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Abstract. Our legal question answering system combines legal information 
retrieval and textual entailment, and we propose a legal question answering 
system that exploits a deep convolutional neural network.  We have evaluated 
our system using the training data from the competition on legal information 
extraction/entailment (COLIEE).  The competition focuses on the legal 
information processing related to answering yes/no questions from Japanese 
legal bar exams, and it consists of two phases: legal ad-hoc information 
retrieval, and textual entailment. Phase 1 requires the identification of Japan 
civil law articles relevant to a legal bar exam query. For that phase, we have 
implemented TF-IDF and Ranking SVM. Phase 2 is to answer “Yes” or “No” to 
previously unseen queries, by comparing the meanings of queries with relevant 
articles. Our choice of features used for Phase 2 focuses on word embeddings, 
syntactic similarities and identification of negation/antonym relations. Phase 2 
is a textual entailment problem, and we use a convolutional neural network with 
dropout regularization and Rectified Linear Units. To our knowledge, our study 
is the first approach adopting deep learning in the textual entailment field.  
Experimental evaluation demonstrates the effectiveness of the convolutional 
neural network and dropout regularization. The results show that our deep 
learning-based method outperforms the SVM-based supervised model.  
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1. Task Description 

The deep neural network (DNN) is an emerging technology that has recently 
demonstrated dramatic success in several areas, including speech feature extraction 
and recognition. Incorporation of convolution and subsequent pooling into a neural 
network gives rise to a technique called a Convolutional Neural Network (CNN) [22]. 
CNN showed good performance in image and speech recognition [18], and many 
studies have been proposed applying CNN in natural language processing [11,12]. 
Here we adapt a CNN for legal question answering. Legal question answering 
requires a number of intermediate steps. For instance, to answer a question such as “Is 
it true that a special provision that releases warranty can be made, but in that situation, 
when there are rights that the seller establishes on his/her own for a third party, the 
seller is not released of warranty.” a system must first identify and retrieve relevant 



documents, typically legal statutes, and subsequently, identify a most relevant 
sentence. Finally it must compare the semantic connections between question and the 
relevant sentences, and determine whether an entailment relation holds.  

The Competition on Legal Information Extraction/Entailment (COLIEE) 2015 
focuses on two aspects of legal information processing related to answering yes/no 
questions from legal bar exams: Legal document retrieval (Phase 1), and Yes/No 
Question answering for legal queries (Phase 2).   

Phase 1 is an ad-hoc information retrieval (IR) task. The goal is to retrieve relevant 
Japan civil law articles that are related to a question in legal bar exams.  

We approach this problem with two models based on statistical information. One is 
the TF-IDF model [1], i.e. term frequency-inverse document frequency. The 
relevance between a query and a document depends on their intersection word set. 
The importance of words is measured with a function of term frequency and 
document frequency as parameters. Our terms are lemmatized words, which mean 
verbs “attending,” “attends,” and “attended” are lemmatized as the same form “attend.” 

Another popular model for text retrieval is a Ranking SVM model [2]. That model 
is used to re-rank documents that are retrieved by the TF-IDF model. The model's 
features are lexical words, dependency path bigrams and TF-IDF scores. The intuition 
is that the supervised model can learn weights or priority of words based on training 
data in addition to or as an alternative to TF-IDF.   

The goal of Phase 2 is to construct Yes/No question answering systems for legal 
queries, by entailment from the relevant articles. The answer to a question is typically 
determined by measuring some kind of heuristically computed semantic similarity 
between question and answer. While there are many possible approaches, we consider 
that Neural network-based distributional sentence models have achieved successes in 
many natural language processing tasks such as sentiment analysis [12], paraphrase 
detection [13], document classification [14], and question answering [11]. As a 
consequence of this success, it appears natural to approach textual entailment using 
similar techniques. In this paper, we show that a neural network-based sentence 
model can be applied to the task of textual entailment. After constructing a set of pre-
trained semantic word embeddings using the word2vec [20], we train a supervised 
model to learn a heuristic semantic matching between question and corresponding 
articles.  

In addition to the semantic word embeddings, our system uses features that depend 
on the syntactic structure, and the presence of negation. We employ a convolutional 
neural network algorithm with dropout regularization and Rectified Linear Units, and 
compare its performance with Support vector machines.  

 
 

2. Phase 1: Legal Information Retrieval 
 

2.1 IR Models 
 
2.1.1 TF-IDF model 

Here, we introduce our TF-IDF and Ranking SVM models. Queries and articles are 
all tokenized and parsed by the Stanford NLP tool. For the IR task, the similarity of a 



query and an article is based on the terms within them. Our terms for TF-IDF are 
lemmatized words.  

For TF-IDF, we use the simplified version of Lucene’s similarity score of an article 
to a query as suggested in [15]: 

𝑡𝑓-­‐𝑖𝑑𝑓 𝑄,𝐴 =    [ 𝑡𝑓 𝑡,𝐴 ×{1 + log 𝑖𝑑𝑓 𝑡 }!]
!

 

 
The score tf-idf(Q,A) is a measure which computes the relevance between a query Q 
and an article A. First, for every term t in the query A, we compute tf(t,A), and idf(t). 
The score tf(t,A) is the term frequency of t in the article A, and idf(t) is the inverse 
document frequency of the term t, which is the number of articles that contain t. After 
some normalization process in the Lucene package, we multiply tf(t,A) and idf(t), and 
then we compute the sum of these multiplication scores for all terms t in the query A. 
This summation result is tf-idf(Q,A). The bigger tf-idf(Q,A) is, the more relevant 
between the query Q and the article A. The real version has some normalized 
parameters in terms of an article's length to alleviate the functions biased towards 
long documents.   

 
 
2.1.2 Ranking SVM 

The Ranking SVM model was proposed by Joachims [2]. That model ranks the 
documents based on user's data.  Given the feature vector of a training instance, i.e., 
a retrieved article set given a query, denoted by Φ(Q, Ai), the model tries to find a 
ranking that satisfies constraints: 

∅ 𝑄,𝐴! > ∅ 𝑄,𝐴!  
 
where Ai is a relevant article for the query Q, while Aj is less relevant. 
 
We adopt the same model and features suggested in [15]. The three types of 

features are as follows: 
− Lexical words: the lemmatized normal form of surface structure of words in 

both the retrieved article and the query. In the conversion to the SVM's 
instance representation, this feature is converted into binary features whose 
values are one or zero, i.e., depending on if a word exists in the intersection 
word set or not. 

− Dependency pairs: word pairs that are linked by a dependency link. The 
intuition is that, compared with the bag of words information, syntactic 
information should improve the capture of salient semantic content. 
Dependency parse features have been used in many NLP tasks, and improved 
IR performance [3]. This feature type is also converted into binary values. 

− TF-IDF score (Section 2.1.1). 
 

2.2 Experiments 
 



The legal IR task has several sets of queries with the Japan civil law articles as 
documents (724 articles in total). Here follows one example of the query and a 
corresponding relevant article.  

 
Question: A person who made a manifestation of intention which was induced by 
duress emanated from a third party may rescind such manifestation of intention on the 
basis of duress, only if the other party knew or was negligent of such fact. 
 

Related Article:  (Fraud or Duress) Article 96(1)Manifestation of intention which is 
induced by any fraud or duress may be rescinded.(2)In cases any third party commits 
any fraud inducing any person to make a manifestation of intention to the other party, 
such manifestation of intention may be rescinded only if the other party knew such 
fact.(3)The rescission of the manifestation of intention induced by the fraud pursuant to 
the provision of the preceding two paragraphs may not be asserted against a third 
party without knowledge. 
 
Before the final test set was released, we received 6 sets of queries for a dry run in 

COLIEE 2015. The 6 sets of data include 267 queries, and 326 relevant articles 
(average 1.22 articles per query). We used the corresponding 6-fold leave-one-out 
cross validation evaluation. The metrics for measuring our IR model performance is 
Mean Average Precision (MAP): 

                            

𝑀𝐴𝑃 𝑄 =
  1
𝑄

1
𝑚

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅!
!∈ !,!!∈!

 

 
where Q is the set of queries, and m is the number of retrieved articles. Rk is the set 

of ranked retrieval results from the top until the k-th article. In the following 
experiments, we set m as 5 for all queries, corresponding to the column MAP@5 in 
Table 1. 

Table 1 shows the results of experiments with our two IR models on the legal IR 
task. The ensemble SVM-Ranking model is slightly better than the TF-IDF model.  
Table 2 shows the results of our SVM-ranking model on the final test set. 

 
 
 

Id Models MAP@5 

1 TF-IDF with lemma 0.294 

2 SVM-ranking  0.302 

 
 
 
 
 
 
 
 

 Table 1. IR results on dry run data with different models. 



 
 

Table 2. IR results on test data using the SVM-ranking model 
 

Participant ID Performance on Phase 1 

UA (University  
of Alberta) 

 

* The number of submitted articles:  
* The number of correctly submitted articles:  

Precision 0.6329 
Recall 0.4902 
F-measure 0.5525 

 
 
 

3. Phase 2: Answering ‘Yes’/’No’ Questions Using a Convolutional 
Neural Network 

 
Our system uses syntactic information in addition to word embedding to predict 

textual entailment. We exploit syntactic similarity features, negation and antonym in 
Kim et al.[15]. We describe our system in the next subsections in detail.  

 
 
3.1 Our System 

3.1.1 Model description 

The problem of answering a legal yes/no question can be viewed as a binary 
classification problem. Assume a set of questions Q, where each question qi ∈ Q is 
associated with a list of corresponding article sentences {ai1, ai2, …, aim}, where yi = 1 
if the answer is ‘yes’ and yi= 0 otherwise. We choose the most relevant sentence aij 
using the algorithm of Kim et al. [15], and we simply treat each data point as a triple 
(qi, aij, yi). Therefore, our task is to learn a classifier over these triples so that it can 
predict the answers of any additional question-article pairs.  
 Our solution to this problem assumes that correct answers have high semantic 
similarity to questions. We model questions and answers as vectors using word 
embedding and linguistic information, and evaluate the relatedness of each question-
article pair in a shared vector space. Following Yu et al. [11], given the vector 
representations of a question q and a most relevant article sentence a, the probability 
of the answer being correct is  
 

p(y=1| q, a) = rectifier(qTMa + b), 
 
Where the bias term b and the transformation matrix M in Rd×d are model parameters. 
This formation can be understood that we generate a question through the 
transformation q’=Ma, and then measure the similarity of the generated question q’ 



and the given question q by their dot product. The rectifier function is used as an 
activation function. 
Convolutional Neural Network(CNN) is a biologically-inspired variant of Multi-
Layer Perceptron. CNN has two techniques: (1) restricting the network architecture 
through the use of local connections known as receptive fields. (2) Constraining the 
choice of synaptic weights through the use of weight-sharing. Most of CNNs include 
max-pooling layer which reduces and integrates the neighboring neurons’ outputs. 
CNNs exploit spatially-local correlation by enforcing a local connectivity pattern 
between neurons of adjacent layers.  
CNN-based models have been proved to be effective in applications such as twitter 
sentiment prediction [12] and semantic parsing [16]. Figure 1 illustrates the 
architecture of the CNN-based sentence model in one dimension. We use word 
embedding and linguistic features with one convolutional layer and one pooling layer. 
A word embedding is a parameterized function mapping words in some language to 
high-dimensional vectors. We use the Bag-of-words model of [11] for word 
embedding. 
The bag-of-words model is like that: Given word embeddings, the bag-words model 

generates the vector representation of a sentence by summing over the embeddings of  
all words in the sentence after removing stopwords. The vector is then normalized by 
the length of the sentence.  

 

𝑠 =
1
𝑛

𝑠!

!

!!!

 

 
   In the formula, s and si are d-dimensional vectors. si corresponds to the vector of 
the i-th word in the sentence, and n is the number of words in the sentence. We used 
word2vec [20] word embedding technique (d=50, which is typically used), and used 
training data of COLIEE 2014 for training word2vec. Word2vec [20] used a neural 
network consisting of input layer, projection layer, and output layer and they removed 
a hidden layer to improve learning speed.  

 

Figure 1. Our CNN architecture 



In addition to word embeddings, the types of features we use are as follows: 
 
a) Word Lemma 
b) Tree structure features Considering only roots. 
 
Feature 1 : wroot(conditionquery_n) 
Feature 2: wroot(conditionarticle_n) 
Feature 3: wroot(conclusionquery_n) 
Feature 4: wroot(conclusionquery_n) 
Feature 5: neg_level(conditionquery_n) 
Feature 6: neg_level(conditionarticle_n) 
Feature 7: neg_level(conclusionquery_n) 
Feature 8: neg_level(conclusionquery_n) 
 
In Figure 1, the input layer consists of the following word embedding vectors and 

binary values: 
 

1) v1, v3,..., v99 (odd index of nodes between v1 and v99): word embedding vector of 
the query sentence 

2) v2, v4, ..., v100 (even index of nodes between v2 and v100): word embedding vector 
of the relevant article sentence 

3) v101, v103, ..., v199 (odd index of nodes between v101 and v199): word embedding 
vector of the Feature 1 

4) v102, v104, ..., v200 (even index of nodes between v102 and v200): word 
embedding vector of the Feature 2 

5) v201, v203, ..., v299 (odd index of nodes between v201 and v299): word embedding 
vector of the Feature 3 

6) v202, v204, ..., v300 (even index of nodes between v202 and v300):  word 
embedding vector of the Feature 4 

7) v301-v304 : binary values of the Features 5-8 
 

In the features above, articlen is the most relevant article of the query queryn. First 
we detect condition part and conclusion part in the question and corresponding article, 
and also compute negation value (neg_level()) of each part according to Kim et al. 
[15]. wroot(s) means the root word in the syntactic tree of the sentence s. Features 1-4 
consider both lexical and syntactic information, and Features 5-8 incorporate negation 
and antonym information. We use some morphological and syntactic analysis to 
extract lemma and dependency information. Details of the morphological and 
syntactic analyzer are given in Section 3.2. 
 As shown in Figure 1, in the input layer, the nodes of even indices between v1 and 
v100 (such as v2, v4, v6.... and v100) indicate the word embedding vector for a 
relevant article sentence, and the nodes of odd indices between v1 and v100 (such as 
v1, v3, ... and v99) show the word embedding vector for a query sentence. The nodes 
between v101 and v304 are linguistic features. Because the adjacent two nodes 
indicate the same feature type (e.g., v1 and v2 indicate the first index value of each 
word embedding vector), we make a convolutional layer constructed from the 
adjusting two input nodes.   



  The convolutional vector t in R2 (the 2-dimensional real number space) projects 
adjacent two nodes into a feature value ci, computed as follows:  
 

𝐶! = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝒕 ∗ 𝑣!:!!! + 𝑏 ,  
 
where rectifier(x) = max(0,x). We explain the rectifier function in the subsection 3.1.2. 
In the pooling layer, we just do summation of the 99 ci values. Because 99 ci values 
are the result of comparison between two embedding vectors between a query and a 
relevant article sentence. The pi values in the pooling layer as follows. 

𝑝! = 𝑐!

!"!!

!!!

 

 
The training is done with multithreaded mini-batch gradient descent.  
 
3.1.2 Dropout regularization and Rectified Linear Units 
 
When a neural network is trained on a small training set, it typically performs poorly 
on test data. This "overfitting" is greatly reduced by randomly omitting some of the 
feature detectors on each training case. It is called 'dropout'. The dropout prevents 
complex co-adaptations in which a feature detector is only helpful in the context of 
several other specific feature detectors. Random dropout gives big improvements on 
many benchmark tasks and sets new records for speech and object recognition [21]. 
We found that the dropout rate needs to be between 0.6 and 0.7 for a hidden layer and 
0.1 for an input layer in order to make it effective in achieving low errors.   
We also employ the Rectified Linear Unit for CNN. Neural networks with rectified 
linear unit (ReLU) non-linearities have been highly successful for computer vision 
tasks and have been shown to be faster to train than standard sigmoid units [17].  
ReLU is a neuron which uses a rectifier instead of a hyperboolic tangent or logistic 
function as an activation function. Rectifier f(x)=max(0,x) allows a network to easily 
obtain sparse representations.  

 
 

3.1.3 Supervised learning with SVM 
 
We have compared our method with SVM, as a kind of supervised learning model. 

Using the SVM tool included in the Weka [4] software, we performed cross-
validation for the 179 questions using word embedding vector and linguistic features 
in Section 3.1.1. We used a linear kernel SVM because it is popular for real-time 
applications as they enjoy both faster training and classification speeds, with 
significantly reduced memory requirements than non-linear kernels, because of the 
compact representation of the decision function. 

 
 
3.2 Experimental setup for Phase 2 
 

 



       Table 3. Experimental results on dry run data for Phase 2 

 

In the general formulation of the textual entailment problem, given an input text 
sentence and a hypothesis sentence, the task is to make predictions about whether or 
not the hypothesis is entailed by the input sentence. We report the accuracy of our 
method in answering yes/no questions of legal bar exams by predicting whether the 
questions are entailed by the corresponding civil law articles.  

 There is a balanced positive-negative sample distribution in the dataset (55.87% 
yes, and 44.13% no) for a dry run of COLIEE 2014 dataset, so we consider the 
baseline for true/false evaluation is the accuracy when returning always “yes,” which 
is 55.87%. Our data for dry run has 179 questions. 

The original examinations are provided in Japanese and English, and our initial 
implementation used a Korean translation, provided by the Excite translation tool 
(http://excite.translation.jp/world/). The reason that we chose Korean is that we have a 
team member whose native language is Korean, and the characteristics of Korean and 
Japanese language are similar. In addition, the translation quality between two 
languages ensures relatively stable performance. Because our study team includes a 
Korean researcher, we can easily analyze the errors and intermediate rules in Korean. 
We used a Korean morphological analyzer and dependency parser [5].  
 

 
3.3 Experimental results 

 
 
To compare our performance with Kim et al. [15], we measured our system's 

performance on the dry run data of COLIEE 2014.  Table 3 shows the experimental 
results. An SVM-based model showed accuracy of 60.12%, and a convolutional 
neural network with pre-trained semantic word embeddings and dropout showed best 
performance of 63.87% with the setting of input layer dropout rate of 0.1, hidden 
layer dropout rate of 0.6, and 100 hidden layer nodes. When we did not use the 
dropout regularization, the accuracy was lower by 1.22%. Without dropout and word 
embedding, the accuracy was 56.30% which showed no big difference with the 
baseline accuracy. We also compare our performance with the Kim [15]'s 
performance using the same dataset. In [15], they used their linguistic features for 

Our method Accu(%) 

Baseline 55.87 

Cross-validation with Supervised learning (SVM) [15] 59.43 

Rule-based model + K-means clustering [15] 61.96 

Cross-validation with Supervised learning (SVM) using our features 60.12 

Convolutional Neural Network with Word Embedding + Linguistic features 
+ Dropout  

63.87 

Convolutional Neural Network with Word Embedding +Linguistic features 62.65 

Convolutional Neural Network with only linguistic features 56.30 



SVM learning, and also proposed a model combining rule-based method and k-means 
clustering. Our CNN performance outperformed both of their SVM model and 
combined model. 

 
 

4   Related work 

Only very recently have researchers started to apply deep learning to question 
answering [11,16,19]. Relevant work includes Yih et al. [16] who constructed models 
for single-relation question answering with a knowledge base of triples. In the same 
direction, Bordes et al. [19] used a type of siamese network for learning to project 
question and answer pairs into a joint space. Finally, Yu et al. [11] selected answer 
sentence, which includes the answer of a question. They modelled semantic 
composition with a recursive neural network. However these tasks differ from the 
work presented here in that our purpose is not to make a choice of answer selection in 
a document, but to answer ‘yes’ or ‘no’.  

There was a textual entailment method from W. Bdour et al. [6] which provided the 
basis for a Yes/No Arabic Question Answering System. They used a kind of logical 
representation, which bridges the distinct representations of the functional structure 
obtained for questions and passages. This method is also not appropriate for our task. If 
a false question sentence is constructed by replacing named entities with terms of 
different meaning in the legal article, a logic representation can be helpful.  However, 
false questions are not simply constructed by substituting specific named entities, and 
any logical representation can make the problem more complex. Nielsen et al. [7] 
extracted features from dependency paths, and combined them with word-alignment 
features in a mixture of an expert-based classifier. Zanzotto et al. [8] proposed a 
syntactic cross-pair similarity measure for RTE. Harmeling [9] took a similar 
classification-based approach with transformation sequence features. Marsi et al. [10] 
described a system using dependency-based paraphrasing techniques. All these 
previous systems uniformly conclude that syntactic information is helpful in RTE: we 
also use syntactic information. As further research, we will try unsupervised pre-
training in a CNN to solve the problem of small training dataset. We are also 
considering adopting more convolutional layers and pooling layers in the CNN 
architecture and investigating the effect of more layers in the textual entailment 
problem. 

5   Conclusion 

We have described our implementation for the Competition on Legal Information 
Extraction/Entailment (COLIEE) Task.  

For Phase 1, legal information retrieval, we implemented a Ranking-SVM model 
for the legal information retrieval task. By incorporating features such as lexical 
words, dependency links, and TF-IDF score, our model shows better mean average 
precision than TF-IDF. 



For Phase 2, we have proposed a method to answer yes/no questions from legal bar 
exams related to civil law. We used a convolutional neural network model using 
dropout regularization Rectified Linear Units with pre-trained semantic word 
embeddings. We also extract deep linguistic features with lexical, syntactic 
information based on morphological analysis and dependency trees. We show the 
improved performance over previous systems, using a convolutional neural network.  
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