of � � t ^ � � t. As with Seo's algorithm, we use the
surviving condition of pn � t. Note that t is a kind of
threshold which is completely di�erent from the thresh-
old of the multiple iterative deepening we mentioned in
Section 4.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

ra
tio

 o
f 

no
de

 g
en

er
at

io
ns

ratio of recorded positions in the transposition table

Elkan
Allis
Seo

PDS

Figure 1: table-recorded positions and node expansions
with proof solutions

Figure 1 shows the relation between the ratio of the
number of recorded positions in the transposition table
and the ratio of the number of node generations in case
of proof solutions with average branching factor of 8,
12, 16, totally 60 problems. The surviving conditions
of Seo's algorithm are no elimination, pn � 3, pn � 4,
pn � 5, pn � 6, and pn � 7. The surviving conditions
of PDS are no elimination, � � 2^ � � 2, � � 3^ � � 3,
� � 4 ^ � � 4, and � � 5 ^ � � 5.
Figure 2 shows the same relation in case of disproof

solutions with the average branching factor of 8, 12, 16,
totally 60 problems. As there were many problems which
Seo's algorithm and Elkan's algorithm cannot solve in
practice, they are omitted in Figure 2. The surviving
conditions of PDS are same as Figure 1.
Note that PDS can solve both proof and disproof prob-

lems even under relatively restricted memory condition.
Because of multiple iterative deepening, Seo's algo-

rithm and PDS have relatively large overhead. There-
fore, practically, they require more CPU time. As PDS
performs multiple iterative deepening at all nodes, the
overhead of PDS seems to be larger than Seo's algorithm.
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Figure 2: table-recorded positions and node expansions
with disproof solutions
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Figure 3: table-recorded positions and node expansions
with proof solutions

Figure 3 plots the relation between the ratio of the
number of recorded positions in the transposition table
and the ratio of the number of node generations in case
of proof solutions, each problem with average branch-
ing factor of 8, 12, 16, totally 60 problems. Surviving
condition of Seo's algorithm and PDS is pn � 5 and
� � 2 ^ � � 2 respectively.
Figure 4 plots the same relation in case of disproof

solutions, each problem with average branching factor
of 8, 12, 16, totally 60 problems. Surviving condition of
PDS is � � 2 ^ � � 2.
Figure 3 and Figure 4 show that PDS requires rela-

tively less memory space than the other three algorithms.

6 Conclusion

In this paper we have suggested a new depth-�rst multi-
ple iterative deepening algorithm PDS for searching an
AND/OR tree. It nearly behaves in best-�rst manner by
using both proof number and disproof number as thresh-
olds of multiple iterative deepening. Both proof-number
search using only proof number and best-�rst search al-
gorithm have some defects. The aim of our new algo-
rithm is to overcome these defects. The experimental
results on random trees have shown that PDS is very
useful under memory space constraint.
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Figure 4: table-recorded positions and node expansions
with disproof solutions

Even though PDS is an algorithm for searching an
AND/OR tree, we have shown how to apply PDS to
minimax tree searching.
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