A new AND/OR Tree Search Algorithm Using Proof Number and
Disproof Number

Ayumu Nagai
Department of Information Science,
University of Tokyo

Abstract

The proof number and the disproof number are
significant ideas used to search an AND/OR
tree. This paper presents a new depth-first al-
gorithm, which behaves nearly best-first. The
basic idea is to find (dis)proof solutions selec-
tively when it seems better to (dis)prove the
root by looking at both the proof number and
the disproof number. The experimental results
on random trees show this algorithm is very
useful under memory space constraint and es-
pecially in the case when the solution is un-
known whether it is proof or disproof.

1 Introduction

In searching an AND/OR tree or an AND/OR graph,
AO*[Nilson, 1980] is intensively studied as an algorithm
of searching optimum proof solution. Some new algo-
rithms for searching AND/OR trees using the ideas of
the proof number or the disproof number were recently
proposed.

The origin of these ideas are the idea of the con-
spiracy numbers which was invented in the context of
minimax tree (multi-valued tree) searching [McAllester,
1988]. The large conspiracy numbers show that the min-
imax value is stable. The proof and disproof number are
the ideas obtained by applying the idea of the conspir-
acy numbers to an AND/OR tree (two-valued tree)[Allis,
1994]. In the early study only the idea of the proof num-
ber was taken into account, however in the recent study
both the ideas of the proof and disproof number became
to taken into account.

The best-first algorithm has a defect in spending a
large quantity of memory space without any counter-
measures. On the other hand, the algorithm using only
the proof number also has a defect that it relatively takes
long time in solving a problem with a disproof solution.
In order to overcome these defects, we suggest a new al-
gorithm taking a mixture of a good point of best-first
algorithm using both the proof and disproof number[Al-
lis, 1994] and a good point of depth-first algorithm using
only the proof number[Seo, 1995].

Section 2 explains some terms associated with
AND/OR tree search especially the proof number and
the disproof number. Section 3 classifies the algorithms
for searching an AND/OR tree. Section 4 describes our
new search algorithm. Experimental results appear in
Section 5. Section 6 describes our conclusions.

2 Proof number and disproof number

An AND/OR tree is composed of nodes each of which
is whether an AND node or an OR node. The children
of OR nodes must be AND nodes, and vice versa. The
evaluation of each node results in one of the three val-
ues: true, false or unknown. A terminal node is a
node with the evaluation of true or false who cannot
be expanded any more. An internal node is a node who
can be expanded. A frontier node is a node at the tip of
the current search tree with the evaluation of unknown
or which has not yet been evaluated.

An AND/OR tree is solved if its root obtains the value
of true or false by minimax propagation under the as-
sumption of the ordering false < unknown < true.

A solved AND/OR tree with value true at its root is
called proved, while a solved tree with value false at its
root is called disproved. A solution tree is composed by
the nodes which are necessary to verify that the value of
its root is true or false. As to the proved solution tree,
at least one of the children of each OR node belongs
to the solution tree, and all the children of each AND
node belong to the solution tree. To the contrary, as
to the disproved solution tree, all the children of each
OR node belong to the solution tree, and at least one of
the children of each AND node belongs to the solution
tree. The aim of searching an AND/OR tree is to figure
out whether the tree ultimately has proof or disproof
solution, and to obtain a solution tree.

The indicator that is showing the difficulty to be
(dis)proved is (dis)proof number. (Dis)proof number is
defined as the least number of frontier nodes of the cur-
rent search tree, which must be evaluated to true(false)
in order to ensure that the game-theoretical value of the
root is true(false).

The concrete method to calculate the proof and dis-
proof number is as follows. (In the following, n.pn and

n.dn stands for the proof number and the disproof num-
ber at node n respectively)

1. For a terminal node n

(a) When game-theoretical value is already known
i. When game-theoretically proof

nopn = 0
ndn = o0

ii. When game-theoretically disproof

npn = o0
ndn = 0

(b) When game-theoretical value is not known yet

npn = 1
ndn = 1

2. For an internal node n
(a) For an OR node

Min

n; € children of n

ndn = Z

n; € children of n

(b) For an AND node

n.pn = Z

n; € children of n
Min

n; € children of n

3 Classification of AND/OR tree search
algorithms

Proof-number search for AND/OR trees can be done
by only looking at the proof number or by looking at
both the proof number and the disproof number. There-
fore, it is possible to classify search algorithms from
the viewpoint of what kind of criteria is used for the
evaluation. Roughly speaking, proof-number search us-
ing both the proof and disproof number is the same as
conspiracy-number search with three possible values for
the conspiracy numbers(three-valued conspiracy-number
search), while proof-number search without using the
disproof number is the same as two-valued conspiracy-
number search. Because both the proof and disproof
number appears when conspiracy numbers are three-
valued, while either the proof number or the disproof
number only appears when conspiracy numbers are two-
valued. It is also possible to classify search algorithms
whether it is best-first search or depth-first search. As a
result, AND/OR tree search algorithms can be classified
into four regions (see Table 1).

Elkan’s depth-first algorithm is put into brackets in
Table 1. This is because this algorithm relatively doesn’t
have a good performance. Due to limitation of space, we

n.pn = n;.pN

n;.dn

n;.pn

n.dn = n;.dn

criteria of evaluation used
only proof number and
proof number disproof number
best-first Elkan[1989] Allis[1994]
(AO*[Nilson, 1980])
depth-first Seo[1995] PDS
(Elkan[1989]) [this paper]

Table 1: Classification of AND/OR tree search algo-
rithms

can’t show the experimental results. In this paper, let
Elkan’s algorithm indicate Elkan’s best-first algorithm.

Best-first algorithm AO* is also put into brackets in
Table 1. This is because AO* uses information of the cost
from the root and the heuristic estimate of the cost to
a goal(terminal node with trivial proof solution) at each
node. Moreover, AO* is a search algorithm for searching
a graph.

3.1 Allis’s Algorithm

Best-first search algorithm selects the frontier node, ex-
pands it, and update the information of the expansion
toward the root. Allis’s algorithm arrives to the frontier
node by selecting the child of minimum proof(disproof)
number at each OR(AND) node.

In our implementation, a small improvement is added
when updating the proof and disproof numbers. As Al-
lis has mentioned [Allis, 1994], updating process can be
terminated when the new proof number is equal to the
old proof number, and at the same time, the new dis-
proof number is equal to the old disproof number. Our
improvement is to terminate the updating process when
the new proof number is not more than the old proof
number, and at the same time, the new disproof number
is not more than the old disproof number. The similar
improvement is done to Elkan’s algorithm.

3.2 Elkan’s Algorithm

The selection algorithm of the frontier node differs from
Allis’s algorithm. Elkan’s algorithm arrives to the fron-
tier node by selecting the child of minimum proof number
at each OR node, while selecting any child (except for
already proved child) at each AND node.

In our implementation, Elkan’s algorithm is modified
to select minimum proof number at each AND node,
too. The reason for this will be mentioned during the
explanation of Seo’s algorithm.

Elkan’s algorithm correspond to AO* with the follow-
ing assumptions as long as it is searching AND/OR tree,
under the definition of h(n) is the heuristic estimate of
the cost of going from node n to a goal, and the defini-
tion of cost(m, n) is the cost of going from node m to
node n.

Vn, cost(nparent,m) = 0

. 0 n € goal
¥n, h(n) = { 1 n ¢ goal

3.3 Seo’s Algorithm

Seo’s algorithm uses the proof number as a threshold
of iterative deepening. Therefore, this algorithm be-
haves nearly best-first manner (in the concrete, Elkan’s
algorithm). The relation between Elkan’s algorithm and
Seo’s algorithm is similar to the relation between A* and
IDA* [Korf, 1985].

However the ordinary iterative deepening iterates only
at the root, it is possible to iterate at any node. This
method is called multiple iterative deepening [Seo, 1995;
1998]. Seo’s algorithm performs multiple iterative deep-
ening at each AND node and the root. Basically, once
the threshold is given to the node, the subtree rooted
at that node is continued to be searched while the proof
number of that node is below the given threshold. (Seo
mentions in his thesis [Seo, 1995] that at an AND node,
even after the proof number exceeds the threshold, it
doesn’t stop searching the subtree rooted at the AND
node for a while, in order to minimize the effort of node
reexpansions. However, because it is not clear when to
stop searching the subtree, and because it seems some
kind of gambling, in our implementation, it stops search-
ing right after the proof number exceeds the threshold.)

Each OR node assigns the given threshold to all its
child, while each AND node assigns the threshold to its
child iteratively starting from 2. Practically, because of
the multiple iterative deepening, each OR node selects
the child with nearly minimum proof number. How-
ever, it is not clear what kind of selection each AND
node is making. Seo mentions in his thesis [Seo, 1995;
1998], at each AND node that it is efficient to select the
child which have never been expanded at the previous it-
erations. This is also performed in order to minimize the
effort of node reexpansions. In our implementation, each
AND node selects a child with minimum proof number,
expecting that it is not expanded at the previous itera-
tions. Because the proof number of the node which have
been searched deeper tends to become larger.

Seo also mentions of his replacement scheme of the
transposition table. In our experimental results, the ta-
ble size is so large that no replacement scheme is nec-
essary. Besides, Seo uses some other improvements, but
most of them is specialized to tsume-shogi, the Japanese
chess problem. As we have experimental results on ran-
dom trees, these improvements are of no use.

3.4 The Necessity of a new Algorithm

In general, the best-first algorithms preserve the whole
search tree in transposition table. Therefore without any
countermeasures, they unavoidably run out of memory
quickly and must terminate the search. On the other
hand, in general, the search algorithms using only proof
number actively search for proof solutions, but not for
disproof solutions. Disproof solutions are seriously de-
layed to be solved or even can not be solved in prac-
tice. Therefore, the depth-first algorithm using both
the proof and disproof number is very significant. A
new search algorithm PDS(Proof-number and Disproof-
number Search) is exactly such an algorithm.

4 PDS(Proof-number and

Disproof-number Search) algorithm

We suggest a new depth-first algorithm using both the
proof and disproof number. We call this new algorithm
PDS. As mentioned above, Seo’s algorithm performs
multiple iterative deepening at each AND node and the
root. PDS performs multiple iterative deepening at all
nodes. Therefore, PDS behaves nearly best-first manner
(in the concrete, Allis’s algorithm). Once the thresholds
are given to the node, the subtree rooted at that node
is continued to be searched while either the proof or dis-
proof number of that node is below the given thresholds.
Each OR(AND) node assigns the thresholds to its child
with minimum proof(disproof) number. If the threshold
of (dis)proof number is incremented in the next iteration,
the search continues mainly using (dis)proof number for
selectively finding (dis)proof solution. If the proof num-
ber is smaller(larger) than the disproof number, it means
that it seems to have a proof(disproof) solution. There-
fore, PDS looks at the proof and disproof number in
the transposition table, increments the threshold of the
proof(disproof) number in case when the proof number
is smaller(larger) than the disproof number, and contin-
ues searching. In this way, by using the information of
both the proof and disproof number, the course of the
search can be controlled to some degree.

PDS can be simply modified into Seo’s algorithm by
changing the strategy of incrementing the thresholds of
the iteration. Moreover, all improvements mentioned by
Seo can also be applied to PDS.

The proof number at an OR node and the disproof
number at an AND node are essentially equivalent. Sim-
ilarly, the disproof number at an OR node and the proof
number at an AND node are essentially equivalent. As
they are dual to each other, an algorithm equivalent
to negamax algorithm in the context of minimax tree
searching can be constructed by naming the former ¢
and the latter §. We call this algorithm NegaPDS. The
concrete Memory-Enhanced NegaPDS algorithm is as
follows. (In the following, ®Sum() is a function to calcu-
late the sum of ¢ of all the children. AMin() is a function
to calculate the minimum of all the children. PutInTT()
and LookUpTT() is a function to record and refer the
transposition table respectively.)

// Tterative deepening at the root r
procedure NegaPDS(r) {

ro=1 rd=1;
while (r.9 #0 && r.d #0) {
MID(r);

// If the solution ultimately seems to be
// (dis)proof, the search is continued mainly
// using (dis)proof number in the next iteration
if (r.¢ <r.Jd) r.o++;
else r.0++;
}
}

// Expansion of the node n

procedure MID(n) {
// 1. Refer the transposition table and
// terminate searching when it is unnecessary
LookUpTT(n, &, &9);
if (¢=06=0[(¢2n¢ &&=n.0d)){
n.og=¢; nd=07a;
return;
}
// 2. Terminate searching if n is a terminal node,
// otherwise generate all the legal moves
if (n is a terminal node) {
if ((n.value = true && n is an AND node) ||
(n.walue = false && n is an OR node)) {
n.¢g =o00; n.6=0;
telse{ n¢=0; nd=oc; }
PutInTT(n, n.¢, n.0);
return;

generate all the legal moves;
// 3. Avoidance of cycles by using transposition table
PutInTT(n, n.¢, n.0);
// 4. Multiple iterative deepening
while (1) {
// Terminate searching if both proof number and
// disproof number is over or equal to their thresholds
if (®Sum(n) =0 || AMin(n) =0 ||
(n.d < ®Sum(n) && n.¢ < AMin(n))) {
n.¢ = AMin(n); n.d = ®Sum(n);
PutInTT(n, n.¢, n.0);
return;

}
5 = max(6, AMin(n);
Nepita = SelectChild(n, @);
LookUpTT (nchita, &oenita, &deniia);
// If the solution ultimately seems to be
// (dis)proof, the search is continued mainly
// using (dis)proof number in the next iteration
if (n.0 > ®Sum(n) &&
(Gchita < dchirg || n.¢ < AMin(n))) {
Nehild-® = Pehitd + 15 Nchitd-0 = denitd;
} else {
Nechild-® = Pehitds Nehitd-0 = Ochitd + 1
MID (nchita);
}
}

// Selection among the children

procedure SelectChild(n, ¢) {
for (each child Tlc}”'[d) {
Ochild = Nechitd-0;
if (chita # 0) chita = max(dchia, @);
return the child with minimum 6.5;4;
(If there are plural children with minimum 6cp;;4,
return the child with minimum 7.pi4.¢ among them)

}

A search algorithm for an AND/OR tree can also be
applied to a minimax tree by the method Allis [Allis,
1994] and Schijf [Schijf, 1993] have mentioned. The ba-
sic idea is to take notice of the fact that the process of
determining whether the game-theoretical value of the
minimax tree is over v or not is two-valued. If true is
defined as the minimax value that is over v, and if false
is defined as the minimax value below or equal to v, the
minimax tree is equivalent to an AND/OR tree. Then
AND/OR tree search algorithm is available. In this way,
by applying AND/OR tree search algorithm like binary
search, the game-theoretical value can be identified.

Another extension is possible to PDS. As mentioned
above, AO* uses the information of the cost from the
root to each node, and the heuristic estimate of the cost
from each node to a goal. PDS can be extended by
using the information similar to these. The cost from
the root to each node as a part of the (dis)proof solution,
and the heuristic estimate of the cost from each node to
a (dis)proof goal(terminal node with trivial (dis)proof
solution). When this kind of extension is made, PDS
terminates in the optimal solution either the problem
has a proof solution or a disproof solution [Nagai, 1999].

5 Performance measures on random
trees

We used random trees for experiments. In general, when
playing two-player games, the one who is more advanta-
geous than the other has a tendency to have relatively
more moves and has wider range of selection than the
other. Our random tree has the feature reflecting this
fact.

avg stands for the average branching factor. N(u, o)
stands for normal distribution with the average of y and
the variance of o2 (In this paper, let u equal 0). P()\)
stands for Poisson distribution with the average and the
variance of A. The basic idea is that each node n has
an internal value n.v and if n.v becomes over 1(under
0), n.value is set to true(false), otherwise n.value is
set to unknown. If n.value is either true or false, n
is made to be a terminal node. n.v which is invisible
from the search routine shows the degree of advantage
and depends on nparent.v. n.0f stands for the branching
factor, or the number of children. If n.value is equal to
unknown, n.bf is set to P(Apr — 1) + 1 which is over or
equal to 1, while A\y; depends on n.v in order to reflect
the degree of advantage. For example, if n.v is equal to
0.5, Apy is set to avg. If n.v is over 0.5, Ays is set to the
value over avg at each OR node and is set to the value
under avg at each AND node. If n.value is either true
or false, n.bf is set to 0 because n is a terminal node.

The large avg makes the random tree tend to become
wider. The small ¢ makes the random tree tend to be-
come deeper. The value root.v close to 1(0) makes the
probability that the random tree has a proof(disproof)
solution tend to become larger. The outline for making
a random tree is as follows.

.Y = Npgrent. ¥ + N(pt, 0)

1. For a terminal node n

(a) nv>1 n.value = true
n.bf =0
(b) n.v <0 n.value = false

nbf =0
2. For an internal node n
(a) At an OR node
n.value = unknown
nbf =P(A\yy —1)+1
while Apy = 2(avg — Apfimin) X100 + N fmin
(b) At an AND node
n.value = unknown
nbf =P(A\yy—1)+1
while Apr = —=2(avg — Apfmin) X N0

+2avg — Apfimin

We have implemented four algorithms for the exper-
iments, Elkan’s algorithm(as limited version of AO*),
Seo’s algorithm, Allis’s algorithm, and PDS.

As for time requirement, we use the ratio of the num-
ber of node generations to that needed by Allis’s algo-
rithm. This is because if we use the average of the actual
numbers of node generations itself, the average will no
longer be an average of all the problems, since the prob-
lems which need much effort to solve have more influence
on it. Therefore, we use the number of node generations
needed by Allis’s algorithm as a standard. At this time,
if the same node is generated more than two times, the
number of node generation in this experiment contains
them in duplication. As for memory space requirement,
we used the ratio of the number of recorded positions
in the transposition table to that needed by Allis’s al-
gorithm. Note that because results of Allis’s algorithm
is always taken as a standard, its performance is always
1.0 in this experimental results.

In general, the number of terminal nodes is most com-
monly used as a performance measurement. It seems to
be proper when node-evaluating time is the main fac-
tor of the elapsed CPU time. However when searching
an AND/OR tree, node-evaluating time is usually short,
e.g., mate at chess. Therefore, we concluded that the
number of node generations and the number of recorded
positions in the transposition table are more proper cri-
teria.

In our implementation, if an OR(AND) node ulti-
mately become proved(disproved), all subtrees rooted at
its children except the only proved(disproved) child are
eliminated. In other words, after each node being solved,
the partial solution tree is left in the transposition table.
All the other descendants of the solved node are elim-
inated. Furthermore, in order to see the experimental
results in the situation under memory space constraint,
we implemented an easygoing method to restrict the us-
age of the transposition table. At each node n, all the

children n.p;4 are eliminated under some condition just
before the search process goes up to npqrent. In other
words, at each node n, if its proof number or disproof
number becomes not less than its threshold, the search
process terminates searching under that node and goes
up to its parent npqren:- At that time, all the children
Nehita are eliminated from the transposition table if they
didn’t satisfy the surviving condition. The node which
does not satisfy the surviving condition can only be in
the transposition table temporarily. The strict surviving
condition makes the usage of the transposition table be
smaller. The defect of this easygoing restriction is that
it can not be applied to Elkan’s algorithm and Allis’s
algorithm. As with PDS, we use the surviving condition
of > tANd > t. As with Seo’s algorithm, we use the
surviving condition of pn > t. Note that ¢ is a kind of
threshold which is completely different from the thresh-
old of the multiple iterative deepening we mentioned in
Section 4.

2 T T T

T o T

1.8 | \G Ses — 5 -
. y . PDS —¥—
5 16 \ -
; | B
E) 14 % \\ N
@ o
2 1.2 ‘ N i
< = - AN
g T T T s - 8o
& V5 A

0.8 N

06 Il Il Il Il Il

0

. 4 . 0.8
ratio of recorded positions in the transposition table

Figure 1: table-recorded positions and node expansions
with proof solutions

Figure 1 shows the relation between the ratio of the
number of recorded positions in the transposition table
and the ratio of the number of node generations in case
of proof solutions with average branching factor of 8,
12, 16, totally 60 problems. The surviving conditions
of Seo’s algorithm are no elimination, pn > 3, pn > 4,
pn > 5, pn > 6, and pn > 7. The surviving conditions
of PDS are no elimination, ¢ > 2A§ >2, ¢ > 3A0 > 3,
¢>4Nd>4 and o >5N > 5.

Figure 2 shows the same relation in case of disproof
solutions with the average branching factor of 8, 12, 16,
totally 60 problems. As there were many problems which
Seo’s algorithm and Elkan’s algorithm cannot solve in
practice, they are omitted in Figure 2. The surviving
conditions of PDS are same as Figure 1.

Note that PDS can solve both proof and disproof prob-
lems even under relatively restricted memory condition.

Because of multiple iterative deepening, Seo’s algo-
rithm and PDS have relatively large overhead. There-
fore, practically, they require more CPU time. As PDS
performs multiple iterative deepening at all nodes, the
overhead of PDS seems to be larger than Seo’s algorithm.

Allis -+
P]

T
f DS —*—

£ 15t 0]
£
g X
2 *~
3] — —
o 1r -~ _ v
B T =
<
©
£ o5t 1
g

0 1 1 1 1 1

0

. . . 0.8
ratio of recorded positions in the transposition table

Figure 2: table-recorded positions and node expansions
with disproof solutions

4 T T
Elkan <
35 = Allis +
. Seo-5 O
. * PDS-2 ¥
Z 3F B
g
£ 25r- b
=
&
° 2r o]
=2
2 sk g
- ©
(=] L -
0.5 B
0 Il Il Il
0 0.5 1 15

ratio of recorded positions in the Lransposilibn table

Figure 3: table-recorded positions and node expansions
with proof solutions

Figure 3 plots the relation between the ratio of the
number of recorded positions in the transposition table
and the ratio of the number of node generations in case
of proof solutions, each problem with average branch-
ing factor of 8, 12, 16, totally 60 problems. Surviving
condition of Seo’s algorithm and PDS is pn > 5 and
¢ > 2 A4 > 2 respectively.

Figure 4 plots the same relation in case of disproof
solutions, each problem with average branching factor
of 8, 12, 16, totally 60 problems. Surviving condition of
PDSis¢p >2A48 > 2.

Figure 3 and Figure 4 show that PDS requires rela-
tively less memory space than the other three algorithms.

6 Conclusion

In this paper we have suggested a new depth-first multi-
ple iterative deepening algorithm PDS for searching an
AND/OR tree. It nearly behaves in best-first manner by
using both proof number and disproof number as thresh-
olds of multiple iterative deepening. Both proof-number
search using only proof number and best-first search al-
gorithm have some defects. The aim of our new algo-
rithm is to overcome these defects. The experimental
results on random trees have shown that PDS is very
useful under memory space constraint.

2 T
Allis +
* S-2 X
g 15r * %% N % g
5
5 « %gj%*
5 r e -
*
"é * g K x
3 ¥ X
2 o05F * e
E
0 | | | | |
0 1

. .4 . 0.8
ratio of recorded positions in the transposition table

Figure 4: table-recorded positions and node expansions
with disproof solutions

Even though PDS is an algorithm for searching an
AND/OR tree, we have shown how to apply PDS to
minimax tree searching.

References

[Allis, 1994] Louis V. Allis. Searching for Solutions in
Games and Artificial Intelligence. Ph.D. Thesis, De-
partment of Computer Science, University of Limburg,
Netherlands, 1994.

[Elkan, 1989] Charles Elkan. Conspiracy Numbers and
Caching for Searching And/Or Trees and Theorem-
Proving. Proceedings IJCAI-89, pages 341-346, 1989.

[Korf, 1985] Richard E. Korf. Depth-First Iterative-
Deepening: An Optimal Admissible Tree Search. Ar-
tificial Intelligence, 27:97-109, 1985.

[McAllester, 1988] David A. McAllester. Conspiracy
Numbers for Min-Max Search. Artificial Intelligence,
35:287-310, 1988.

[Nagai, 1999] Ayumu Nagai. A new Depth-First Search
Algorithm for AND/OR Trees. M.Sc. Thesis, De-
partment of Information Science, University of Tokyo,
Japan, 1999. (to appear)

[Nilson, 1980] Nils J. Nilson. Principles of Artificial In-
telligence. Tioga, Palo Alto, CA, 1980.

[Schijf, 1993] Martin Schijf. Proof-Number Search and
Transpositions. M.Sc. Thesis, University of Leiden,
Netherlands, 1993.

[Seo, 1995] Masahiro Seo. The C* Algorithm for
AND/OR Tree Search and its Application to a Tsume-
Shogi Program. M.Sc. Thesis, Department of Informa-
tion Science, University of Tokyo, Japan, 1995.

[Seo, 1998] Masahiro Seo. Solving Tsume-shogi Using
Conspiracy Numbers (in Japanese). in Hitoshi Mat-
subara, editor, Advances in Computer Shogi 2. Ky-
oritsu Press, 1998.

