FLEXIBLE APPROXIMATORS FOR APPROXIMATING FIXPOINT THEORY

Fangfang Liu¹, Yi Bi², Md. Solimul Chowdhury³, Jia-Huai You³, Zhiyong Feng²

School of Computer Engineering and Science, Shanghai University, China
 School of Computer Science and Technology, Tianjin University, China
 Department of Computing Science, University of Alberta, Canada

June 3 , 2016

AFT and Motivation for Flexible approximators

- AFT framework to study operators on bi-lattices.
 - study various nonmonotic semantics uniformly (..).
 - prove general results
 - \bullet avoid syntactical details + "prove for one" \rightarrow "obtain several"
 - no need to prove for slightly diff. circumstances.
- Stable Revision op (with two params). \rightarrow uses default negation.

 - Solution: Flexible approximators \rightarrow ternary op.
 - third param. aids to access entailed negation.
 - Question: is the extended AFT correct?

- Poset: Elements of a set are partially ordered.
- Lattice:a poset $\langle \mathcal{L},\leq\rangle$... has a LUB (Join) and a GLB(Meet)
- Chain:a linearly ordered subset of $\ensuremath{\mathcal{L}}$
- ChainComplete:a poset $\langle \mathcal{L}, \leq \rangle$, has least element \perp and $C \subseteq \mathcal{L}$ has a LUB.
- CompleteLattice:if every $S \subseteq \mathcal{L}$ has LUB and GLB.
- BiLattice: $\langle \mathcal{L}^2,\leq,\leq_{\rho}\rangle$, precision order ($\leq_{\rho})$ and truth order \leq

• for all $x, y, x', y' \in \mathcal{L}$, $(x, y) \leq_{\rho} (x', y')$ if $x \leq x'$ and $y' \leq y$

- Consistent Pair: For $(x, y) \in \mathcal{L}^2$, if $x \leq y$ and exact: if x = y.
- L²:set of all consistent pair
- Interval: $(x, y) \in \mathcal{L}^2$ defines $[x, y] = \{z | x \le z \le y\}$,
- Operator: \mathcal{O} is monotone \rightarrow $(x, y \in \mathcal{L}, x \leq y \rightarrow \mathcal{O}(x) \leq \mathcal{O}(y)).$
 - possesses fixpoints and a least fixpoint.

同下 イヨト イヨト ニヨ

- a Semantic in NM formalism \rightarrow an approximator (monotone in bi-lattice)

- kripkee-klenee fixpoint ${\mathcal A}$
 - leave as "unknown", what cannot be proven (3-valued)
- "Unfounded atoms" key features of ASP
 - \bullet unfounded atoms \rightarrow those can be assigned to false.
 - a pair (u, v), u: true, v:possibly true, \overline{u} : false
 - computation of unfounded : Stable Revision Op.
 - Given a (u, v), maps (u, v) to (*lfp*(A¹(·, v)), *lfp*(A²(u, ·)))
 A¹(·, v) : computes what must be true with a fixed v.
 A²(u, ·) : computes what is possible true with a fixed u.

A 3 6 A 3 6 6

- Given a (u, v), false atoms are in both u and v
 - (i) $a \notin v$ (entailed) and
 - (ii) $a \notin u$, but $a \in v$ (default)
- $\mathcal{A}^2(u, \cdot)$: no access v (no access in the entailed negation).
- Lack of access to v is problematic (while computing $\mathcal{A}^2(u,\cdot))$
 - (i) Underestimation
 - (ii) Overestimation

Overestimation Example

- FOL-program $KB = (L, \Pi); L = \{P(a)\};$ $\Pi = \{P(a) \leftarrow P(a); P(b) \leftarrow F\}$
- Given (\bot, \top) (i.e. (u, v)) as least atom, compute $(lfp(\mathcal{A}^1(\cdot, \top)), lfp(\mathcal{A}^2(\bot, \cdot)))$
 - $\mathcal{A}^2(\bot,\bot)$: first step to compute $\mathit{lfp}(\mathcal{A}^2(\bot,\cdot))$
 - P(a) is false in (\bot, \bot) contradiction with L.
 - Overestimation, as \mathcal{A}^2 does not have access to v.

Underestimation Example ...

 $-KB = (L, \Pi)$

$$L = \{ \forall x \ C(x) \supset (A(x) \lor D(x)) \}$$

and

$$\Pi = \{A(a) \leftarrow A(a). \ B(a) \leftarrow not \ A(a).$$

 $D(a) \leftarrow not \ B(a). \ C(a) \leftarrow not \ C'(a). \ C'(a) \leftarrow not \ C(a).\}$

 $(\bot,\top) \Rightarrow (\bot, \{c, c', b, d\}) \Rightarrow (\{b\}, \{c, c', b, d\}) \Rightarrow (\{b\}, \{c, c', b\}) \Rightarrow$

$$(\{b\},\{c',b\}) \Rightarrow \dots$$

- -C(a), C'(a), B(a), D(a) in second pair are possibly true.
- C(a) is not possibly true because $\neg C(a)$ is entailed by L
- (if)infer $\neg C(a)$, block derivation of C(a)
- but, without access to v of (u, v), $\neg C(a)$ is not derivable.

- 1) Original AFT on \mathcal{L}^c , Our AFT on \mathcal{L}^2
 - changes notion of approximator + enrich algebric manipulation
- 2) Enable \mathcal{A}^2 to have access to v
 - fix Underestimation and Overestimation.
- 3) Prove correctness.

Extend to \mathcal{L}^2

- Approximator \mathcal{A} is \leq_p -monotone $\mathcal{A}(z,z) = (\mathcal{O}(z),\mathcal{O}(z))$
- (What if) $\mathcal{A}(z,z)$ inconsistent?
- So, we define $\mathcal{A}(z,z)$ on \mathcal{L}^2 .

Definition

Let \mathcal{O} be an op. on \mathcal{L} ; $\mathcal{A}: \mathcal{L}^2 \to \mathcal{L}^2$ is an *approximator* of \mathcal{O} iff.

- For all $x \in \mathcal{L}$, if $\mathcal{A}(x, x)$ is consistent then $\mathcal{A}(x, x) = (\mathcal{O}(x), \mathcal{O}(x)).$
- \mathcal{A} is \leq_{p} -monotone.

-Stable Revision Op. (St_A) : persistently reachable / non-reachable

- has fixpoints (stable models) and a least fix point(well founded fixpoints)
- $St_{\mathcal{A}}(u, v) = (Ifp(\mathcal{A}^1(\cdot, v)), Ifp(\mathcal{A}^2(u, \cdot))).$

A B M A B M

- $\textit{lfp}(\mathcal{A}^1(\cdot,\nu))$ is well defined as \mathcal{A}^1 is monotone on $\mathcal L$
- But, two issues with $lfp(\mathcal{A}^2(u,\cdot))$
 - $\mathcal{A}^2(u,\cdot)$ no access to v.
 - $\mathcal{A}^2(u, \cdot) \not\in [u, \top]$ (*Ifp*($\mathcal{A}^2(u, \cdot)$) is ill defined)

Adding third param. to St_A ...

- $St_{\mathcal{A}}(u, v, v) = (Ifp(\mathcal{A}_{v}^{1}(\cdot, v)), Ifp(\mathcal{A}_{v}^{2}(u, \cdot))).$ -*Ifp* construction, Given a pair (u, v):

$$x_0 = \bot, x_1 = \mathcal{A}_{\nu}^1(x_0, \nu), ..., x_{\alpha+1} = \mathcal{A}_{\nu}^1(x_\alpha, \nu), ...$$
(1)

$$y_0 = u, y_1 = \mathcal{A}_{\nu}^2(u, y_0), \dots, y_{\alpha+1} = \mathcal{A}_{\nu}^2(u, y_{\alpha}), \dots$$
(2)

- So, given an operator
$${\mathcal O}$$
 on ${\mathcal L},$

•
$$\mathcal{A}_{v}: \mathcal{L}^{3} \rightarrow \mathcal{L}^{2}$$
 is the approximator.

 $-\mathcal{A}_v$ is \leq_p monotone.

Lemma

Let
$$\mathcal{A} : \mathcal{L}^3 \to \mathcal{L}^2$$
 be an approximator, and $v, v' \in \mathcal{L}$ s.t. $v \leq v'$.
For all $(x, y), (x', y') \in \mathcal{L}^2$, if $(x, y) \leq_p (x', y')$, then
 $\mathcal{A}_{v'}(x, y) \leq_p \mathcal{A}_v(x', y')$.

Tackle Inconsistency ...

- Reliability : \mathcal{A} , $(u, v) \in \mathcal{L}^2$ is called \mathcal{A} -reliable if $(u, v) \leq_p \mathcal{A}_v(u, v)$.
- But, in \mathcal{L}^2 , may be $\mathcal{A}^2_{v}(u,\cdot) \notin [u, op]$
- Sufficient Condition: $\mathcal{A}^2_{\nu}(u, u) \geq u$ holds.

Lemma

Let $\mathcal{A} : \mathcal{L}^3 \to \mathcal{L}^2$ be an approximating operator. For any $(u, v) \in \mathcal{L}^2$, if $A_v^2(u, u) \ge u$, then for every $z \in [u, \top]$, $\mathcal{A}_v^2(u, z) \in [u, \top]$.

- Stable Revision operator for the extended AFT:

 $St_{\mathcal{A}}(u,v) = \begin{cases} (Ifp(\mathcal{A}_{v}^{1}(\cdot,v)), Ifp(\mathcal{A}_{v}^{2}(u,\cdot))) \text{ where } \mathcal{A}_{v}^{2}(u,\cdot) \text{ is on } [u,\top] \\ (Ifp(\mathcal{A}_{v}^{1}(\cdot,v)), Ifp(\mathcal{A}_{v}^{2}(u,\cdot))) \text{ where } \mathcal{A}_{v}^{2}(u,\cdot) \text{ is on } [\bot,\top] \end{cases}$

- Solves Inconsistency!
- \mathcal{A} -prudent: $(u, v) \in \mathcal{L}^2$ is called \mathcal{A} -prudent if $u \leq lfp(\mathcal{A}_v^1(\cdot, v))$ (improves u)

 $-\mathcal{L}^{rp}$ the set of all \mathcal{A} -reliable and \mathcal{A} -prudent pairs in \mathcal{L}^2_{+}

- chain property:

Lemma

 $(u, v) \in \mathcal{L}^{rp}$, let St(u, v) = (u', v'). Then, $(u, v) \leq_p (u', v')$, and (u', v') is \mathcal{A} -reliable and \mathcal{A} -prudent.

-
$$\leq_p$$
-monotonicity :

Lemma

$$(u,v),(u',v') \in \mathcal{L}^{rp}$$
, $(u,v) \leq_p (u',v')$, then $St(u,v) \leq_p St(u',v')$.

Theorem

structure $\langle \mathcal{L}^{rp}, \leq_p \rangle$ is a chain-complete poset, has least element (\perp, \top) , and St well-defined, increasing, and \leq_p -monotone op.

伺 ト く ヨ ト く ヨ ト

Definition

well-founded fixpoint of A: least fixpoint stable fixpoints : the exact fixpoints of St_A

Application to FOL programs

- FOL-program $KB = (L, \Pi)$

• L is a FO theory and Π a *rule base*

 $H \leftarrow A_1, \ldots, A_m$, not B_1, \ldots , not B_n , (Π)

• HB_{Π} : Herbrand Base, $P(t_1, \ldots, t_n)$: (*P* is predicate,

 t_1, \ldots, t_n : constants)

• $I \subseteq HB_{\Pi}$ (Interpretation) $\| \overline{I} = HB_{\Pi} - I \| \neg I = \{\neg A | A \in I\}$ -consistency:(I, J) is consistent with L if $L \cup I \cup \neg .\overline{J}$ is consistent. -consistent extension:(I', J') is a consistent extension of (I, J) if $I \subseteq I' \subseteq J' \subseteq J$

Definition

 $(I, J) \in (2^{HB_{\Pi}})^2$, and ϕ a literal.

- $(I, J) \models_L \phi$ iff, if ϕ is an atom A then $A \in I$, if ϕ is a negative literal not A then $A \notin I$, and if ϕ is an FOL-formula then $L \cup I \cup \neg .\overline{J} \models \phi$. (Entailment)
- (*I*, *J*) ⊢_L φ iff for all (*I*', *J*') of (*I*, *J*), (*I*', *J*') ⊨_L φ.
 (Consistency)

Approximation in FOL

- Operator to be approximated:

 $\mathcal{K}_{\mathit{K}\!\mathit{B}}(\mathit{I}) = \{\mathit{hd}(r) \mid r \in \Pi, (\mathit{I}, \mathit{I}) \models_{\mathit{L}} \mathit{body}(r)\} \cup \{\mathit{A} \in \mathit{H}\!\mathit{B}_{\Pi} \mid (\mathit{I}, \mathit{I}) \models_{\mathit{L}} \mathit{A}\}$

- Approximator of $\mathcal{K}_{\mathcal{KB}}(I)$:

Definition

(Operator $\Phi_{_{KB},v}$: Standard Semantics) For all $H \in HB_{\Pi}$,

- H ∈ Φ¹_{KB,v}(I, J) iff one of the following holds (true atoms)
 (a) (I, v) ⊨_L H.
 (b) ∃r ∈ Π with hd(r) = H, s.t. ∀φ ∈ body(r), (I, J) ⊩_L φ.
- *H* ∈ Φ²_{KB,ν}(*I*, *J*) iff (*I*, *v*) ⊭_L ¬*H* and one of the following holds (possibly true atoms)

(a)
$$\exists I', J'(I \subseteq I' \subseteq J' \subseteq J), (I', J' \cup \overline{J}) \models_L H.$$

(b) $\exists r \in \Pi$ with $hd(r) = H$, s.t. $\forall \phi \in body(r)$,

$$\exists I', J'(I \subseteq I' \subseteq J' \subseteq J), (I', J' \cup \overline{J}) \models_L \phi.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 →

Fix of Underestimation

-Example:

Example

 $KB = (L, \Pi)$,

$$L = \{ \forall x \ C(x) \supset (A(x) \lor D(x)) \}$$

and

$$\Pi = \{A(a) \leftarrow A(a). \ B(a) \leftarrow not \ A(a).$$

 $D(a) \leftarrow not \ B(a). \ C(a) \leftarrow not \ C'(a). \ C'(a) \leftarrow not \ C(a). \}$ We use $St_{\Phi_{KB}}$ in this case. Generates:

 $(\emptyset, HB_{\Pi}) \Rightarrow (\emptyset, \{c, c', b, d\}) \Rightarrow (\{b\}, \{c, c', b, d\})$ $\Rightarrow (\{b\}, \{c, c', b\}) \Rightarrow (\{b\}, \{c', b\}) \Rightarrow (\{c', b\}, \{c', b\})$

- A(a) is false $\rightarrow B(a)$ (Second pair) $\rightarrow D(a)$ is false (third pair) - $\neg C(a)$ entailed by L, C(a) is no longer possible true.

- Multi context system (use of entailed negation?).
- Grounded Fix point (does not handle inconsistency. Use this result?)
- Question??