

Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics

Md Solimul Chowdhury, Martin Müller and Jia-Huai You Department of Computing Science, The University of Alberta, Edmonton, Alberta, Canada.

Introduction

Boolean Satisfiability (SAT)

+ Determine assignments of the variables to satisfy a boolean formula, if one exists. Otherwise, unsatisfiable

Conflict Driven Clause Learning (CDCL) SAT Solvers

+ Conflict Generation at a fast rate is crucial for CDCL solvers. * conflict \rightarrow learned clause \rightarrow space pruning.

Empirical Properties of Glue Variables

Conflict efficiency of Glue Variables

0.8

<u>و</u> 0.6

- + Study LR and aLBD over Glue and NonGlue decisions.
 * Four solvers: Glucose, MapleLRB, MapleLCMDist (MLD) and MapleLCMDistChronoBT (MLD_CBT).
 - * 750 SAT Comp-2017, 2018 maintrack instances.

MLD MLD

Е 20.6 (L80.8

٥.6 ۲

₩ 0.4

Empirical Evaluation

Systems	SAT Comp-17				SAT Comp-18				Combined			
	SAT	UNSAT	Total	PAR-2	SAT	UNSAT	Total	PAR-2	SAT	UNSAT	Total	PAR-2
Glucose	83	96	179	1893	97	95	192	2274	180	191	371	4167
Glucose ^{gb}	86 (+3)	96 (+0)	182 (+3)	1868	96 (-1)	97 (+2)	193 (+0)	2273	182 (+2)	193 (+2)	375 (+4)	4141
MapleLRB	80	95	175	1897	114	95	209	2069	194	190	384	3966
MapleLRB ^{gb}	87 (+7)	97 (+2)	184 (+9)	1824	117 (+3)	96 (+1)	213 (+4)	2027	204 (+10)	193 (+3)	397 (+13)	3851
MLD	99	106	205	1635	136	101	237	1807	235	207	442	3442
MLD^{gb}	103 (+4)	107 (+1)	210 (+5)	1593	143 (+7)	102 (+1)	245 (+8)	1725	246 (+11)	209 (+2)	455 (+13)	3318
MLD_CBT	103	113	216	1565	135	102	237	1800	238	215	453	3365
MLD CBT ^{gb}	102 (-1)	114 (+1)	216 (+0)	1539	138 (+3)	101 (-1)	239 (+2)	1756	240 (+2)	215 (+0)	455 (+2)	3295

+ Performance gain with all the 4 baselienes for 750 SAT-competiton-17, 18 instances.

- + CDCL SAT solvers learns clauses at a fast rate.
 - * May affect solver speed.
 - * Learned clause DB management is necessary.

The LBD Criterion

+ One criterion for clause DB management is Literal Block Distance (LBD) score of the learned clasues.

- * Number of distinct decisions in a learned clause.
- * Learned clause X has 4 decisions : LBD(X) = 4

+ Literals which are assigned in a single dicision are like a connected block.

- * Eg., 3 literals forms a **block** *R* that are assigned in a decision .
- * Lower the LBD score \rightarrow higher quality learned clause.

Glue Clauses

- + Learned clauses with LBD score 2.
- + Possess high pruning power.
- + Are permanently kept in the modern CDCL Solver.

teral Block * Glue decisions achieve higher LR for most instances.

ŭ 0.8

<u>등</u> 0.6

* In general, Glue decisions achieve lower LR for most Instances.

Bias for Glue Variable Selection

(A)	(B) Average for Glue Variable							
Systems	GP (B1)	Glue Decisions % (B2)						
Glucose	25.32%	65.43%						
MapleLRB	21.8%	63.14%						
MLD	22.05%	47.60%						
MLD CBT	22.19%	48.76%						

Surprising observation for GLR and aLBD

╋	Study	of	extreme	cases	for	obtaining	insights.
						J	5

GB_{exclusive} : Instances are solved by the GB extension, not by its
baseline.
Baseline _{exclusive} : Instances are solved by the baseline, not by its GB
extension.

+ Average GLR and average aLBD are **largely inconsistent** wrt. Liang 2017 et. al.

	(B)	(C)					(D)			
(A) Systems	(D) Employed Heuristics	$GB_{exclusive}$					$Baseline_{exclusive}$			
Systems	Employed Hearistics	#inst	avg. GLR	avg. aLBD	avg. G2L	#inst	avg. GLR	avg. aLBD	avg. G2L	
Glucose	{VSIDS}	33	0.56	28.60	0.0005	29	0.59	18.52	0.0015	
Glucose ^{gb}	$\{VSIDS\}^{gb}$	55	0.53	24.69	0.0016		0.62	20.14	0.00078	
MapleLRB	{LRB}	27	0.50	26.06	0.00073	14	0.47	30.75	0.00046	
MapleLRB ^{gb}	${LRB}^{gb}$	21	0.46	20.38	0.00126	14	0.48	32.02	0.00037	
MLD	{Dist/VSIDS/LRB}	28	0.55	23.60	0.00029	15	0.53	26.70	0.0011	
MLD^{gb}	{Dist/VSIDS/LRB} ^{gb}	20	0.51	26.04	0.00032	15	0.58	23.21	0.0009	
MLD_CBT	{Dist,VSIDS,LRB}	26	0.49	26.08	0.0006	24	0.51	29.64	0.00065	
MLD_CBT ^{gb}	{Dist/VSIDS/LRB} ^{gb}	20	0.43	36.24	0.0011	24	0.55	25.42	0.00037	

+ Better heuristic for an instance set consistently achieves higher G2L, on average.

+ Glue Variables: variables that appear in at least one glue clause.

We relate glue clauses with branching variables.

+ **NonGlue Variable**: never appear in any of the glue clauses.

+ On average, given their smaller pool size, Glue Variables are selected disproportionately more often.

Contributions

Contribution I

We empirically show that

(a) Decisions with Glue variables are more conflict efficient.(b) CDCL branching heuristics show bias toward Glue variables.

Contribution II

(a) Developed a structure aware variable bumping scheme

- + Glue Bumping(GB)
- + **Prioritizes** selection of Glue variables

(b) Empirically evaluated the GB method on four state-of-the-art CDCL SAT solvers.

Contribution III

Have introduced the G2L metric

Activity Score Bumping: Glue Bump

Glue Level (gl)

- + Let **G** be the set of learned glue clauses so far.
- + *gl(v)* of a variable *v* is the appearance count of *v* in the glue clauses in *G*.

Glue Bump

- + Bumps activity scores of a **glue variable v**
 - * Based on its **activity score** and **glue level**.
- * Prioritize selection of **active glue variables with high** gl

Alg. 1: Increase Glue LevelInput: A newly learned glue clause θ 1For $i \leftarrow 1$ to $|\theta|$ 2 $v \leftarrow varAt(\theta, i)$ 3 $gl(v) \leftarrow gl(v) + 1$ 4End

Alg. 2: Bump Glue Variable Input: A glue variable v

 $1 \quad bf_v \leftarrow activity(v) * \left(\frac{gl(v)}{|G|}\right) \\ 2 \quad activity(v) \leftarrow activity(v) + bf_v$

Peculiarity of Glucose

+ Lowest gains with Glucose^{gb} \rightarrow why?

+ Glucose **already increases** the score of some of the (glue) variables during conflict analysis.

- + Hypothesis: GB in Glucose^{gb} creates an imbalance.
 - * We lower the bumping factor by dividing the glue level with high normalizing factor.
 → improved performance with Glucose^{gb}
- * 11 additional inatacnes(4 additioanl with previous version)

Related Work

+ Glucose bumps scores of those variables that are propagated from glue clauses. (Audemard 2009 et. al.)

- + Propagated and branched variables have high Eigen Centrality (Katsirelos 2012 et. al.).
- + VSIDS more often branches on variables which are

(a) Glue to Learned: fraction of the learned clauses that are glue.(b) consistently explains the performance of the tested solvers.

glue clause Θ is learned glue variable v is unassigned

bridges between communities (Liang 2015 et. al.).

Notations

+ Glue and NonGlue Decision: a decision that
* selects a Glue variavle for branching is called a Glue decsion.
* selects a NonGlue variavle for branching is called a NonGlue decsion.

+ Learning Rate (LR):

* number of conflicts per branching decision.

+ Average LBD (aLBD):

* Average LBD score of the learned clauses derived from the generated conflicts in a given run of a solver.

+ Let **v** is a glue variable.

+ Hence, GB bumps at **d**^e (delayed).

Future Work

+ Investigate relationships between normalized glue level and other centrality measures.

+ Design clause deletion heuristics based on the notion of glue level?

+ New branching heuristics based on G2L?