
A Convolutional Neural Network in Legal Question
Answering

Mi-Young Kim, Ying Xu, and Randy Goebel

 Dept. of Computing Science, University of Alberta, Edmonton, Canada

{ miyoung2,yx2,rgoebel}@ualberta.ca

Abstract. Our legal question answering system combines legal information
retrieval and textual entailment, and we propose a legal question answering
system that exploits a deep convolutional neural network. We have evaluated
our system using the training data from the competition on legal information
extraction/entailment (COLIEE). The competition focuses on the legal
information processing related to answering yes/no questions from Japanese
legal bar exams, and it consists of two phases: legal ad-hoc information
retrieval, and textual entailment. Phase 1 requires the identification of Japan
civil law articles relevant to a legal bar exam query. For that phase, we have
implemented TF-IDF and Ranking SVM. Phase 2 is to answer “Yes” or “No” to
previously unseen queries, by comparing the meanings of queries with relevant
articles. Our choice of features used for Phase 2 focuses on word embeddings,
syntactic similarities and identification of negation/antonym relations. Phase 2
is a textual entailment problem, and we use a convolutional neural network with
dropout regularization and Rectified Linear Units. To our knowledge, our study
is the first approach adopting deep learning in the textual entailment field.
Experimental evaluation demonstrates the effectiveness of the convolutional
neural network and dropout regularization. The results show that our deep
learning-based method outperforms the SVM-based supervised model.

Keywords: legal question answering, recognizing textual entailment,
information retrieval, convolutional neural network

1. Task Description

The deep neural network (DNN) is an emerging technology that has recently
demonstrated dramatic success in several areas, including speech feature extraction
and recognition. Incorporation of convolution and subsequent pooling into a neural
network gives rise to a technique called a Convolutional Neural Network (CNN) [22].
CNN showed good performance in image and speech recognition [18], and many
studies have been proposed applying CNN in natural language processing [11,12].
Here we adapt a CNN for legal question answering. Legal question answering
requires a number of intermediate steps. For instance, to answer a question such as “Is
it true that a special provision that releases warranty can be made, but in that situation,
when there are rights that the seller establishes on his/her own for a third party, the
seller is not released of warranty.” a system must first identify and retrieve relevant

documents, typically legal statutes, and subsequently, identify a most relevant
sentence. Finally it must compare the semantic connections between question and the
relevant sentences, and determine whether an entailment relation holds.

The Competition on Legal Information Extraction/Entailment (COLIEE) 2015
focuses on two aspects of legal information processing related to answering yes/no
questions from legal bar exams: Legal document retrieval (Phase 1), and Yes/No
Question answering for legal queries (Phase 2).

Phase 1 is an ad-hoc information retrieval (IR) task. The goal is to retrieve relevant
Japan civil law articles that are related to a question in legal bar exams.

We approach this problem with two models based on statistical information. One is
the TF-IDF model [1], i.e. term frequency-inverse document frequency. The
relevance between a query and a document depends on their intersection word set.
The importance of words is measured with a function of term frequency and
document frequency as parameters. Our terms are lemmatized words, which mean
verbs “attending,” “attends,” and “attended” are lemmatized as the same form “attend.”

Another popular model for text retrieval is a Ranking SVM model [2]. That model
is used to re-rank documents that are retrieved by the TF-IDF model. The model's
features are lexical words, dependency path bigrams and TF-IDF scores. The intuition
is that the supervised model can learn weights or priority of words based on training
data in addition to or as an alternative to TF-IDF.

The goal of Phase 2 is to construct Yes/No question answering systems for legal
queries, by entailment from the relevant articles. The answer to a question is typically
determined by measuring some kind of heuristically computed semantic similarity
between question and answer. While there are many possible approaches, we consider
that Neural network-based distributional sentence models have achieved successes in
many natural language processing tasks such as sentiment analysis [12], paraphrase
detection [13], document classification [14], and question answering [11]. As a
consequence of this success, it appears natural to approach textual entailment using
similar techniques. In this paper, we show that a neural network-based sentence
model can be applied to the task of textual entailment. After constructing a set of pre-
trained semantic word embeddings using the word2vec [20], we train a supervised
model to learn a heuristic semantic matching between question and corresponding
articles.

In addition to the semantic word embeddings, our system uses features that depend
on the syntactic structure, and the presence of negation. We employ a convolutional
neural network algorithm with dropout regularization and Rectified Linear Units, and
compare its performance with Support vector machines.

2. Phase 1: Legal Information Retrieval

2.1 IR Models

2.1.1 TF-IDF model

Here, we introduce our TF-IDF and Ranking SVM models. Queries and articles are
all tokenized and parsed by the Stanford NLP tool. For the IR task, the similarity of a

query and an article is based on the terms within them. Our terms for TF-IDF are
lemmatized words.

For TF-IDF, we use the simplified version of Lucene’s similarity score of an article
to a query as suggested in [15]:

𝑡𝑓-­‐𝑖𝑑𝑓 𝑄,𝐴 = [𝑡𝑓 𝑡,𝐴 ×{1 + log 𝑖𝑑𝑓 𝑡 }!]
!

The score tf-idf(Q,A) is a measure which computes the relevance between a query Q
and an article A. First, for every term t in the query A, we compute tf(t,A), and idf(t).
The score tf(t,A) is the term frequency of t in the article A, and idf(t) is the inverse
document frequency of the term t, which is the number of articles that contain t. After
some normalization process in the Lucene package, we multiply tf(t,A) and idf(t), and
then we compute the sum of these multiplication scores for all terms t in the query A.
This summation result is tf-idf(Q,A). The bigger tf-idf(Q,A) is, the more relevant
between the query Q and the article A. The real version has some normalized
parameters in terms of an article's length to alleviate the functions biased towards
long documents.

2.1.2 Ranking SVM

The Ranking SVM model was proposed by Joachims [2]. That model ranks the
documents based on user's data. Given the feature vector of a training instance, i.e.,
a retrieved article set given a query, denoted by Φ(Q, Ai), the model tries to find a
ranking that satisfies constraints:

∅ 𝑄,𝐴! > ∅ 𝑄,𝐴!

where Ai is a relevant article for the query Q, while Aj is less relevant.

We adopt the same model and features suggested in [15]. The three types of

features are as follows:
− Lexical words: the lemmatized normal form of surface structure of words in

both the retrieved article and the query. In the conversion to the SVM's
instance representation, this feature is converted into binary features whose
values are one or zero, i.e., depending on if a word exists in the intersection
word set or not.

− Dependency pairs: word pairs that are linked by a dependency link. The
intuition is that, compared with the bag of words information, syntactic
information should improve the capture of salient semantic content.
Dependency parse features have been used in many NLP tasks, and improved
IR performance [3]. This feature type is also converted into binary values.

− TF-IDF score (Section 2.1.1).

2.2 Experiments

The legal IR task has several sets of queries with the Japan civil law articles as
documents (724 articles in total). Here follows one example of the query and a
corresponding relevant article.

Question: A person who made a manifestation of intention which was induced by
duress emanated from a third party may rescind such manifestation of intention on the
basis of duress, only if the other party knew or was negligent of such fact.

Related Article: (Fraud or Duress) Article 96(1)Manifestation of intention which is
induced by any fraud or duress may be rescinded.(2)In cases any third party commits
any fraud inducing any person to make a manifestation of intention to the other party,
such manifestation of intention may be rescinded only if the other party knew such
fact.(3)The rescission of the manifestation of intention induced by the fraud pursuant to
the provision of the preceding two paragraphs may not be asserted against a third
party without knowledge.

Before the final test set was released, we received 6 sets of queries for a dry run in

COLIEE 2015. The 6 sets of data include 267 queries, and 326 relevant articles
(average 1.22 articles per query). We used the corresponding 6-fold leave-one-out
cross validation evaluation. The metrics for measuring our IR model performance is
Mean Average Precision (MAP):

𝑀𝐴𝑃 𝑄 =
 1
𝑄

1
𝑚

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅!
!∈ !,!!∈!

where Q is the set of queries, and m is the number of retrieved articles. Rk is the set

of ranked retrieval results from the top until the k-th article. In the following
experiments, we set m as 5 for all queries, corresponding to the column MAP@5 in
Table 1.

Table 1 shows the results of experiments with our two IR models on the legal IR
task. The ensemble SVM-Ranking model is slightly better than the TF-IDF model.
Table 2 shows the results of our SVM-ranking model on the final test set.

Id Models MAP@5

1 TF-IDF with lemma 0.294

2 SVM-ranking 0.302

 Table 1. IR results on dry run data with different models.

Table 2. IR results on test data using the SVM-ranking model

Participant ID Performance on Phase 1

UA (University
of Alberta)

* The number of submitted articles:
* The number of correctly submitted articles:

Precision 0.6329
Recall 0.4902
F-measure 0.5525

3. Phase 2: Answering ‘Yes’/’No’ Questions Using a Convolutional
Neural Network

Our system uses syntactic information in addition to word embedding to predict

textual entailment. We exploit syntactic similarity features, negation and antonym in
Kim et al.[15]. We describe our system in the next subsections in detail.

3.1 Our System

3.1.1 Model description

The problem of answering a legal yes/no question can be viewed as a binary
classification problem. Assume a set of questions Q, where each question qi ∈ Q is
associated with a list of corresponding article sentences {ai1, ai2, …, aim}, where yi = 1
if the answer is ‘yes’ and yi= 0 otherwise. We choose the most relevant sentence aij
using the algorithm of Kim et al. [15], and we simply treat each data point as a triple
(qi, aij, yi). Therefore, our task is to learn a classifier over these triples so that it can
predict the answers of any additional question-article pairs.
 Our solution to this problem assumes that correct answers have high semantic
similarity to questions. We model questions and answers as vectors using word
embedding and linguistic information, and evaluate the relatedness of each question-
article pair in a shared vector space. Following Yu et al. [11], given the vector
representations of a question q and a most relevant article sentence a, the probability
of the answer being correct is

p(y=1| q, a) = rectifier(qTMa + b),

Where the bias term b and the transformation matrix M in Rd×d are model parameters.
This formation can be understood that we generate a question through the
transformation q’=Ma, and then measure the similarity of the generated question q’

and the given question q by their dot product. The rectifier function is used as an
activation function.
Convolutional Neural Network(CNN) is a biologically-inspired variant of Multi-
Layer Perceptron. CNN has two techniques: (1) restricting the network architecture
through the use of local connections known as receptive fields. (2) Constraining the
choice of synaptic weights through the use of weight-sharing. Most of CNNs include
max-pooling layer which reduces and integrates the neighboring neurons’ outputs.
CNNs exploit spatially-local correlation by enforcing a local connectivity pattern
between neurons of adjacent layers.
CNN-based models have been proved to be effective in applications such as twitter
sentiment prediction [12] and semantic parsing [16]. Figure 1 illustrates the
architecture of the CNN-based sentence model in one dimension. We use word
embedding and linguistic features with one convolutional layer and one pooling layer.
A word embedding is a parameterized function mapping words in some language to
high-dimensional vectors. We use the Bag-of-words model of [11] for word
embedding.
The bag-of-words model is like that: Given word embeddings, the bag-words model

generates the vector representation of a sentence by summing over the embeddings of
all words in the sentence after removing stopwords. The vector is then normalized by
the length of the sentence.

𝑠 =
1
𝑛

𝑠!

!

!!!

 In the formula, s and si are d-dimensional vectors. si corresponds to the vector of
the i-th word in the sentence, and n is the number of words in the sentence. We used
word2vec [20] word embedding technique (d=50, which is typically used), and used
training data of COLIEE 2014 for training word2vec. Word2vec [20] used a neural
network consisting of input layer, projection layer, and output layer and they removed
a hidden layer to improve learning speed.

Figure 1. Our CNN architecture

In addition to word embeddings, the types of features we use are as follows:

a) Word Lemma
b) Tree structure features Considering only roots.

Feature 1 : wroot(conditionquery_n)
Feature 2: wroot(conditionarticle_n)
Feature 3: wroot(conclusionquery_n)
Feature 4: wroot(conclusionquery_n)
Feature 5: neg_level(conditionquery_n)
Feature 6: neg_level(conditionarticle_n)
Feature 7: neg_level(conclusionquery_n)
Feature 8: neg_level(conclusionquery_n)

In Figure 1, the input layer consists of the following word embedding vectors and

binary values:

1) v1, v3,..., v99 (odd index of nodes between v1 and v99): word embedding vector of
the query sentence

2) v2, v4, ..., v100 (even index of nodes between v2 and v100): word embedding vector
of the relevant article sentence

3) v101, v103, ..., v199 (odd index of nodes between v101 and v199): word embedding
vector of the Feature 1

4) v102, v104, ..., v200 (even index of nodes between v102 and v200): word
embedding vector of the Feature 2

5) v201, v203, ..., v299 (odd index of nodes between v201 and v299): word embedding
vector of the Feature 3

6) v202, v204, ..., v300 (even index of nodes between v202 and v300): word
embedding vector of the Feature 4

7) v301-v304 : binary values of the Features 5-8

In the features above, articlen is the most relevant article of the query queryn. First
we detect condition part and conclusion part in the question and corresponding article,
and also compute negation value (neg_level()) of each part according to Kim et al.
[15]. wroot(s) means the root word in the syntactic tree of the sentence s. Features 1-4
consider both lexical and syntactic information, and Features 5-8 incorporate negation
and antonym information. We use some morphological and syntactic analysis to
extract lemma and dependency information. Details of the morphological and
syntactic analyzer are given in Section 3.2.
 As shown in Figure 1, in the input layer, the nodes of even indices between v1 and
v100 (such as v2, v4, v6.... and v100) indicate the word embedding vector for a
relevant article sentence, and the nodes of odd indices between v1 and v100 (such as
v1, v3, ... and v99) show the word embedding vector for a query sentence. The nodes
between v101 and v304 are linguistic features. Because the adjacent two nodes
indicate the same feature type (e.g., v1 and v2 indicate the first index value of each
word embedding vector), we make a convolutional layer constructed from the
adjusting two input nodes.

 The convolutional vector t in R2 (the 2-dimensional real number space) projects
adjacent two nodes into a feature value ci, computed as follows:

𝐶! = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝒕 ∗ 𝑣!:!!! + 𝑏 ,

where rectifier(x) = max(0,x). We explain the rectifier function in the subsection 3.1.2.
In the pooling layer, we just do summation of the 99 ci values. Because 99 ci values
are the result of comparison between two embedding vectors between a query and a
relevant article sentence. The pi values in the pooling layer as follows.

𝑝! = 𝑐!

!"!!

!!!

The training is done with multithreaded mini-batch gradient descent.

3.1.2 Dropout regularization and Rectified Linear Units

When a neural network is trained on a small training set, it typically performs poorly
on test data. This "overfitting" is greatly reduced by randomly omitting some of the
feature detectors on each training case. It is called 'dropout'. The dropout prevents
complex co-adaptations in which a feature detector is only helpful in the context of
several other specific feature detectors. Random dropout gives big improvements on
many benchmark tasks and sets new records for speech and object recognition [21].
We found that the dropout rate needs to be between 0.6 and 0.7 for a hidden layer and
0.1 for an input layer in order to make it effective in achieving low errors.
We also employ the Rectified Linear Unit for CNN. Neural networks with rectified
linear unit (ReLU) non-linearities have been highly successful for computer vision
tasks and have been shown to be faster to train than standard sigmoid units [17].
ReLU is a neuron which uses a rectifier instead of a hyperboolic tangent or logistic
function as an activation function. Rectifier f(x)=max(0,x) allows a network to easily
obtain sparse representations.

3.1.3 Supervised learning with SVM

We have compared our method with SVM, as a kind of supervised learning model.

Using the SVM tool included in the Weka [4] software, we performed cross-
validation for the 179 questions using word embedding vector and linguistic features
in Section 3.1.1. We used a linear kernel SVM because it is popular for real-time
applications as they enjoy both faster training and classification speeds, with
significantly reduced memory requirements than non-linear kernels, because of the
compact representation of the decision function.

3.2 Experimental setup for Phase 2

 Table 3. Experimental results on dry run data for Phase 2

In the general formulation of the textual entailment problem, given an input text
sentence and a hypothesis sentence, the task is to make predictions about whether or
not the hypothesis is entailed by the input sentence. We report the accuracy of our
method in answering yes/no questions of legal bar exams by predicting whether the
questions are entailed by the corresponding civil law articles.

 There is a balanced positive-negative sample distribution in the dataset (55.87%
yes, and 44.13% no) for a dry run of COLIEE 2014 dataset, so we consider the
baseline for true/false evaluation is the accuracy when returning always “yes,” which
is 55.87%. Our data for dry run has 179 questions.

The original examinations are provided in Japanese and English, and our initial
implementation used a Korean translation, provided by the Excite translation tool
(http://excite.translation.jp/world/). The reason that we chose Korean is that we have a
team member whose native language is Korean, and the characteristics of Korean and
Japanese language are similar. In addition, the translation quality between two
languages ensures relatively stable performance. Because our study team includes a
Korean researcher, we can easily analyze the errors and intermediate rules in Korean.
We used a Korean morphological analyzer and dependency parser [5].

3.3 Experimental results

To compare our performance with Kim et al. [15], we measured our system's

performance on the dry run data of COLIEE 2014. Table 3 shows the experimental
results. An SVM-based model showed accuracy of 60.12%, and a convolutional
neural network with pre-trained semantic word embeddings and dropout showed best
performance of 63.87% with the setting of input layer dropout rate of 0.1, hidden
layer dropout rate of 0.6, and 100 hidden layer nodes. When we did not use the
dropout regularization, the accuracy was lower by 1.22%. Without dropout and word
embedding, the accuracy was 56.30% which showed no big difference with the
baseline accuracy. We also compare our performance with the Kim [15]'s
performance using the same dataset. In [15], they used their linguistic features for

Our method Accu(%)

Baseline 55.87

Cross-validation with Supervised learning (SVM) [15] 59.43

Rule-based model + K-means clustering [15] 61.96

Cross-validation with Supervised learning (SVM) using our features 60.12

Convolutional Neural Network with Word Embedding + Linguistic features
+ Dropout

63.87

Convolutional Neural Network with Word Embedding +Linguistic features 62.65

Convolutional Neural Network with only linguistic features 56.30

SVM learning, and also proposed a model combining rule-based method and k-means
clustering. Our CNN performance outperformed both of their SVM model and
combined model.

4 Related work

Only very recently have researchers started to apply deep learning to question
answering [11,16,19]. Relevant work includes Yih et al. [16] who constructed models
for single-relation question answering with a knowledge base of triples. In the same
direction, Bordes et al. [19] used a type of siamese network for learning to project
question and answer pairs into a joint space. Finally, Yu et al. [11] selected answer
sentence, which includes the answer of a question. They modelled semantic
composition with a recursive neural network. However these tasks differ from the
work presented here in that our purpose is not to make a choice of answer selection in
a document, but to answer ‘yes’ or ‘no’.

There was a textual entailment method from W. Bdour et al. [6] which provided the
basis for a Yes/No Arabic Question Answering System. They used a kind of logical
representation, which bridges the distinct representations of the functional structure
obtained for questions and passages. This method is also not appropriate for our task. If
a false question sentence is constructed by replacing named entities with terms of
different meaning in the legal article, a logic representation can be helpful. However,
false questions are not simply constructed by substituting specific named entities, and
any logical representation can make the problem more complex. Nielsen et al. [7]
extracted features from dependency paths, and combined them with word-alignment
features in a mixture of an expert-based classifier. Zanzotto et al. [8] proposed a
syntactic cross-pair similarity measure for RTE. Harmeling [9] took a similar
classification-based approach with transformation sequence features. Marsi et al. [10]
described a system using dependency-based paraphrasing techniques. All these
previous systems uniformly conclude that syntactic information is helpful in RTE: we
also use syntactic information. As further research, we will try unsupervised pre-
training in a CNN to solve the problem of small training dataset. We are also
considering adopting more convolutional layers and pooling layers in the CNN
architecture and investigating the effect of more layers in the textual entailment
problem.

5 Conclusion

We have described our implementation for the Competition on Legal Information
Extraction/Entailment (COLIEE) Task.

For Phase 1, legal information retrieval, we implemented a Ranking-SVM model
for the legal information retrieval task. By incorporating features such as lexical
words, dependency links, and TF-IDF score, our model shows better mean average
precision than TF-IDF.

For Phase 2, we have proposed a method to answer yes/no questions from legal bar
exams related to civil law. We used a convolutional neural network model using
dropout regularization Rectified Linear Units with pre-trained semantic word
embeddings. We also extract deep linguistic features with lexical, syntactic
information based on morphological analysis and dependency trees. We show the
improved performance over previous systems, using a convolutional neural network.

Acknowledgements

 This research was supported by the Alberta Innovates Centre for Machine Learning
(AICML) and the Natural Sciences and Engineering Research Council (NSERC).

References

1. K. Sparck Jones, A statistical interpretation of term specicity and its application in retrieval.
In: Willett, P. (ed.) Document Retrieval Systems, pp. 132-142. Taylor Graham Publishing,
London, UK, UK, 1988

2. T. Joachims, Optimizing search engines using clickthrough data. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
pp. 133-142. KDD '02, ACM, New York, NY, USA, 2002

3. K.T. Maxwell, J. Oberlander, W.B. Croft. Feature-based selection of dependency paths in ad
hoc information retrieval. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). pp. 507-516. Association for
Computational Linguistics, Sofia, Bulgaria, August 2013

4. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The WEKA Data
Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1. 2009

5. M-Y. Kim, S-J. Kang and J-H. Lee, Resolving Ambiguity in Inter-chunk Dependency
Parsing, Proc. of 6th Natural Language Processing Pacific Rim Symposium, pp. 263-270,
2001

6. W. N. Bdour, and N.K. Gharaibeh, Development of Yes/No Arabic Question Answering
System, International Journal of Artificial Intelligence and Applications, Vol.4, No.1 (51-
63), 2013

7. R. D. Nielsen, W. Ward, and J. H. Martin. Toward dependency path based entailment. In
Proceedings of the second PASCAL Challenges Workshop on RTE, 2006

8. F. M. Zanzotto, A. Moschitti, M. Pennacchiotti, and M.T. Pazienza. Learning textual
entailment from examples. In Proceedings of the second PASCAL Challenges Workshop on
RTE, 2006

9. S. Harmeling, An extensible probabilistic transformation-based approach to the third
recognizing textual entailment challenge. In Proceedings of ACL PASCAL Workshop on
Textual Entailment and Paraphrasing, 2007

10. E. Marsi, E. Krahmer, and W. Bosma. Dependency-based paraphrasing for recognizing
textual entailment. In Proceedings of ACL PASCAL Workshop on Textual Entailment and
Paraphrasing, 2007

11. L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman. Deep learning for answer sentence
selection. arXiv preprint arXiv:1412.1632. 2014

12. N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for
modelling sentences. In Proceedings of ACL, 2014.

13. R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality through
recursive matrix-vector spaces. In Proceedings of EMNLP-CoNLL, 2012.

14. K. M. Hermann and P. Blunsom. Multilingual Models for Compositional Distributional
Semantics. In Proceedings of ACL, 2014.

15. M-Y. Kim, Y. Xu, and R. Goebel. Alberta-KXG: Legal Question Answering Using
Ranking SVM and Syntactic/Semantic Similarity. JURISIN Workshop, 2014

16. Wen-tau Yih, Xiaodong He, and ChristopherMeek. Semantic parsing for single-relation
question answering. In Proceedings of ACL, 2014.

17. G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR
using rectified linear units and dropout. In Proceedings of Acoustics, Speech and Signal
Processing (ICASSP), pp. 8609-8613, 2013

18. L. Deng, O. Abdel-Hamid, and D. Yu. "A deep convolutional neural network using
heterogeneous pooling for trading acoustic invariance with phonetic confusion." In
Proceedings of Acoustics, Speech and Signal Processing (ICASSP), pp. 6669-6673. IEEE,
2013.

19. Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph
embeddings. In Proceedings of EMNLP, 2014.

20. T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information
processing systems pp. 3111-3119, 2013

21. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012

22. M. Kouylekov, and B. Magnini. Tree edit distance for recognizing textual entailment:
Estimating the cost of insertion. In Proceedings of the second PASCAL Challenges
Workshop on RTE, 2006

