
University of Alberta

SAT with Global Constraints

by

Md Solimul Chowdhury

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c⃝Md Solimul Chowdhury
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.
Where the thesis is converted to, or otherwise made available in digital form, the University of

Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

Abstract

Propositional satisfiability (SAT) has been a dominant tool in solving some practical NP-

complete problems. However, SAT also has a number of weaknesses, including its inability

to compactly represent numerical constraints and its low level, unstructured language of

clauses. In contrast, Constraint Programming (CP) has been widely used for scheduling

and solving combinatorial search problems. In this thesis, we develop a tight integration of

SAT with CP, called SAT(gc), which embeds global constraints, one of the most efficient

features of CP, into SAT. We devise a DPLL-based algorithm for a SAT(gc) solver. A

prototype system is implemented by integrating the state of the art SAT solver Zchaff and

the generic constraint solver named Gecode. Experiments are carried out for benchmarks

from puzzle domains and planning domains to reveal insights in compact representation,

solving effectiveness, and novel usabilities of the new framework.

Acknowledgements

I am very thankful to my supervisor, Dr. Jia-Huai You, for all the encouragement, guidance
and support throughout this work.

Contents

1 Introduction 1
1.1 Constraint Programming and Boolean Satisfiability 1
1.2 Contributions . 3
1.3 Thesis Layout . 3

2 Boolean Satisfiability 4
2.1 Application of SAT . 4
2.2 Boolean Satisfiability Solvers . 5

2.2.1 The basic DPLL framework . 5
2.2.2 Components of a DPLL SAT solver 7

3 Constraint Programming 12
3.1 CP in a Nutshell . 12
3.2 Types of Constraints in the CP Paradigm . 13
3.3 State of the Art CP Solver . 15

3.3.1 Variable and value ordering heuristics 15
3.3.2 Constraint propagation . 16
3.3.3 Conflict analysis in CP . 19

4 SAT Modulo Theory 21
4.1 Lazy SMT Approach . 21
4.2 Eager SMT Approach . 23
4.3 Issues in Lazy and Eager Approaches to SMT 23

4.3.1 Issues in lazy approach . 23
4.3.2 Issue with the eager approach . 24

5 The SAT(gc) Framework 25
5.1 Motivation . 25

5.1.1 Cross fertilization of SAT and CP . 25
5.1.2 Why global constraints . 25
5.1.3 Issues with SAT and CP . 26
5.1.4 Motivation in a nutshell . 26

5.2 The SAT(gc) Framework . 27
5.2.1 Language and notation . 27
5.2.2 A SAT(gc) solver . 29
5.2.3 Examples . 34

5.3 Correctness of SAT(gc) Solver . 38
5.4 SMT verses SAT(gc) : A Comparison . 39
5.5 Constraint Answer Set Solving and SAT(gc) : A Comparison 40

6 Implementation of a Prototype of SAT(gc) 41
6.1 ZCHAFF - A State of the Art SAT Solver . 41
6.2 GECODE - A State of the Art CSP Solver 42

6.2.1 Problem modeling in gecode . 43
6.3 Integration of ZCHAFF and GECODE . 43

6.3.1 Preprocessing . 44
6.3.2 Decision . 44
6.3.3 Deduction . 44
6.3.4 Conflict analysis and backtracking . 45

6.4 GC-variables and Search Engines . 46
6.4.1 Creating models and search engines in satCP 46

6.4.2 Searching for CSP solutions . 46

7 Experiments 47
7.1 Encoding of SAT(gc) Formula . 47

7.1.1 SAT instance representation in zchaff 47
7.1.2 Representation in SAT(gc) . 48

7.2 The Latin Square Problem . 49
7.2.1 Encoding of the Latin square problem in SAT(gc) 49
7.2.2 Experimental results . 50
7.2.3 Solving Latin square of order three . 50
7.2.4 Performance analysis . 52

7.3 The Magic Square Problem . 52
7.3.1 Encoding of magic square in SAT(gc) 53
7.3.2 Monolithic SAT(gc) encoding . 53
7.3.3 Experiments with monolithic encoding 54
7.3.4 Comparison to SAT with weight constraints 54
7.3.5 Decomposed SAT(gc) encoding . 55
7.3.6 Experiments with decomposed encoding and analysis 56

7.4 Planning by SAT Solvers . 57
7.5 Ferry Planning with Numerical Constraints 58

7.5.1 Problem specification . 58
7.5.2 Encoding in SAT(gc) . 59
7.5.3 Solving ferry planning with numerical constraints 61
7.5.4 Experimental results . 62

7.6 Planning of Block Stacking with Numerical Constraints 62
7.6.1 Encoding in SAT(gc) . 63
7.6.2 Solving block stacking with numerical constraints 66
7.6.3 Results . 67

8 Summary and Future Work 68
8.1 Summary . 68
8.2 Future Work . 69

5

List of Tables

7.1 A SAT(gc) instance. 48
7.2 Mapping dictionary. 49
7.3 Experiments with Latin square. 50
7.4 Coding details of Πlatin of order 3. 51
7.5 SAT(gc) encoding of magic square with a monolithic constraint. 54
7.6 Experiments with magic square under monolithic constraint 54
7.7 STRIPS specification for the ferry problem. 59
7.8 gecode model for grouping cargoes. 61
7.9 Experiments with the ferry problem. 62
7.10 STRIPS specification for block stacking. 64
7.11 Experiments with block stacking with numerical constraints. 67

List of Figures

2.1 Search tree . 4

3.1 An example of a constraint store. 13
3.2 Sample CSP search . 13
3.3 Regin’s domain propagation . 18
3.4 Part of the search tree for the example CSP. 19
3.5 Conflict directed backjumping. 20

4.1 Lazy SMT . 22

6.1 Example of modeling a CSP problem in gecode. 42

7.1 A Latin square of order 3. 49
7.2 Implication graph for 3x3 Latin square . 52
7.3 Solving 3x3 Latin square . 52
7.4 A normal magic square of order 3. 53
7.5 Dependency of variables in magic square problem 56
7.6 Determination of the plan for serving ith cargo in jth turn 61
7.7 Example of block stacking with numerical constraint. 63

Chapter 1

Introduction

1.1 Constraint Programming and Boolean Satisfiability

Constraint Programming (CP) [34, 42] is a programming paradigm, developed for studying
and solving constraint problems. CP is closely related to declarative programming, where
an end user only states the problem to be solved, using a knowledge representation language,

without stating how the problem is solved. That is, the user does not need to devise an
algorithm as part of a solution. It is the underlying solver that solves the represented
problem using a generic search engine.

CP has wide applications. It has been applied to solving many practical problems from
domains of scheduling, planning, and verification [49]. Generally, these constraint problems
are combinatorial search problems, which means it is unlikely that an efficient polynomial

time algorithm exists for solving constraint problems.
Historically, CP is developed from the Constraint Satisfaction Problem (CSP) [13, 42],1

where a problem is represented by a collection of variables, each of which is over a finite

domain, and a collection of constraints. A constraint is a relation over a subset of the CSP
variables, which expresses allowed combinations of values for these variables (or alternatively,
disallowed combinations of values).

For practical applications, languages for CP have been developed to facilitate the defi-
nitions of constraints in terms of primitive constraints and built-in constraints. One kind of
these built-in constraints are called global constraints [48]. In general, a global constraint is a

pre-defined and specially implemented constraint over a non-fixed number of variables. The
use of global constraints is two-fold. Firstly, it facilitates problem representation. Secondly,
the processing of a global constraint is usually more efficient than an equivalent representa-

tion using primitive constraints. This is because a global constraint is typically implemented
by using special data structures and dedicated constraint propagation mechanisms (see, for
example, [6, 26]). In the current practice of CP, the basic methodology of programming is

to compose constraints using primitive and built-in constraints, most of which are in the
form of global constraints.

Another way of solving combinatorial search problems is Boolean Satisfiability (SAT),

in which a problem is represented by a collection of Boolean clauses, called a formula. To
solve a SAT formula, we need to determine whether there is a truth value assignment that
satisfies all the clauses.

Recent research in SAT solving indicates that the research on the central part of SAT
solving has become saturated, as DPLL based modern SAT solvers have very efficient imple-
mentations, with their ability to solve a SAT problem using the technique of conflict directed

1Due to this, in this thesis CP and CSP are used to refer to the same style of constraint solving, though
in general CP refers to a programming paradigm and CSP is meant to be a model of constraint solving.

1

backtracking and learning. However, it is not clear where the further breakthroughs would

come from. In the past few years, a trend of incorporating efficient and useful features of
other frameworks into SAT solver has been developed. For example, in SAT Modulo Theory
(SMT) [37], theory solvers of various kinds are incorporated into a SAT solver, where part

of the problem is encoded in an embedded theory and solved by a dedicated theory solver.
SAT and CSP share some common traits towards problem solving. But both have some

inherent disadvantages. For example, unlike the SAT framework, CSP requires heavy tuning

on the problem representation, such as the variable selection strategy for a given problem
instance and choices of consistency techniques with a balance of search space pruning power
versus overhead. In general, the effectiveness of CSP comes from representing problems

with variables over non-trivial domains. This is due to the fact that in search space pruning
for CSP, the key idea is what is called domain reduction - removing domain values that
are inconsistent with the current partial assignment. Thus, CSP does not seem to be an

effective method for representing problems that heavily rely on variables of two values, true
and false, i.e., propositional variables. On the other hand, the language of SAT is based
on the language of clauses, which is arguably a low-level, unstructured language. Some

researchers even term SAT as the “assembly language” of hard problems.
For some applications, such as planning, SAT solvers are typically more efficient than

CSP solvers, while for some other types of problems, like scheduling, the CSP approach is

better suited than the SAT approach. The primary drawback for scheduling in SAT is due
to the difficulty of representing numeric constraints in SAT. For a CSP variable over a large
numeric domain, while a CSP solver tries to find values of variables from their domains so

that the stated constraints are satisfied, in SAT one uses a Boolean variable to represent
that a CSP variable takes a value, for each value in the domain. This can result in an
exponential blow up of the resulting size of a SAT representation. To represent a numeric

constraint this way often needs to enumerate all possible values of a domain. In other words,
a numeric constraint may have to be solved before we know how to represent its solution
by propositional clauses.

To deal with numeric constraints, the SAT community has moved to a different direction
- pseudo Boolean constraints, where constraints are expressed by linear inequalities over sum
of weighted Boolean functions (see, e.g., [10]). Pseudo Boolean constraints extend SAT as

the latter can be seen as a special case. Pseudo Boolean constraint solvers have been built
and competitions held as a special event of SAT Solver Competition.2

In this thesis we study how to incorporate some efficient features of CSP solving into

SAT. Two possible modes in which SAT solver and CSP solver can be integrated are loose
integration and tight integration. In a loose integration, calls to a CSP solver can be largely
handled separately from the reasoning by a SAT solver. A tight integration implies tight

interleaves between CSP and SAT solvers. In other words, a tight integration is an integra-
tion of solvers, while a loose integration consists of a collection of largely independent calls
to different solvers. In general, a loose integration is insufficient in handling inter-dependent

constraints, where a solution to a constraint may not lead to a solution to the overall prob-
lem, and backtracking is necessary. Any attempt to handle this automatically leads to a
tight integration.

In this thesis, we pursue a tight integration of SAT and CSP. Tight integration poses a
number of challenging issues like, how to represent a SAT problem in the presence of global
constraints, and how deductions, conflict analysis and backtracking with learning can be

performed in the presence of global constraints. In our work, we develop a framework to
incorporate CSP style constraint solving into SAT solving with the anticipation that this
tight integration will enhance the usability of SAT solver and increase its efficiency for some

application domains.

2http://www.cril.univ-artois.fr/PB11/

2

A noteworthy point to mention here. The benchmarks that are used in the recent pseudo

Boolean solver competitions involve only numerical constraints. If the pseudo Boolean solv-
ing community sticks to their current focus, then pseudo Boolean solvers will become more
efficient in solving problems involving only numerical constraints. These include problem

domains like scheduling, numerical optimization, etc. However, there is no guarantee that a
problem that can be solved efficiently by a SAT solver can be solved in the same way by a
pseudo Boolean solver, due to different underlying problem representation and solving tech-

niques. For example, SAT planning is known to be a competitive approach to AI planning
[22]. But there is no guarantee that the pseudo Boolean approach can solve the planning
problem with the same level of efficiency. In other words, not all the problems that can be

solved efficiently by the SAT approach can be solved with the same efficiency by the pseudo
Boolean approach. In contrast, our developed framework is a true extension of SAT and
CP, in that when one is absent, the system runs like the other.

1.2 Contributions

The contributions of this thesis are as follows:

1. We provide a critical review on the state of the art DPLL based SAT solving, CSP
solving, and SMT solving. This material also serves as the background for the technical

development of the thesis.

2. We develop a framework of integrating CSP and SAT, by embedding global constraints
into SAT. The resulting framework takes the advantage of the modeling power, as well

as efficient processing, of CSP, in terms of global constraints, and makes it available
to SAT solving.

3. Our framework is closely related to SMT. We identify similarities and differences

between the two.

4. To demonstrate the feasibility of this framework, we implemented a prototype system,
called satCP, in which we integrated the modern DPLL based SAT solver, zchaff,

and a generic constraint solver, gecode. Since user-defined constraints can be called
in the same way as global constraints, satCP can be seen as embedding gecode in
SAT.

5. To demonstrate the utilities of the framework, we report experimental results on four
benchmarks, two from the puzzle problems domain and two from the planning domain.

1.3 Thesis Layout

The thesis is organized as follows. The next chapter presents a succinct review on modern
DPLL based SAT solving, followed by an introduction to constraint programming in Chapter
3 and SMT in Chapter 4. Chapter 5 presents an embedding of global constraints into

SAT, called SAT(gc), and Chapter 6 provides some implementation details in integrating
zchaff and gecode. We carry out experiments with four benchmarks for our implemented
prototype system, two of which are taken from the puzzle problem domain (Latin Square

Problem and Magic Square Problem), and the other two from the planning domain (Ferry
Planning Problem with numerical constraints and Block Stacking Planning Problem with
numerical constraints). Chapter 7 describes each of the benchmarks, their encoding in

SAT(gc), experimental results, and an analysis of the results. Chapter 8 concludes our
work and points to future directions.

3

Chapter 2

Boolean Satisfiability

Given a propositional formula of collection of clauses, the task of determining whether there
exists a variable assignment such that the formula evaluates to true is called the Boolean

Satisfiability Problem, abbreviated as SAT [53]. Let V be a finite set of propositional
symbols, called variables. For any v ∈ V , v and ¬v are called the literals of v denoting the
positive and negative phases of variable v, respectively. A clause is a disjunction of literals

l1∨· · ·∨ln. A unit clause is a clause with one literal. In general, a unit clause may also refer
to a clause with n literals, where n−1 of them are false in the current partial assignment.
A SAT instance is a propositional formula consisting of a conjunction of clauses, which is

also called a Conjunctive Normal Form (CNF) [37].

Example
The following formula F (taken from [29]) is a CNF formula with three variables a, b and c.

F = (a ∨ b) ∧ (¬a ∨ ¬b ∨ c)

The Boolean satisfiability problem for formula F is to determine whether there exist a truth
assignment for a, b and c, so that the formula F is satisfied. Figure 2 shows a complete search
tree which can be used to determine the satisfiability of the formula. The branches leading
to green leaves and red leaves are the satisfiable and unsatisfiable branches respectively.

Figure 2.1: Search tree for finding the satisfiability of formula F .

2.1 Application of SAT

SAT solvers have been used in many application areas. They are used in areas like automated
theorem proving, verification, artificial intelligence, and electronic design automation. In
the following we shall briefly mention some of these [32].

1. Automated test pattern generation: Fabricated integrated circuits may contain de-
fects, which in turn may cause circuit failure. Automated test pattern generation
(ATPG) is used for detecting fabrication defect on circuits.

4

2. Combinatorial equivalence checking: After designing two circuits, an essential task is
to check their equivalence. That is to see, whether or not they are providing the same
output. The problem of equivalence checking can be formulated as a SAT instance on
which a SAT solver is employed to give a YES or No answer, i.e., the SAT instance is
satisfiable if the circuits are equivalent, and unsatisfiable otherwise.

3. Bounded Model Checking: One important usage of a SAT solver is bounded model
checking. Given a transition system, a temporal logic formula, and a user-supplied
time bound, the bounded model checking constructs a SAT formula, which is satisfiable
if and only if the temporal logic formula is valid along a path of certain length and
unsatisfiable otherwise.

4. AI Planning: SAT based AI planning was motivated by bounded model checking. SAT
based planning decides whether it is possible to reach a goal state from an initial state
within a specified number of steps by performing a series of actions. If one of the goals
is reachable, the SAT instance is satisfiable, otherwise it is unsatisfiable.

2.2 Boolean Satisfiability Solvers

The Boolean Satisfiability Problem was the first problem to be proved to be NP-complete.
This means, any problem in NP in theory can be solved by encoding the problem as a SAT
instance and by invoking a complete SAT solver on it.1 On the other hand, SAT is a hardest
problem in NP. Despite of this NP-completeness, due to the large applicability of SAT, in the
last few decades extensive research for finding efficient algorithms to solve many interesting
SAT instances was undertaken. Almost all complete modern SAT solvers are based on
what is called DPLL, reflecting the fact that it was invented by the four researchers, Davis,
Putnam, Logemann, and Loveland [28]. In this section, we shall discuss the basic DPLL
framework and the evolution of its components.

2.2.1 The basic DPLL framework

In 1960, Davis and Putnam proposed a resolution based algorithm for solving the SAT
problem, abbreviated as DP algorithm [11]. This algorithm is the original algorithm for
many SAT solvers. However, this resolution based algorithm suffers from memory explosion.
Two years later, Davis, Putnam, Logemann and Loveland proposed a modified version of
DP algorithm, widely known as DPLL algorithm [28], that uses search instead of resolution.
This overcomes the problem of memory explosion.

In order to satisfy a CNF formula, each and every clause must be satisfied individually.
If there exists a clause, where all of its literals are assigned to the value 0 (we use true and
1 interchangeably, and false and 0 interchangeably), then it is said that the solver is in
conflict and the current variable assignment cannot be extended so that the formula can be
satisfied. A clause, which has all of its literals assigned to value 0, is called a conflicting
clause.

The recursive version of the DPLL algorithm is given in Algorithm 1.
The DPLL algorithm is called with a CNF formula and with a variable assignment

(initially empty). This variable assignment is called a partial assignment. The algorithm
first makes all the possible deductions on the input formula, based on the current partial
assignment, and adds these new deductions to the current partial assignment, thus producing
a new assignment. A process of deduction is constraint propagation (in most SAT solvers
this is done by what is called unit propagation). If the formula is either satisfied or unsatisfied
under the current variable assignment, the recursion ends. Otherwise, it will select a free
variable from the formula and branch on it for both of the phases.

1A complete solver guarantees an answer YES when the given SAT instance is satisfiable, and NO
otherwise.

5

1 DPLL(formula, assignment)
necessary = deduction(formula, assignment)
newasgnmnt = union(necessary, assignment)
if is satisfied(formula, newasgnmnt) then
return SATISFIABLE

end if
if is conflicting(formula, newasgnmnt) then
return CONFLICT

end if
var = choose free variable(formula, newasgnmnt)
asgn1 = union(newasgnmnt, assign(var, 1))
if DPLL(formula, asgn1) == SATISFIABLE then
return SATISFIABLE

else
asgn2 = union(newasgnmnt, assign(var, 0))
return DPLL(formula, asgn2)

end if
Algorithm 1: The Recursive Version of the DPLL Algorithm

An iterative and improved version of DPLL algorithm has been developed [33], which,
unlike the recursive version of DPLL algorithm, uses non-chronological backtracking. Algo-
rithm 2 describes such an algorithm.

Different DPLL based SAT solvers can be described by giving variations they have
made on the functions described on Algorithm 2. From now, our discussion on the DPLL
framework will be based on this version of the DPLL algorithm.

The algorithm described on Algorithm 2 starts by executing the preprocess() function
on the CNF formula to do some initial deductions. If preprocess() determines the satis-
fiability of the CNF formula, then the algorithm simply returns the outcome. Otherwise,
the execution will enter the outer while loop and call decide next branch() to choose a free
variable from the pool of free variables to assign it to a value. This operation is called a
decision and each decision variable is associated with a decision level, which starts from
1 and gets incremented on the subsequent decision level by 1. Then, the algorithm makes
further deductions based on that decision along with the current partial assignment. This
deduction is called unit propagation or Boolean constraint propagation (BCP). During the
deduction, the newly assigned variables (these variables are forced to be true or false) get the
same decision level as the decision variable. After all the possible deductions at a decision
level, if the problem becomes satisfiable, then the solver will return SATISFIABLE; if there
exists at least one conflicting clause, the solver will call the procedure analyze conflict(),
which performs a conflict analysis and returns an appropriate decision level as the backtrack
point; if analyze conflict() returns level 0, then the problem is unsatisfiable and the solver
returns UNSATISFIABLE. Otherwise, the solver backtracks to the directed level and undo
the relevant variable assignments. During the conflict analysis, the solver may generate a
learned clause and store it into the clause database. This type of learning is called conflict
driven learning. In case that the solver cannot determine either a conflict or satisfiability
after decision and subsequent deduction, the solver chooses another decision variable from
the free pool of variables.

Since a decision variable may appear positively or negatively in a clause, to refer to such
a literal, we may use the term decision literal in general.

For more details, the reader can consult [53].

6

status = preprocess()
if status == KNOWN then
Return status

end if
while true do
decide next branch()
while true do
status = deduce()
if status == CONFLICT then
blevel = analyze conflict()
if blevel == 0 then
return UNSATISFIABLE

else
backtrack(blevel)

end if
else if status == SATISFIABLE then
return SATISFIABLE

else
break

end if
end while

end while
Algorithm 2: The Iterative Version of DPLL Algorithm

2.2.2 Components of a DPLL SAT solver

For the last few decades, various components of DPLL based SAT solvers have been devel-
oped and are the subject of extensive scrutiny. In this section, we shall review the main
components of a DPLL based SAT solver, which have evolved over time. After reading this
section, the reader will understand the state of the art techniques in building a fast SAT
solver.

Decision heuristics

In the function decide next branch() of Algorithm 2, a variable from the unassigned pool
of variables is selected in order to assign it to a value. The variable selection has a huge
effect on determining the size of the search tree. An appropriate variable selection can prune
the search space dramatically for the same basic algorithm executing on a specific problem
instance. So, to increase the efficiency of the SAT solver, several decision heuristics were
proposed over the years.

Some of the earlier decision heuristics are Bohm’s heuristic [8], Maximum Occurrences
on Minimum Sized Clauses (MOM) [14] and Jeroslow-Wang heuristic[21]. These heuristics
are used to branch on a variable, which will generate the maximum number of implications
or satisfy most clauses. Thus, these types of heuristics are greedy in nature. While these
heuristics are useful for random problems, they are not efficient for structured problems as
they do not capture the relevant information.

Another decision heuristic proposed in the literature, decides a variable by the literal
count of the variable on the problem instance in hand [31]. This literal count heuristic
counts the number of unresolved clauses, where the variable under consideration appears in
either phase. When combined with dynamic largest combined sum (DLIS), this heuristic
yields quite good results for a number of benchmarks being tested. But, it has a downside.
The clause counts are state-dependent as different variable assignment will give different
clause counts. As a result, in every decision the counts for all the unassigned variables need
to be recalculated.

7

As the SAT solvers are becoming more and more efficient, the time needed to decide on
a branching variable by using this literal count scheme tended to take much of the solving
time. The need of more efficient decision heuristics motivated more research. Another
decision heuristic, called Variable State Independent Sum (VSIDS), is described in the SAT
literature [35]. In VSIDS, a score for every literal is kept. The scores are initialized with
number of occurrences of the corresponding literals in the initial problem. As the modern
SAT solvers incorporate clause learning, the VSIDS will increase the score of a particular
literal if any of the added clause contains that literal. In addition, the scores are periodically
divided by a constant number to give more weight to the literal count of the literals which
appear on the most recently added clauses. VSIDS selects the variable with the highest
combined scores of both of its literals to branch. Experimental results show that VSIDS
takes little portion of the total runtime of the solver, thus making the solver more efficient.

In another approach [18], the heuristic tries to decide on the variable which is active
recently. Unlike VSIDS, where activity of a variable is determined by its occurrences, in
this heuristic, activity of a variable is determined by its involvement in conflicts. In this
scheme, when a conflict occurs all the literals in all the clauses involved in the conflict will
have their scores increased. To capture the recentness attribute of the decision variable,
like VSIDS, the scores of the literals are decayed periodically. For branching this decision
heuristic considers only those variables, which appear in the last added unresolved clauses.

Deduction algorithm

After the decision variable is assigned a value, the solver attempts to find what are the other
deductions possible with respect to the current variable assignments. The function deduce()
in Algorithm 2 does these further deductions. After finding all the possible deductions with
respect to the current variable assignment, the function deduce() may return three status
values. It returns SATISFIABLE if all the clauses in the problem instance are satisfied by
the current partial assignment. A status CONFLICT is returned by deduce(), if there exists
a clause which has all the literals assigned to zero. Otherwise, it will return UNKNOWN
and the solver will continue to branch.

Among many other deduction rules proposed over the years, the unit clause rule [28] is
the most efficient one, in the sense that it requires little computational time, though it can
prune large search space. The unit clause rule attempts to deduce a clause in which all but
one of its literals are assigned to 0. Such a clause is called a unit clause. The unit clause
rule assigns 1 to the unassigned literal, which is called a unit literal, making the unit clause
true. In the rest of this thesis, such a literal will also be said to be implied or forced. As we
have mentioned earlier, the process of assigning 1 to a unit literal is called unit propagation
or Boolean Constraint Propagation (BCP), which is the central part of DPLL based SAT
solving, as the SAT solver will pass most of its time doing BCP.

Implementation of BCP

After a variable assignment, BCP attempts to detect unit clauses and conflicting clauses.
Several approaches are described in the SAT literature to implement BCP, to be described
below.

Counter based implementation In counter based approach [51], for each variable we
maintain two lists of clauses where the variable appears in positive and negative phases.
Additionally, each clause maintains two counters, one of those keeps the count of value 1
literals in that clause and the other counter keeps the count of value 0 literals in the same
clause. After a variable assignment, all the counters of the clauses that contain that variable
gets updated. This approach identifies unit clauses and conflicting clauses by checking the
value of these literal counters of every clause. If the count value of the 0 value counter of
a clause becomes equal to the clause’s length, then the clause is a conflicting clause. If the

8

count value of the 0 value counter of a clause is one less than the length of the clause, and
the value 1 literal counter is 0, then the clause is a unit clause.

Despite its simplicity, counter based approach to BCP is not the most efficient one. If
any CNF problem instance has m clauses, n variables and on average each clause has l
literals, then whenever a variable is assigned, we need to update lm/n counters. On the
occasion of a conflict, we need to undo the change in the counters of the clauses relevant
to the variables which are unassigned during backtracking. On average, again we have to
undo lm/n counters for each un-assignment. Apart from this, in modern SAT solvers, the
learning mechanism tends to add a large number of long clauses. That makes counter based
BCP relatively slow.

Head/Tail mechanism A more efficient approach for implementing BCP is Head/Tail
approach [51]. In this approach, all the literals of a clause are stored in an array. Every
clause has two pointers, namely the head and tail pointer. Initially, the head and tail
pointers point to the first and last literal of a clause. Each variable maintains four linked
lists, which contain pointers to clauses. There is a head pointer list and a tail pointer
list for both phases of a variable. Thus, a variable v maintains four linked lists. Let
us name them as clause of pos head(v), clause of neg head(v), clause of pos tail(v) and
clause of neg tail(v). Each of them contains pointers to clauses where v appears in both
phases at the head and tail position, respectively. When a variable v is assigned 1, all the
clauses pointed to by clause of pos head(v) and clause of pos tail(v) will be ignored and
all the clauses C pointed to by the list clause of neg head(v) get the focus. Notice that, the
head literal of a clause C turns out to be the negative literal of C. The head/tail approach
starts searching from the head position to the tail position in C and attempts to find a
literal in C which is not yet assigned to 1. The search process may encounter one of the
four cases:

1. During the search, if we find a literal which is assigned to value 1, then the clause is
satisfied and we do not need to do anything.

2. If we find a literal l other than the tail literal, which is unassagined, then C is removed
from clause of pos head(v) and we add C to the head list of the variable corresponding
to the literal l. This operation is called moving the head literal.

3. If all the literals between those two pointers are assigned to the value 0 and the tail
literal is an unassigned literal, then C is a unit clause with l being its unit clause.

4. If all the literals between and including the tail are assigned to the value 0, then C is
a conflicting clause.

For clause of pos tail(v), similar actions as 1 to 4 are performed starting from tail to head.
In the head/tail approach, when a variable is assigned value 1, the clauses that contain

positive literals of this variable are ignored and vice versa. As compared to the counter
based approach to BCP, on each variable assignment, on average m/n clauses need to be
updated in the head/tail approach. In general this property makes the head/tail approach
much faster than the counter based approach.

Though faster than counter based approach, during unassignment, the computational
complexity of the head/tail approach, due to unassignments during backtracking, remains
the same as in the counter based approach. This promoted research for faster BCP algo-
rithms. Currently, the most efficient implementation is called 2-watched literal.

The 2-watched literal scheme The 2-watched literal scheme [35] is similar to the
head/tail approach of BCP. In this scheme we employ two pointers in every clause, but
unlike the head/tail literal scheme, there is no imposed order on the position of the watched
literals. Every variable has two lists, one of which contains pointers to the clauses where the
variable appears positively and the other contains pointers to the clauses where the variable

9

appears negatively. Let us denote these two lists by pos watched(v) and neg watched(v).
In contrast to the head/tail approach, the watched literals can move to any direction. Ini-
tially, both of watched literals are free. When a variable v is assigned to value 1, the clauses
pointed to by the list pos watched(v) are ignored. In this case, the scheme focuses only on
the clauses pointed to by the list neg watched(v) list. In every clause C, pointed by the list
neg watched(v), the 2-watched scheme will search for a literal l which is not set to value 0.
During the search one of the four cases may occur:

1. If we find a literal which is assigned to value 1 and which is the other watched literal,
then we do not need to do anything.

2. If we find a literal such as l, which is not the other watched literal, then C is removed
from neg watched(v) and we add pointer to C to the list of pointers corresponding to
the literal l. This operation is called moving the watched literal.

3. If the other watched literal is the only such l, then the clause C is a unit clause and
the other watched literal becomes a unit literal.

4. If all the literals in C are assigned to value 0 and no such literal as l exists, then C is
a conflicting clause.

Like the head/tail approach, during the identification of unit and conflicting clauses,
the 2-watched literal scheme has the same advantage of reducing the number of clauses to
search for. In addition to that, we need less work while undoing variable assignments during
backtracking. Backtracking in 2-watched literal is done in constant time. As the watched
literals are the last literals to be assigned to value 0, backtracking guarantees that they will
be unassigned and will become free again. Thus no action is needed to update the pointers
for the watched literals. This makes 2-watched literal scheme significantly faster than the
other two approaches described above. The 2-watched literal scheme has become the state
of the art BCP mechanism for DPLL based SAT solvers.

Conflict analysis

In unit propagation, if the solver detects one or more conflicting clause, then it indicates
that a conflict has occurred and the current search space cannot lead to a solution. It
needs to backtrack to a certain point and enter into a new search space to continue. For
this purpose, it needs to analyze the conflict to get the backtracking point. This conflict
analysis is done inside the analyze conflict() function of Algorithm 2. The basic DPLL
solver employs a simple conflict analysis technique. After a conflict occurs, the basic DPLL
SAT solver searches to find a decision variable vd with the highest decision level which
has not been assigned to its both phases yet (called an unflipped variable.2) Then, the
DPLL solver unassigns all the assignments done previously between the current decision
level and the decision level of the variable vd. This method is said to perform chronological
backtracking.

Though chronological backtracking works fine for some random problems, for structured
problems generated from real world applications, chronological backtracking is not efficient.
Because it always backtracks to the decision level of the last unflipped variable, it may not
backtrack to the real reason of the conflict. A more efficient conflict analysis method would
backtrack to a point which really has caused the conflict. This method may backtrack to
any of the earlier decision levels. This method is called non-chronological backtracking. In
addition, the state of the art conflict analyzer records the information about the current
conflict as a learned clause, which is used to prune search space in the future. The addition
of new clauses does not change the satisfiability of the original problem, because after the
addition of the clauses, the extended problem remains equivalent to the original problem.
This type of mechanism is called conflict directed learning [33]. The learned or recorded

2During the search, when a variable is tried with its both values, then we say that the variable is flipped.

10

clauses are called conflict clauses. When a unit literal is implied by a unit clause, that clause
is called the antecedent clause of the corresponding variable. In conflict driven analysis, a
learned clause is generated by the process of resolution that involves the conflicting clause
and antecedent clauses of some other conflicting variables.

The pseudocode for conflict analysis is depicted in Algorithm 3. During unit propagation
whenever a conflict clause is detected, the analyze conflict() function is called to resolve
the conflict. The function choose literal(cl) chooses the literal from cl which was assigned
last in cl. The function resolve(cl, ante, var) returns a clause after executing resolution
process on cl and ante, which contains all the literals in cl and ante except the literals
corresponding to var. The resulting clause is also a conflicting clause, because the inputs
to resolve() consist of a conflicting clause and a unit clause, respectively.

cl = find conflicting clause()
while !stop criterion met(cl) do
lit = choose literal(cl)
var = variable of literal(lit)
ante = antecedent(var)
cl = resolve(cl, ante, var)

end while
add clause to database(cl)
back dl = clause asserting level(cl)
return back dl

Algorithm 3: Conflict Analysis and Clause Learning

Inside the while loop of Algorithm 3, clause generation continues until the stop criterion
is met. In the state of the art SAT solvers, the stop criterion is met when the generated
clause is an asserting clause - a clause which has all of its literals assigned to 0 and exactly
one of its literal lc, is assigned in the current decision level. The decision level of the literal
la, with the second highest decision level in the asserting clause, is the asserting level. This
asserting level is the backtracking level to which the search backtracks. After backtracking
at the asserting level, the asserting clause becomes a unit clause as all the literals in the
asserting clause except lc are assigned to 0.

The FirstUIP scheme [52] is the most efficient heuristic for selecting an asserting clause
from a bunch of candidate asserting clauses. In firstUIP, the stopping criterion of the while
loop in Algorithm 3 is met, as soon as the first asserting clause is found.

Clause learning is very useful in pruning search space in the future. But some of them
are redundant and not all of them are equally useful. Keeping all the learned clauses in the
clause database may slow down the search process and may occupy unnecessary memory
space. Therefore, it is often required to delete some of the learned clauses which are less
useful and have too many literals. This operation is referred to as forgetting a clause.

11

Chapter 3

Constraint Programming

Constraint Programming (CP) is a programming paradigm, where relations between vari-
ables are stated in the form of constraints.

Informally, a constraint on a sequence of variables is a relation on their domain values.
To solve a problem in CP, one way is to formulate it as a Constraint Satisfaction Problem
(CSP). A CSP1 consists of three parts: a finite set of variables, a finite domain of values
associated with each of the variables and a set of constraints restricting the values that
variables can simultaneously take. A solution to a CSP is an assignment to all of the
variables from their domains such that all the constraints are satisfied. If a CSP instance
has a solution then it is said to be consistent, and otherwise inconsistent.

Formally, an instance of CSP can be defined as a triple P (X,D,C), where C is a finite
set of constraints {c1, c2, . . . ct} over a finite set of variables X = {x1, x2, . . . xn} and a
domain D = {Dx1 , Dx2 , . . . Dxn} that maps each variable xi ∈ X to a finite set of values.
A constraint ci is a relation Ri defined on a subset of variables Si ⊆ X, where Si is called
the scope of ci. If Si = {xi1 , xi2 , . . . xin}, then Ri is a subset of the Cartesian product
Dxi1

× · · · ×Dxim
. See [13] for more details.

3.1 CP in a Nutshell

Most common and widely used approach to solving a CSP is based on backtracking depth-
first search, employing some constraint propagation based on consistency techniques. Con-
straint propagation attempts to reduce the size of the domain for each CSP variable - it
removes a value from the domain of a variable if the value is inconsistent with the current
assignment of the other variables with respect to the set of constraints. This means that
the current assignment will not lead to a solution. In general, constraint propagation may
not solve the given problem instance [36].

In CP, variables, their values and the constraints are stored in an object called constraint
store. A constraint store can have one of the three possible states:

• Solved: Each variable has exactly one value to choose from.

• Failed: At least one variable has no value left in its domain from which it can take a
value.

• Distributable: Neither of the above.

Thus, the process of constraint propagation reduces the ranges of values of the variables.
Figure 3.1 depicts a constraint store, where the constraint propagation reduces the domain
of the CSP variables X and Y to {3,4} and {2,3} respectively. After constraint propagation
this constraint store become a distributable store.

1In this thesis, we also use CSP to refer to an instance of CSP.

12

Figure 3.1: An example of a constraint store.

Figure 3.2: Sample CSP search tree.

To get a solution, a distributable store needs to be reduced further. Branching is used
for that purpose. The process of branching removes the alternative solutions that exist in
the distributable store. Branching takes a copy of the store and adds a constraint β to
it. It also takes another copy of the constraint store and adds the constraint ¬β. For the
distributable constraint store, obtained from the constraint store depicted in Figure 3.1,
taking β as X = 3 would reduce the distributable store to the solved store. Branching
forms a binary tree, where each store is a node in the tree. Every leaf node in the tree is
either a failed or solved store, while the body of the tree consists of distributable stores.

To find a solution for a CSP, we need to explore the search tree. A search can be
explored in different manners, such as depth first search or breadth first search. Usually,
constraint propagation takes significant amount of time to be completed and search tree is
not constructed until constraint propagation is finished. Search tree is lazily constructed,
while the search engine is exploring the tree. Each node is constructed on demand. Figure
3.2 shows an example of a search tree where the circle denotes a distributable store, rectangle
denotes a failed store and the diamond denotes a solved store.

3.2 Types of Constraints in the CP Paradigm

In this section, we will describe the typical types of constraints provided by the CP paradigm
[7]:

• Numerical Constraints: For most applications numerical constraints are linear con-
straints that involve primitive arithmetic operations of variables and constraints. For
example, 3x ≤ 5y is a numerical constraint, where x and y are variables with numerical
domains.

• Symbolic Constraints: High level constraints. Example of symbolic constraints are
constraints defined on lists or data structures. For instance, y[i] = x is a symbolic
constraint, where i is an integer-valued unknown variable, y is an array of unknown
variables and x is another variable.

13

• Meta Constraints: An arbitrary Boolean combination of constraints. Along with con-
junction of constraints, disjunction and implication between constraints are also sup-
ported in the CP paradigm. For example, x+ y = 10∨x− y = 5 is a meta constraint.

• Global Constraints: The use of global constraints in CP can greatly increase the ef-
ficiency of the constraint solver. The idea of global constraints can be expressed like
this: a constraint c is named as global, when processing c as a whole gives better
results than processing any conjunction of constraints that is semantically equivalent
to c [3]. From syntactical point of view, a global constraint is a complex constraint
that captures a relation between a non-fixed number of variables. In the following we
will describe some frequently used global constraints and their implementations on a
constraint solver named gecode.

– All-different: allDiff(x1, x2 . . . xn) assigns distinct values to the variables x1, x2 . . . xn,
that is, this global constraint stands for a conjunction of dis-equality constraints∧

i

∧
j>i

xi ̸= xj

The gecode implementation of the propagator of allDiff is called distinct [45].
In gecode, by posting

distinct(home, x)

we constrain that all the variables in array x to be pairwise distinct, where home
is the pointer to the constraint store to which x belongs.

– Cumulative: Cumulative is a scheduling constraint. It considers a set T of tasks
and a limit L. Each task is composed of four components: origin, duration, end
and height (the portion of a resource that the task uses at any given time point t).
The cumulative constraint constrains that at each point in time, the cumulated
height of the set of tasks that overlap that point, does not exceed the give limit
L of the resources they are currently using. A task overlaps a point t if and
only if (1) its origin is less than or equal to t, and (2) its end is strictly greater
than t. The cumulative constraint also imposes that for each task, the constraint
origin + duration = end holds [2]. The cumulative global constraint is used to
schedule tasks which require limited amount of resources with limited capacity.

gecode implements two versions of cumulative [45]. The first models a resource
with a limited capacity that each task can use. Each task requires certain resource
usage. The constraint is, at each time the total resources usage of the tasks
must not exceed the capacity of the resource. This version of cumulative global
constraint has the following signature:

cumulative(home, c, s, d, u)

where c is the capacity of the resource, s, d and u are the variable arrays which
contain starting time, duration and the required resource usage by each of the
tasks respectively.

The second version models multiple resources that can be shared by a set of tasks.
The syntax for this version cumulative propagator function is

cumulative(home, resource, start, duration, end, height, limit, atmost).

This propagator function posts a constraint over a set of tasks T , where each
task Ti is defined by

⟨resourcei, starti, durationi, endi, heighti⟩.

14

The resourcei component specifies the potential resources that Ti can use, starti,
durationi and endi indicates when Ti can occur and heighti indicates the amount
of resources that Ti can use. The resource Ri is defined by the limit limiti, which
specifies the limit or capacity of the resource Ri, and the Boolean parameter
atmost indicates whether the limit specified by the limit parameters are maximum
(atmost is true) or minimum (atmost is false) limits. The parameter atmost
applies to all the resources.

– Sum: The Sum constraint enforces the sum of the product of collection of vari-
ables and their coefficient to conform to a constant number with respect to a
binary relationship. The signature of the propagator function of sum is

sum(c, x, rel, s)

where c is the coefficients of the variables in the variable array x. The sum of
the product of each ci and xi should conform to the constant s with respect to
the binary relation rel [2].

In gecode , the name of the sum propagator function is linear [45]. The prop-
agator function

linear(home, a, x, IRT EQ, c)

posts the linear constraint

|x|−1∑
i=0

aixi = c. If all the coefficients are 1, then a can

be omitted from the propagator function. For instance,

linear(home, x, IRT GR, c)

posts the linear constraint

|x|−1∑
i=0

xi > c.

3.3 State of the Art CP Solver

In this section we shall review the main components of a state of the art CP solver.

3.3.1 Variable and value ordering heuristics

During constraint propagation and branching, we need to select some variables and order
the values of those variables. The fail first principle is the rule, that guides variable and
value selection process. The essence of the fail first principle is, to succeed, first things to
try are the things which are likely to lead to failure.

The most common variable selection heuristics are [7]:

• MINDOM: Selects the variable with the smallest domain.

• MAXDEG: Selects the variable connected to the largest number of constraints.

• DOMDEG: Favors variables with small domains and large degrees.2

• BRELAZ: MINDOM principle that breaks ties by returning the first variable connected
to the largest number of unassigned variable in the corresponding constraint graph.

• LEX: User defined variable ordering.

The most common value ordering heuristics are [7]:

2The degree of a CSP variable x is the count of constraints, which have x in their scope.

15

• LEX: Lexicographical ordering of values.

• INVLEX: Reverse lexicographical ordering of values.

• MIDDLE: Selects median value of the domain first.

• RANDOM: Selects a value randomly.

All the value ordering heuristics mentioned above except RANDOM, are interpreted with
respect to the problem at hand. In addition, in a typical solver constructs are provided so
that a CP programmer can define his/her own heuristics as well.

3.3.2 Constraint propagation

Constraint propagation is performed by a process called consistency checking. The general
notion of consistency is called k-consistency, which enforces that a partial solution with an
assignment of k − 1 variables be consistently extended to a partial solution with respect
to the constraints at hand. If k = 1, it is called node-consistency, if k = 2, it is called
arc-consistency and if k = 3, it is called path-consistency.

Formally, arc-consistency can be defined as follows:
Given a CSP P (X,D,C), a constraint c ∈ C over {x, y}, where x, y ∈ X, x is arc-

consistent with respect to y over c if and only if for every assignment x→ a ∈ Dx, there is
a corresponding assignment y → b ∈ Dy, such that x → a and y → b satisfy c. A binary
constraint whose arity is {x, y} is arc-consistent if x is arc-consistent with respect to y and
y is arc-consistent with respect to x. A CSP is arc-consistent, if all of its constraints are
arc-consistent [13].

Example
Let P (X,D,C) is a CSP, whereX = {x, y, z},D = {Dx, Dy, Dz}, Dx = Dy = {1, 2, 3}, Dz =
{2, 3, 4} and C = {x < y, y < z, z ≤ 3}. By enforcing node-consistency on z the domain
Dz = {2, 3, 4} is reduced to D′

z = {2, 3}. By enforcing arc-consistency on x w.r.t. the
constraint x < y, Dx = {1, 2, 3} is reduced to D′

x = {1, 2}, as for x = 3 there is value of
y such that x < y is satisfied. Similarly, Dy is reduced to D′

y = {2, 3}. Considering the
constraint y < z, D′

y is further reduced to {2}, as a result, due to the first constraint, D′
x

becomes {1} and D′
z is reduced to {3}. As the domain of every variable becomes singleton,

no farther reduction is possible and the given CSP is solved [20].

Arc-consistency for binary and global constraints

Now we shall review arc-consistency algorithms developed for binary and global constraints.

Arc-consistency for binary constraints The state of the art constraint propagation
engines are based on the arc-consistency algorithm called AC-3, developed by Waltz and
Mackworth [7]. The idea of AC-3 [13] is to reason locally by considering each constraint in
turn and reduces the domains of the variables of its scope, if needed. A queue is maintained,
which contains the variables that have recently been modified. This type of implementa-
tion is called variable based implementation. In the constraint based implementation, the
constraints that depend on the variables are modified.

Algorithm 4 is a variable based implementation of AC-3. The algorithm accepts a
CSP problem as input and produces a consistent CSP problem equivalent to the input
problem. The algorithm uses a function, named revise() [13], whose pseudocde is described
in Algorithm 5. The function revise() takes a pair of variables (xi, xj) in a certain constraint
cij and their domain as input and outputs the domains of xi such that xi is arc-consistent
with xj .

The AC-3 algorithm maintains a queue. In that queue, initially, all the variables which
are within the scope of every constraint are stored pairwise. In each iteration of the while

16

for each cij ∈ C do
for every pair (xi, xj) with xi and xj in the scope of cij do
queue← queue ∪ {(xi, xj), (xj , xi)}

end for
end for
while queue ̸= ϕ do
select and delete (xi, xj) from queue
revise(xi, xj)
if revise(xi, xj) causes a change in Dxi then
queue← queue ∪ {(xk, xi), k ̸= i, k ̸= j}

end if
end while

Algorithm 4: AC-3

for each ai ∈ Dxi do
if there is no value aj ∈ Dxj

such that (ai, aj) ∈ cij then
remove ai from Dxi

end if
end for

Algorithm 5: revise(xi, xj)

loop in Algorithm 4, a pair (xi, xj) is removed from the queue. Then it calls the procedure
revise(xi, xj), which tests every value a in Dxito see if there is a support value in Dxj . If
no support is found in Dxj , then a is removed from Dxi . Thus, revise(xi, xj) removes the
values from the domain of xi which are inconsistent with the domain of xj . After returning
from revise(xi, xj), if revise causes any removal from Dxi then all the related pairs to xi
are added to the queue. The while loop continues execution until the queue becomes empty.

The time complexity of this AC-3 algorithm is O(ek3), where k bounds the domain size
and e is the number of constraints. The optimal time complexity for checking arc-consistency
for binary constraints is O(ek2). AC-4 is the algorithm that achieves this optimal time
complexity, which is given in Algorithm 6 [13]. Like AC-3, AC-4 takes a CSP P (X,D,C)
and outputs a consistent CSP equivalent to P .

initialize S(xi, ai), counter(xi, ai, xj) from all cij ∈ C
for all counters do
if counter(xi, ai, xj) = 0 (if (xi, ai) is unsupported by xj) then

add (xi, ai) to χ
end if

end for
while χ is not empty do
Choose and remove (xi, ai) from χ, remove ai from Dxi

for each (xj , aj) ∈ S(xi, ai) do
decrement counter(xj , aj , xi)
if counter(xj , aj , xi) = 0 then
add (xj , aj) to χ

end if
end for

end while
Algorithm 6: AC-4

Two variables x and y are neighbors to each other, if x and y are in the same scope of a
specific constraint. The AC-4 algorithm associates each assignment (xi, ai) with the amount
of support from the neighboring variables xj . The value ai is removed from the domain of

17

xi, if it has no support from some of the neighboring variables. AC-4 uses a counter array,
counter(xi, ai, xj), to store the number of support values the assignment (xi, ai) has from
its neighboring variables. An array S(xj , aj) is used to store all the assignments to other
variables that (xj , aj) supports. χ is used to store all the unsupported values. In each step
of while loop of Algorithm 6 an unsupported assignment is picked up from χ, the respective
domain is reduced by removing the nonsupporting values and all the affected counters are
updated. As a result of the updates, any value with counter being 0 is placed into χ. The
process continues, until χ becomes empty.

Figure 3.3: Regin’s domain propagation algorithm for allDiff constraint.

Arc-consistency for global constraints

The CP literature has provided a wide range of constraint propagation algorithms for global
constraints. Most of the algorithms are based on graph theory or operations research. In
1994, Regin proposed an algorithm [40] for domain propagation for the allDiff constraint.

As mentioned earlier, the global constraint allDiff assigns all different values to the
variables it contains. To understand how Regin’s algorithm works, let us consider the
constraint allDiff(x1, x2, x3, x4), where x1 and x2 have the same domain {1, 2}, the domain
of x3 is {1, 2, 3}, and the domain of x4 is {4, 5} [7]. The domains of x1 and x3 are both
arc-consistent as long as x1 ̸= x3. And the domain of x3 is arc-consistent with x2 and x4 as
well, when x2 ̸= x3 and x3 ̸= x4 are considered separately. But any solution in conjunction
of all the dis-equalities excludes values 1 and 2 from the domain of x3. Regin’s algorithm can
exactly compute the arc-consistent domains of the variables, taking all the CSP variables
x1, x2, x3 and x4 into consideration.

In Figure 3.3, we depict the execution of Regin’s algorithm. The algorithm maintains
a value graph of constraints, which is essentially a bipartite graph, where each value and
variable is represented by a vertex and a variable x connects to a value a, if and only if a is
in its domain. A solution to the allDiff constraint contains matchings between variables
and exactly one of their values. At first, an initial matching is computed [19], shown by the
solid line (Figure 3.3, left). The goal is to remove all the edges that does not participate
to any of the matching (Figure 3.3, right). The edges that should be preserved should have
one of the following properties:

• Belongs to original matching (region B).

• An alternative path/cycle of even length exists whose edges are alternatively chosen
inside and outside the original matching (regions A,C).

Two edges x3 : 1 and x3 : 2 are removed from the graph as they are not original matching
of the graphs, nor they are part of any even alternative path.

18

3.3.3 Conflict analysis in CP

Conflict analysis in CP is performed by a technique, named conflict directed backjumping
(CBJ) [39]. When a conflict arises, CBJ analyzes the conflict, and finds a backjumping point
which is the real reason of the conflict. The real reason is the deepest level in the decision
tree which participates in the cause of the conflict. This type of intelligent backjumping
helps a solver to avoid detecting the same inconsistencies multiple times. We shall describe
the underlying technique of the CBJ procedure by considering a CSP problem as given [7].
Let

(c1) x4 ̸= x5

(c2) x2 + x3 + x5 ≥ 2x1

(c3) x1 + x4 = x5

If we assign x1 to 0, then it generates a conflict, as x4 ̸= x5 contradicts with 0+x4 = x5. In
the propagation based solver, this contradiction is not detected immediately as it considers
each of the constraints separately. Typically, a solver will not detect the inconsistencies
until x4 and x5 are instantiated. For example, assigning x4 to 0, the solver will deduce that
x5 should be assigned to value 0 (by c3), which leads to a contradiction (by c1).

Figure 3.4: Part of the search tree for the example CSP.

Figure 3.4 depicts a search tree for the example CSP considered here. From this figure,
we can understand the reason why a solver may repeatedly branch between the areas where
the main reason of the conflict does not reside.

In our example, while inspecting the branches, the solver detects a conflict, after succes-
sively assigning values 0 and 1 to x4. Then the successive assignment of x4 to the values
0 and 1 are repeated in every corresponding branch of x2 and x3, though the real reason
of the inconsistency is actually the choice x1 = 0. Failure to identify the real reason of the
failure makes a solver engaged in unnecessary backtracking.

The constraint that is violated in this case are x4 ̸= x5 and x1 + x4 = x5, which do not
involve x2 and x3. So, instead of x2 = 0 or x3 = 0, the choice x1 = 0 should be reconsidered.
The CBJ technique maintains a conflict set at each node of the search tree, which contains
the variables involved in the deductions performed by the propagation engine to reach that
node. This conflict set helps to find the reason of the conflict.

When a failure is detected (in our example, the first is the left most node x4 of Figure
3.5), the CBJ analysis engine evaluates the union of all the conflict sets of both branches of

19

Figure 3.5: Conflict directed backjumping.

the conflicting node. In Figure 3.5, the union results in {x1}. Then the solver backjumps to
the deepest variable in the conflict set. In our example, as shown in Figure 3.5, the solver
backjumps to x1 directly.

20

Chapter 4

SAT Modulo Theory

For many applications, encoding a given problem as a SAT instance may not be a wise choice.
A better choice may be to express parts of such a problem in a background theory. This is
known as Satisfiability Modulo Theories (SMT). Given a formula F , the SMT problem for
a theory T determines whether F is T -satisfiable, that is whether there exists a model of
T that is also a model of F [37]. Such a formula is called a T -formula. For example, the
problems arising from program verification usually involve arrays, lists, and other high level
data structures. Therefore, naturally this type of problems are considered as satisfiability
problems modulo the combined theory T of these data structures. In such applications,
a problem instance consists of propositional literals as well as atoms over the combined
theories. A formula in this context may look like the following

p ∨ ¬q ∨ a = f(b− c) ∨ read(s, f(b− c)) = d ∨ a− g(c) ≤ 7

Formally, a theory T is a set of closed first order formulas. A formula F is T -satisfiable or T -
consistent if F ∧T is satisfiable in the first order sense. Otherwise, it is called T -unsatisfiable
or T -inconsistent.

The approaches for solving the SMT formulas can be broadly classified as lazy and eager
ones [46]. In the following we will describe both of them.

4.1 Lazy SMT Approach

A DPLL based lazy SMT solver works by integrating a DPLL based SAT solver and a theory
solver. For convenience, let us denote such a combined framework by DPLL(T) and call
the corresponding SMT solver a DPLL(T) solver. The DPLL(T) solver takes a T -formula
ϕ as an input and builds its Boolean abstraction ϕp = T2B(ϕ), where T2B(ϕ) encodes the
theory literals in ϕ into propositional variables (here T2B stands for Theory to Boolean)
[46].

The Boolean formula ϕp is given to an enumerator, which enumerates a complete col-
lection of truth assignments {µp1, . . . , µpn} for ϕp. Whenever a new µp is generated its corre-
sponding theory literals, denoted µ = B2T (µp), are fed to a T -solver. If the T -solver finds
it T -satisfiable, then DPLL(T) returns SAT. If it does not return SAT, then the enumer-
ator again produces an assignment. The process is repeated until a satisfying assignment
is found, or the enumerator generates no more µp. Figure 4.1 depicts the architecture of a
typical lazy SMT solver.

In lazy SMT approach, there are two ways to integrate a SAT solver and a T -Solver. They
are offline approach and online approach. In offline approach, for a formula ϕp, a complete
collection of literal assignments µp (which satisfies ϕp), is generated by the enumerator. That
µp is fed to a T -solver for determining the T -satisfiability of µp. But in online approach,
the SAT solver embedded on DPLL(T) reasons and updates ϕp and µp incrementally. The
reader can consult [46] for more details.

21

Figure 4.1: Lazy SMT approach.

Example Now we will use an example to show how lazy SMT works on online integration
approach [46]. Consider a linear arithmetic formula ϕ:

(c1) {¬(2x2 − x3 > 2) ∨A1}
(c2) {¬A2 ∨ (x1 − x5 ≤ 1)}
(c3) {(3x1 − 2x2 ≤ 3) ∨A2}
(c4) {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1}
(c5) {A1 ∨ (3x1 − 2x2 ≤ 3)}
(c6) {(x2 − x4 ≤ 6) ∨ (x5 = 5− 3x4) ∨ ¬A1}
(c7) {A1 ∨ (x3 = 3x5 + 4) ∨A2}

In this example, A1 and A2 are Boolean variables. The mapping T2B(ϕ) produces the
Boolean abstraction of ϕ, denoted by ϕp, which can be expressed as follows:

(c1) {¬B1 ∨A1}
(c2) {¬A2 ∨B2}
(c3) {B3 ∨A2}
(c4) {¬B4 ∨ ¬B5 ∨ ¬A1}
(c5) {A1 ∨B3}
(c6) {B6 ∨B7 ∨ ¬A1}
(c7) {A1 ∨B8 ∨A2}

The DPLL(T) solver accepts ϕp and starts execution. Suppose the DPLL(T) solver
decides on the theory literal in order ¬B5, B8, B6,¬B1 in c4, c7, c6 and c1. At this stage, it
cannot unit-propagate any literal. So, the deduce engine of DPLL(T) (T -deduce) invokes
the T -solver on B2T ({¬B5, B8, B6,¬B1}), which is

{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2)}.

The T -solver returns SAT and deduces ¬(3x1−2x2 ≤ 3) as a consequence of ¬(3x1−x3 ≤ 6)
and ¬(2x2 − x3 > 2). (T -propagation) of the first and last literal. ¬B3, the corresponding
Boolean literal of ¬(3x1−2x2 ≤ 3) is added to µp and then propagated. As a result, A1, A2

and B2 are unit-propagated from c5, c3 and c2. At this stage, as no more deductions are pos-
sible, T -deduce again invokes the T -Solver on B2T ({¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}),
which consists of

¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2),
¬(3x1 − 2x2 ≤ 3), (x1 − x5 ≤ 1)

22

But this time it finds inconsistency because of the first, second and eighth literals in the
above set. The T -solver returns UNSAT. The deduction machine of the DPLL(T) solver
returns a conflict. The conflict analyzer of DPLL(T) learns

(c8) B5 ∨ ¬B8 ∨ ¬B2

as a conflict clause (T -learning) and the solver backtracks (T -backjumping). Backtracking
pops all the literals up to {¬B5, B8} and unit-propagate ¬B2 on (c8). Then starting from
{¬B5, B8,¬B2}, also A2 and B3 are unit-propagated on c2 and c3 respectively. So, the µp

and ϕp are updated and the search proceeds from there. The process repeats itself in this
way by updating µp and ϕp until µp satisfies ϕp and also becomes T -satisfiable.

4.2 Eager SMT Approach

The eager approach reduces the T -satisfiability to SAT [37]. The input T -formula is trans-
lated into an equivalent Boolean formula which is given to a SAT solver to check its satisfi-
ability. Two major families of encodings are worth mentioning:

1. Small Domain Encoding: For each variable v that belongs to a theory, appropriate
range of values for v is found. After that, each variable is encoded into a vector of
⌈log 2(|v|)⌉ Boolean variables. Using binary arithmetic the original formula is trans-
formed into a Boolean formula.

2. Per-Constraint Encoding: In this encoding scheme, for every atom ψ in the input
formula ϕ, a Boolean variable Aψ is introduced. Then, ϕ is encoded into a Boolean
formula ϕp ∨ ϕT , where ϕp belongs to T2B(ϕ) and ϕT is the Boolean encoding of the
constraints that correspond to the T -atoms in ϕp.

4.3 Issues in Lazy and Eager Approaches to SMT

Some issues are crucial for both lazy and eager integration approaches to SMT [37, 46]. The
efficiency of the lazy approach depends on the different features of both DPLL solver and
T -solver that it integrates. The eager approach generally suffers from the blow up of the
encoding size in propositional logic. In this section, we will briefly discuss these issues.

4.3.1 Issues in lazy approach

The applicability and usefulness of the lazy SMT solver depend on the following factors:

1. Some techniques used in the SMT approach require specific features of the T -solver.
For example, T -backjumping and T -Learning described in the previous section require
the capability of the T -solver to generate good enough conflict sets. The benefits of
T -propagation depend on the deduction capabilities and efficiency of the T -solver
attached.

2. The effect of integrating different techniques are not mutually independent. The com-
bination of two techniques may not always produce positive effect. For example, pure
literal filtering of DPLL can reduce pruning power of early pruning of T -solvers, by
dropping some literals which may result in T -inconsistencies.

3. The benefits of many integration techniques depend on the addressed theory. In other
words, the benefits depend on the trade off between the cost of T -solving and T -
propagation and the amount of pruning brought to the Boolean search space by those
techniques. For example, for a theory under difference logic, the cost of T -solving is
relatively cheap. But for theories like linear arithmetic or bit vector T -solving may
be very expensive. In the case of latter theories, the calls to the T -solver for Boolean
search space reduction are not always beneficial.

23

4.3.2 Issue with the eager approach

In the eager approach, once the encoding of the T -formula is done, we can use any DPLL
SAT solver for solving the T -satisfiability problem. Though implementation of the eager
approach is easy, it often suffers from blow up in propositional encoding of the respective
T -formula. For theories like difference logic and linear arithmetic, the blow up problem is
more prominent. As shown in [12], an eager SMT solver UCLID is completely outperformed
by DPLL-based lazy tools. Apart from this, no eager SMT solver took part in the recently
held SMT competitions [1]. The SMT community now assumes that, in terms of efficiency,
the eager approach to SMT is no longer a state of the art technique.

24

Chapter 5

The SAT(gc) Framework

In this chapter, we will formulate a framework where a SAT solver is integrated with a
constraint solver. More precisely, the integration focuses on an efficient feature of CP,
namely global constraints. We will first present the motivation for the work, followed by the
details of a solver algorithm. The chapter will be concluded with a comparison to related
work.

5.1 Motivation

5.1.1 Cross fertilization of SAT and CP

Modern DPLL based SAT solvers are very efficient and they are robust enough to solve
some large real life problems without heavy tuning, which is typically required by the CP
tools. On the other hand, SAT has some limitations in expressiveness, that is, not every
problem can be expressed compactly in Boolean format.

As commented earlier, SAT and CP share many common traits in problem solving. In
recent years, cross fertilization of these two areas has become a topic of interest. It is argued
that complex real world applications may require effective features of both. In connection
to this idea, a workshop on SAT and CP integration was organized by the CP community
in 2006 [5]. Around the same time, a survey paper especially focusing on this issue by top
researchers from both research communities was published [7].

5.1.2 Why global constraints

Global constraints are the most effective feature of CP and naturally this fact has motivated
us to focus on these built-in constraints. Global constraints are efficient because special
purpose algorithms are implemented for effective constraint propagation. These algorithms
are taken from the domain of graph theory and operations research. Global constraints are
also useful in modeling CSP. They can be used to replace an equivalent conjunction of more
primitive constraints.

An example can be used to illustrate why the use of global constraints can improve
the efficiency of constraint solving. For some problems, like proving that the pigeon hole
problem is unsatisfiable, the branch and prune technique takes exponential time. But the
use of the global constraint allDiff(x1, x2 . . . xn) can make exponential difference as it is
typically implemented with a specialized algorithm. The deduction techniques classically
used in constraint solvers consider different constraints independently and do not use the
global information on the group of inequalities. For proving unsatisfiability of the pigeon
hole problem, it needs to explore a search space of size (n − 1)!. By using a graph based
algorithm, this allDiff constraint can be propagated very efficiently [7]. If global constraints
are used in modeling, then the conjunction of constraints are getting replaced by a single,

25

built-in constraint. Thus the usage of global constraints also simplifies the representation
task.

5.1.3 Issues with SAT and CP

Modeling of Numbers and Numerical Constraints The choice between CP and SAT
for a particular application is influenced by the question whether or not the application
requires numerics extensively. CP provides arithmetics natively, while in SAT, numbers
need to be converted into propositional logic. Though there are some techniques available to
encode numbers in SAT, most of them are not direct and are complex to implement. Because
of the Boolean nature, a SAT solver does not exploit the arithmetic operations supported
by the processor. In contrast, in CP, numerical constraints are well supported and due to
the internal representation of domain values as range of numbers, they have become space
effective too. This property of CP is particularly important for applications like scheduling,
which needs numerical constraints over variables typically with large domains [7].

Problem Structure Awareness The problem representation in SAT is flat and homo-
geneous, that is, all the constraints are represented as clauses of Boolean literals. The SAT
solver does not get any information about the structure of the problem [7]. Even when
there exist clear structures in problems, the SAT solver remains unaware of the structure,
because the structure gets lost as they are encoded as clauses in propositional logic. On the
other hand, CP provides a rich level of data structure (e.g., global constraints) to express
the structures available in a problem instance. For this reason, in recent years research has
been pursued to incorporate structures into SAT instances.

Efficiency of Modern SAT Solver Modern SAT solvers such as zchaff and miniSAT 1

are very efficient in solving problems in the CNF format [7]. A CNF can be compactly stored
in memory. Highly efficient deduction algorithms have been formulated and implemented
over the years to perform deduction on CNFs. Efficient decision heuristics and the conflict
driven learning mechanism are very effective in pruning the search space. As a result,
the modern SAT solvers have become a highly specialized tool for solving CNF problem
instances.

5.1.4 Motivation in a nutshell

By following the discussions in this chapter, we articulate our motivations in the following
points:

1. The recent trend in the SAT community suggests that the central components of state
of the art DPLL SAT solver have become saturated as far as accuracy is concerned.
Pursuing research on fertilizing SAT by integrating efficient features of closely related
paradigms is on the move. This fact has motivated us to pursue a research for the
integration of global constraints in SAT solving.

2. The research on SMT is an attempt to enhance the applicability of DPLL based
SAT solvers by incorporating a different theory satisfiability paradigm to the SAT
paradigm. Following the trend in the SMT community, we became motivated to pursue
the integration of SAT and CP on the hope that it may enhance the applicability of
SAT solving.

3. Though the modern SAT solvers are highly efficient in solving problems expressed in
the form of pure Boolean CNF, they are not the best choice in handling applications
which require numerical constraints on variables with large domains. The modern

1http://minisat.se/

26

SAT solvers are not structure aware as well. Such an integration should introduce
structure awareness to modern SAT solvers.

5.2 The SAT(gc) Framework

Here, we formulate SAT solving with global constraints, generally referred to as SAT(gc),
where global constraints are embedded into SAT solving based on the DPLL architecture.

In this section, we will first provide some notations. Then we will present a solver
algorithm, which is of the same structure of the standard SAT solver but deals with two
main issues when embedding global constraints into a SAT solver. The first is that global
constraints in formulas need to be represented in the language of SAT(gc) and handled in
the solving process correctly. The second is the question of how to perform conflict-directed
backtracking and learning in the presence of global constraints. We will follow the naming
and style convention of the SAT solving procedures discussed in Chapter 2.

5.2.1 Language and notation

An instance of SAT(gc) is a conjunction of clauses, where a clause is a disjunction of literals.
The difference from propositional clauses is that a literal here can be a global constraint
literal, or just called a gc-literal, that represents a call to a global constraint. In this thesis,
we require a gc-literal to appear in a clause positively. That is, our solver does not pursue
the search of a satisfiability proof of a formula where a global constraint must be false.
This assumption is due to the utility of global constraints in applications - forcing some
constraints to be satisfied.

When we refer to a global constraint by a gc-variable, we mean a call to the underlying
global constraint it represents. For example, suppose a gc-variable vg in a clause represents
a call to the global constraint allDifferent:

allDiff(x0 : {v1, v2}, x1 : {v2, v3}) (5.1)

where x0 and x1 are CSP variables, each of which is followed by its domain, and the
constraint requires x0 and x1 be assigned to distinct domain values.

Note that we could have just written expression (5.1) in clauses as a kind of meta
atom. But for notational convenience, we will use a gc-variable to denote a call to a global
constraint. Of course, in the implemented language, the correspondence between a gc-
variable and its global constraint has to be recorded as part of input instance.

To see the representation power of the language of SAT(gc), let us consider a couple of
examples. In the first, suppose given a 4 by 4 board where each cell contains a number from
a given domain D, we want to state that at least one row has the sum of its numbers equal
to a given number, say k. We can express this by

sum(x11 : D, . . . , x14 : D,=, k) ∨ ... ∨ sum(x41 : D . . . , x44 : D,=, k)

In the language of SAT(gc), one writes a clause consisting of four gc-variables as a shorthand:

vg1 ∨ vg2 ∨ vg3 ∨ vg4

with the correspondence between the gc-variables and global constraints recorded as part
of input instance.

As another example, suppose we want to represent a conditional constraint: given a
graph and four colors, {r, b, y, p} (for red, blue, yellow, and purple), if a node a is colored
with red, denoted by variable ar, then the nodes with an edge from node a, denoted by
edgea,ni for node ni, must be colored with distinct colors different from red. This can be
modeled by

¬ar ∨ ¬edgea,n1 ∨ ¬edgea,n2 ∨ ... ∨ ¬edgea,nm ∨ vg

27

where vg represents the global constraint

allDiff(xn1 : {b, y, p}, ..., xnm : {b, y, p})

The idea of SAT(gc) solving is simple. As mentioned above, a global constraint is
represented by a propositional variable, a gc-variable. The main difference from a standard
Boolean variable is that a global constraint is true if and only if it is solvable.2 The latter
means the existence of one or more solutions. Such a solution can be represented by a
collection of propositional variables, each of which is a proposition representing that a given
CSP variable takes a particular value from its domain. Let us call such a proposition a value
variable (it represents a CSP variable taking a value). Clearly, for a complete representation,
for each CSP variable v and each value a in its domain, we need a value variable, say ϕ, and
semantically, ϕ is true iff v is assigned to value a.

In the language of SAT(gc), we allow value variables to be explicitly written in clauses.
This provides more convenience in representing concepts directly related to CSP variables.
For example, the pigeon hole problem can be represented by an allDifferent constraint
where pigeons are CSP variables and holes are their domain values. One can in addition
express that ”pigeon-1 should be in hole #2 or in hole #3”. That pigeon-1 is in hole #2, for
example, can be represented by a value variable.

With the language of SAT(gc) defined above, it should be clear that a gc-variable in a
SAT(gc) instance is semantically equivalent to a disjunction of conjunctions of value vari-
ables, with each conjunction representing a solution of the corresponding global constraint.
That is, a SAT(gc) instance is semantically equivalent to a propositional formula. Given a
SAT(gc) instance Π, let us denote by σ(Π) this propositional formula.

We now can state precisely what the satisfiability problem in the current context is:

Given a propositional formula Π in the language of SAT(gc), determine whether
there exists a Boolean variable assignment such that σ(Π) evaluates to true.

In the rest of this thesis, we will use the following notations: Given a formula Π in
SAT(gc),

• Xg is the set of CSP variables in global constraint g;

• Dom(x) is the set of domain values of CSP variable x (in some global constraint in
Π);

• V al V ar(x) is the set of value variables for the CSP variable x;

• V al V arΠ is the set of value variables for all CSP variables appearing in Π;

• V GΠ is the set of variables that represent global constraints in Π;

• V arΠ is the set of standard Boolean variables appearing in Π, i.e., those Boolean
variables that are not in V al V arΠ, neither in V GΠ;

• VΠ = V al V arΠ ∪ V arΠ ∪ V GΠ.

We may omit subscript Π if Π is clear from the context.

Example The following Π is a formula in SAT(GC).

Π = ((e ∨ f) ∧ vg ∧ ¬a ∧ (¬b ∨ ¬g) ∧ ¬b ∧ ¬c ∧ ¬d)
2During search, if a global constraint is assigned to true or forced to be true, then a solution consistent

with the current partial assignment should be generated, otherwise a conflict will result. This will be
discussed later in the description of the solver.

28

where vg is short hand for c(x0 : {v1, v2}, x1 : {v2, v3}), namely a global constraint under
the name c, with CSP variables {x0, x1}, Dom(x0) = {v1, v2}, Dom(x1) = {v2, v3}, and
V GΠ = {vg}.

For a variable xi and a value vj , if we write the corresponding value variable by xivj , we
then have

V al V ar(x0) = {x0v1 , x0v2}
V al V ar(x1) = {x1v2 , x1v3}
V al V arΠ = {x0v1 , x0v2 , x1v2 , x1v3}
VΠ = {d, e, f, g, x0v1 , x0v2 , x1v2 , x1v3 , vg}

A global constraint can have multiple solutions. We will denote the ith alternative
solution of the global constraint g as sig.

We will use the following terms to differentiate different types of Boolean variables under
manipulation.

• value variable: the variables in V al V arΠ;

• global constraint variable (or gc-variable): the variables in V GΠ;

• normal variable: those in V arΠ.

Similarly, we will use the terms value literal, gc-literal, and normal literal, respectively.

5.2.2 A SAT(gc) solver

We formulate a SAT(gc) solver in Algorithm 7, which can be seen as an extension of Al-
gorithm 2 of Chapter 2. Given an instance Π in SAT(gc), the solver first performs pre-
processing by calling the function gc preprocess() (Line 1, Algorithm 7), which applies the
standard preprocessing operations, such as pure literal fixing and unit clause resolution on
Π; however, it will not make any assignments on gc-variables. That is, a call to any global
constraint will be delayed to the search stage in SAT(gc). If gc preprocess() does not solve
the problem, then following a predefined decision heuristic it proceeds to branch on an unas-
signed variable (Line 5, Algorithm 7). The decision heuristic assigns a value to the selected
variable so that the assignment satisfies at least one clause in the clause database. After
the decision for branching on a variable is done, the gc deduce() procedure is invoked (Line
7, Algorithm 7).

Procedure gc deduce() Recall that in standard BCP, we only have one inference rule,
the unit clause rule, which derives unit literals. With the possibility of value variables to
be assigned, either as part of a solution to a global constraint or as a result of decision
or deduction, we need three additional propagation rules. In the following, when we say
a gc-variable or a value variable is assigned, we mean the variable is either assigned by a
decision or forced as a unit literal.

• Complementary Addition (CA): For any CSP variable x in a global constraint,
only one value from its domain can be assigned. Thus, when a value variable xv ∈
V al V ar(x) is assigned to true, the value variables representing that x is assigned to
other domain values of x must be assigned to false.

• Domain Propagation (DP): When a CSP variable x is committed to a value a,
all the occurrences of x in other global constraints must also commit to the same
value. Thus, for any global constraint g and any x ∈ Xg, whenever x is committed
to a, Dom(x) is reduced to {a}. Note that “a CSP variable committed to a value”
may result from a solution returned by the constraint solver, or from a positively
assigned value variable, or from a singleton domain. Similarly, when a value variable
is assigned to false, the corresponding value is removed from the domain of the CSP
variable occurring in any global constraint.

29

1 status = gc preprocess()
2 if status = KNOWN then
3 return status

4 while true do
5 gc decide next branch()
6 while true do
7 status = gc deduce()
8 if status == INCONSISTENT then
9 blevel = current decision level

10 gc backtrack(blevel)

11 else if status == CONFLICT then
12 blevel = gc analyze conflict()
13 if blevel == 0 then
14 return UNSATISFIABLE

15 else
16 gc backtrack(blevel)

17 else if status == SATISFIABLE then
18 return SATISFIABLE

19 else
20 break

Algorithm 7: An Iterative Algorithm for SAT(gc).

• Global Constraint Rule (GCR): If the domain of a CSP variable of a global
constraint vg is empty, vg is not solvable, which is therefore assigned to false. If a
global constraint vg is assigned to true, the constraint solver is called. If a solution
is returned, the value variables corresponding to the generated solution are added to
the partial assignment; if no solution is returned, vg is assigned to false.3

In the procedure gc duduce(), BCP now consists of four propagation rules, the unit
clause rule, CA, DP, and GCR, which are performed repeatedly, in an interleaving fashion,
until no further assignment is possible.

Proposition 1. Let Π be a SAT(gc) instance. For any partial assignment π, gc duduce()
generates the same extension π′ of π, independent of the order in which the four propagation
rules are applied.

Proof. Without loss of generality and for the purpose of illustration, assume two orders of
applying the deduction rules below.

(a) . . . GCRi, BCP i+p, CAi+q, DP i+r . . .

(b) . . . DP j , BCP j+p
′
, GCRj+q

′
, CAj+r

′
. . .

The superscript on a deduction rule above denotes the deduction step in which it is applied.
Let PAk denote the partial assignment after kth deduction step is performed. In the above
sequences a and b, as deduction by any of the four rules is monotonic in nature, if j > i,
then for a GCR operation the relation PAi ⊆ PAj+q′ always holds, and similarly for all the
other rules. This implies any assignment generated by any rule in a sequence is guaranteed
to be generated by any different sequence.

Since a global constraint vg in Π is semantically equivalent to the disjunction of its
solutions (in the form of value variables), when vg fails and thus is assigned to false in the

3Note that this assignment to false is not forced

30

current assignment, the negation of the disjunction should be implied. But Algorithm 7 does
not do this explicitly. Instead, it checks the consistency in order to prevent an incorrect
assignment. In case of INCONSISTENT , the search backtracks to the current decision
level (Line 10, Algorithm 7).

Then, SAT(gc) checks if any conflict has occurred. If yes, SAT(gc) invokes the procedure
gc analyze conflict() (Line 12, Algorithm 7), which performs the conflict analysis, possibly
learns a clause, and returns a backtrack level/point.4

Procedure gc analyze conflict() Before explaining how this procedure works, in the
following we will review some necessary terms and concepts of DPLL based conflict analysis.
The descriptions are based on the procedural process of performing (standard) BCP.

• Antecedent clause (of a literal): the antecedent clause of a literal l is the clause which
has forced an implication on l.

• Conflicting clause: the first failed clause, i.e., the first clause during BCP in which
every literal evaluates to false under the current partial assignment.

• Conflicting variable: The variable which was assigned last in the conflicting clause.

• Asserting clause: the clause that has all of its literals evaluate to false under the
current partial assignment and has exactly one literal with the current decision level.

• Resolution: The goal is to discover an asserting clause. From the antecedent clause
ante of the conflicting variable and the conflicting clause cl (see Algorithm 8), resolu-
tion between the two combines cl and ante while dropping the resolved literals. This
has to be done repeatedly until cl becomes an asserting clause.

• Asserting level: the second highest decision level in an asserting clause. Note that by
definition, an asserting clause has at least two literals.5

Algorithm 8 is the pseudo-code for the procedure gc analyze conflict(). In the following
we describe this algorithm in detail.

Similar to the one given in Algorithm 3, gc analyze conflict() first finds a conflicting
clause cl. Then it attempts to find an asserting clause using resolution, which is described
by a while loop (Lines 2-31, Algorithm 8). Inside the loop, it first obtains the last failed
literal lit in cl by choose literal() (Line 3, Algorithm 8). After that, it checks the literal lit.

(a) If lit is a gc-literal, then it is clear that the conflict is due to the failure of the most
recent call to the constraint solver for lit. That is, the call returned no solution. There
are two subcases.

(1) If no previous DP operation affected the domains of the CSP variables in the scope
of lit and no call to the same gc-variable to the constraint solver has succeeded
before, then this means that the gc-variable does not have any solution with the
original domains of its CSP variables. In this case, the failure of lit is inherently
in itself, hence only the other literals in cl may satisfy the clause. Thus, we
simply drop lit from cl (Line 6, Algorithm 8). There are three subcases.

(i) If cl becomes empty after dropping lit, the given SAT(gc) instance is not
satisfiable (Line 9, Algorithm 8).

4A backtrack level leads to backtracking to the decision variable of that level, i.e., undoing all the
assignments up to the decision variable of that level, while a backtrack point is a point of an assignment,
which may or may not be a point of decision.

5The process of resolution can produce a unit clause, in which case no backjumping to any previous level
is possible. So, in such case chronological backtracking is performed. We note that in the literature, this
special case is sometimes not explicitly mentioned.

31

1 cl = find conflicting clause()
2 while !isAsserting(cl) do
3 lit = choose literal(cl)
4 if lit is a gc-literal then
5 if no DP is performed on the variables in the scope of lit and lit never has

succeeded then
6 drop lit from cl
7 if cl is empty then
8 back dl = 0
9 return back dl

10 else if cl is unit then
11 back dl = current decision level
12 return back dl

13 else
14 dl = decision level(lit)
15 if lit is a decision literal then
16 back dl = dl − 1
17 return back dl

18 else
19 back dl = dl
20 return back dl

21 else
22 ante = antecedent(lit)
23 if ante == NULL then
24 back dl = backtrack point(lit)
25 return back dl

26 cl = resolve(cl, ante, lit)
27 lit = choose literal(cl)
28 ante = antecedent(lit)
29 if ante == NULL and lit is not a decision literal then
30 back dl = backtrack point(lit)
31 return back dl

32 add clause to database(cl)
33 back dl = clause asserting level(cl)
34 return back dl

Algorithm 8: Conflict Analysis in SAT(gc)

32

(ii) If cl becomes unit (i.e., cl has only one literal) after dropping lit, then it in-
dicates that, cl cannot be an asserting clause (by definition asserting clause
has at least two literals in it). So, in this case, we have to perform chronolog-
ical backtracking. The procedure gc analyze conflict() returns the current
decision level as the backtracking level (Line 12, Algorithm 8).

(iii) Otherwise, continue with resolution.

(2) If the domain of a CSP variable in the scope of lit has been reduced or at least a
solution was generated previously, then we have to perform chronological back-
tracking. In case that lit is a decision variable of the current decision level,
gc analyze conflict() simply returns the previous decision level as the backtrack-
ing level (Line 17, Algorithm 8); Otherwise lit is forced in the current decision
level, in which case gc analyze conflict() returns the current decision level as
the backtracking level (Line 20, Algorithm 8).6

(b) If lit is not a gc-literal, it must be either a normal literal or a value literal. Any
conflicting normal literal must have an antecedent clause, and a conflicting value
literal may or may not have an antecedent clause, depending on how its truth value
is generated.

If lit possesses no antecedent clause (i.e., ante == NULL) then it must be a value
literal assigned by a DP or CA operation, which is

(1) triggered by a solution of a global constraint at the current decision level.

(2) or triggered by unit propagation/decision that forces a positive value literal as-
signment at the current decision level.7

In the case (b-1), SAT(gc) backtracks to the point where the corresponding global
constraint is invoked, with the purpose of trying to generate an alternative solution
for the same global constraint. In the case of (b-2), SAT(gc) backtracks up to the
decision variable of the current decision level. For both of the cases, the backtrack
point is identified by the procedure backtrack point(lit) (Line 25, Algorithm 8).

In gc analyze conflict() , after the cases (a) and (b), inside the while loop, resolu-
tion is performed over cl and ante which results in new cl (by removing literal lit and
its complement from cl and ante and then combining them).8 Notice that, the result-
ing clause cl also has all of its literals evaluated to value 0 and is a conflicting clause.
The gc analyze conflict() procedure again checks the last assigned literal lit in cl. If
gc analyze conflict() finds that lit does not have any antecedent clause and lit is not a
decision variable,9 then it becomes the case of (b). Otherwise, this resolution process is
repeated until cl becomes an asserting clause or either one of the above two cases (a) or (b)
occurs. If an asserting clause is found, then the procedure gc analyze conflict() learns the
asserting clause cl (Line 32, Algorithm 8) and returns the asserting level as the backtracking
level (Line 34, Algorithm 8).

6Note that the ”last failed literal” identified by choose literal() is done possibly repeatedly inside the
while loop when cl is not yet an asserting clause. Thus, when a gc-variable is last failed, it must be at the
current decision level.

7Let, x is a CSP variable and V al V ar(x) = {a, b}. If a is unit propagated or decided to be true, then
by CA operation we assign ¬b. During the unit propagation of ¬b, it may create a conflict. In this context,
lit refers to ¬b.

8Note that after dropping lit from cl in case (a), the process can still come to the phase of resolution
inside the while loop.

9Note that the last step of resolution produces an asserting clause cl. After any step of resolution,
if lit possesses no antecedent clause, then lit can be triggered either by (b-1) or (b-2), or it can be the
decision literal of the current level (decision variables do not posses any antecedent clause), where the
last case can only occur after the last step of resolution (as lit being a decision variable guarantees cl to
be asserting). This checking guarantees that, after any step of resolution in case antecedent clause of lit
becomes NULL, if lit is a decision literal then cl is learned, otherwise search backtracks to the point obtained
from backtrack point(lit).

33

After gc analyze conflict() returns the backtracking level, procedure SAT(gc) checks
the backtracking level blevel. If blevel is 0, then SAT(gc) returns UNSATISFIABLE (Line
14, Algorithm 7). Otherwise, it calls gc backtrack(blevel) (Line 18, Algorithm 7).

Procedure gc backtrack(blevel) The gc backtrack(blevel) procedure distinguishes be-
tween different types of conflict cases by using the value of a flag variable (not explic-
itly shown in the Algorithm 8). Admissible values for this flag variable are different con-
flict types. When a conflict occurs, this flag variable is set to that conflict type. The
gc backtrack(blevel) procedure works as follows:

(a) If the backtracking level is obtained from an asserting clause, then the procedure
gc backtrack(blevel) backtracks to decision level blevel and unassigns all the assign-
ments up to the decision variable of blevel + 1. After backtracking the learned clause
(also asserting clause) cl becomes a unit clause and the execution proceeds from that
point in a new search space within level blevel (which is obtained from line 33, Algo-
rithm 8).

(b) Otherwise, we perform chronological backtracking (when blevel is obtained from line
11, 16, 19, 24, 30 of Algorithm 8 and line 9 of Algorithm 7) as follows:

(1) If the backtracking point is obtained from the procedure backtrack point(lit)
(Lines 24, 30, Algorithm 8), then gc backtrack(blevel) backtracks and unassigns
assignments up to that backtrack point in the current decision level.

(2) If conflict occurs because of a gc-literal fails to generate an alternative solution,
then we backtrack to blevel and unassign assignments up to the decision variable
of blevel (blevel is obtained from 11, 16, 19 of Algorithm 8).10

(3) If inconsistency is detected during deduction (Line 8, Algorithm 7), the procedure
gc backtrack(blevel) performs backtracking similarly as (b-(2)).

In case of (b-1), if the backtrack point is a gc-literal assignment, then after backtracking
SAT(gc) attempts to generate another solution of the same gc-literal and the execution
proceeds from that point. If no alternative solutions exist, then it becomes a case of
failed gc-literal. In other cases of (b), after backtracking up to the decision variable
of blevel, that decision variable is flipped. By flipping a variable, we mean to switch
from one phase to the other for a normal variable or value variable, and switch from
the current solution to the next one for a gc-variable; if a normal or value variable
is already flipped or no further solutions for a gc-variable exist, then backtracking is
meant to backtrack up to the decision variable of the preceding decision level (i.e.,
chronological backtracking).

Inside the SAT(gc) procedure, if gc deduce() returns SATISFIABLE (Line 18, Algorithm
7), procedure SAT(gc) also returns SATISFIABLE. If gc deduce() returns without creating
any conflict and the formula is still not satisfied, then SAT(gc) goes for deciding another
unassigned variable assignment.

5.2.3 Examples

In this section, we illustrate the solving process of SAT(gc) by using some examples. In the
following, for a CSP variable x and a domain value v, we will write xv for the value variable
representing that x takes value v.

10After dropping a failed gc-literal (Line 6, Algorithm 8), if cl becomes unit, then we return the current
decision level (Line 12, Algorithm 8) as the backtrack level. If that failed gc-literal is a decision literal, then
we backtrack to the previous decision level of the current decision level.

34

Example 1 Suppose the SAT(gc) formula Π consists of

(c1) x1a ∨ x3c ∨ vg1
(c2) ¬x2b
(c3) x3g ∨ p
(c4) ¬p ∨ ¬x4g ∨ q
(c5) vg2 ∨ r ∨ ¬p
(c6) ¬q ∨ ¬x4g
(c7) ¬r ∨ s

where vg1 and vg2 are gc-variables denoting the calls

• vg1 : allDiff(x1 : {a, b, c}, x2 : {b, c, d, e, f}, x3 : {a, c, e, f, g})
vg2 : allDiff(x1 : {a, b, c}, x4 : {g, d, a}, x5 : {a})

Using the notations introduced at the outside of this chapter, we have

• V GΠ = {vg1, vg2}, Xg1 = {x1, x2, x3}, Xg2 = {x1, x4, x5}

• Dom(x1) = {a, b, c}, Dom(x2) = {b, c, d, e, f}, Dom(x3) = {a, c, e, f, g},
Dom(x4) = {g, d, a}, Dom(x5) = {a}

• VΠ = {p, q, r, s, vg1, vg2, x1a , x1b , x1c , x2b , x2c , x2d , x2e , x2f ,
x3a , x3c , x3e , x3f , x3g , x4g , x4d , x4a , x5a}

With input SAT(gc) instance Π, gc preprocess() in the SAT(gc) solver in Algorithm 7
assigns the value variable x2b to false (by unit clause c2). Then, the decision heuristics of
SAT(gc) chooses an unassigned variable to assign a value. Suppose gc decide next branch()
chooses vg1 and assigns it to be true. This is decision level 1. After performing the DP
operation on vg1 , the constraint solver is called for

allDiff(x1 : {a, b, c}, x2 : {c, d, e, f}, x3 : {a, c, e, f, g})

Note here that, due to the assignment of x2b to false, the DP operation removes b from the
domain of x2. This call returns the first solution

s1g1 = {x1 : a, x2 : c, x3 : e}

Hence, by applying GCR, vg1 is assigned to true, the value variables x1a , x2c and x3e are
assigned to true and the CA and DP operations are performed. During BCP on ¬x3g (the
complementary value literal generated by the CA operation on x3e), the normal literal p
gets unit propagated (by c3). At this stage, no more deductions are possible at decision
level 1, hence the call to gc deduce() is returned.

Note that at this stage, the clauses that are not yet satisfied are:

(c4) ¬p ∨ ¬x4g ∨ q
(c5) vg2 ∨ r ∨ ¬p
(c6) ¬q ∨ ¬x4g
(c7) ¬r ∨ s

Now, suppose gc decide next branch() decides the normal variable r to be false at deci-
sion level 2. During BCP for ¬r, the unit literal vg2 is implied (by c5). Thus, a call to the
constraint solver is made for

allDiff(x1 : {a}, x4 : {g, d, a}, x5 : {a})

35

Notice the domain reduction on x1 which is made by the DP operation after the call to vg1
generated a solution.

The above invocation returns no solution. By applying GCR, ¬vg2 is added to the partial
assignment. During BCP over ¬vg2 , a conflict occurs (in c5).

At this point, gc deduce() returns and a call to gc analyze conflict() is made. Inside the
while loop of gc analyze conflict(), it finds that the conflicting variable is the gc-variable
vg2 . It also finds that, DP operation was performed previously on one of the CSP variable of
gc-variable vg2 (on x1) and vg2 is a forced assignment at the current decision level (decision
level 2). Thus the procedure gc analyze conflict() returns the current decision level as
the backtracking level. As described earlier, the gc backtrack(blevel) backtracks up to the
current decision level and unassigns all assignments up to the decision variable assignment ¬r
and assigns r to be true. This assignment satisfies the clause c5 and c7 (s is unit propagated
from c7). At this point, no more deductions are possible. The remaining unsatisfied clauses
are:

(c4) ¬p ∨ ¬x4g ∨ q
(c6) ¬q ∨ ¬x4g

Then, the search process goes to the next decision level. Suppose, at this decision level 3,
the procedure gc decidie next branch() chooses the variable q to be true. The assignment
q satisfies the clause c4. During BCP over q, ¬x4g is unit propagated from the clause c6.

At this stage, all the clauses are satisfied. As satisfiability is already determined, the
remaining unassigned variables are assigned arbitrarily. This is how the instance Π is solved
by SAT(gc).

Example 2 Suppose a part of a SAT(gc) formula Π consists of

(c1) e ∨ f
(c2) ¬e ∨ ¬p
(c3) p ∨ vg

where vg is a gc-variable denoting the calls

• vg : allDiff(x1 : {a}, x2 : {a})

So, we have

• V GΠ = {vg}, Xg = {x1, x2}

• Dom(x1) = {a}, Dom(x2) = {a}

Let the current decision level be dl, where the normal variable e is assigned to be true. This
decision satisfies the clause c1. During the BCP of e, ¬p is unit propagated from the clause
c2. Same as e, during the BCP of ¬p, vg is unit propagated from c3. So, SAT(gc) invokes the
constraint solver. But the call returns no solution. So, by applying GCR, ¬vg is assigned.
This creates a conflict on the clause c3.

At this stage, the procedure gc analyze conflict() is called. It identifies that, the con-
flicting literal is a gc-variable, and determines that no DP operation has reduced any of
the domains of x1 and x2 previously and also no call to vg have succeeded previously. So,
gc analyze conflict() drops vg from the conflicting clause cl (which is c3). After dropping
vg, cl becomes unit. So, as described previously, we backtrack to the decision level dl (cur-
rent decision level) and unassign every assignments up to the decision variable e and flip
the decision variable e to ¬e. It satisfies c1 (as f is unit propagated) and c2 and no call for
the solving vg is made. The search continues from there.

36

Example 3 Suppose a part of the SAT(gc) formula Π consists of

(c1) e ∨ f
(c2) ¬e ∨ ¬h
(c3) h ∨ vg ∨ p

where vg is a gc-variable denoting the calls

• vg : allDiff(x1 : {a}, x2 : {a})

So, we have

• V GΠ = {vg}, Xg = {x1, x2}

• Dom(x1) = {a}, Dom(x2) = {a}

Let the current decision level be dl, and suppose at a previous decision level dl′, ¬p was
assigned. At the decision level dl, e is decided to be true. After performing BCP on e, ¬h is
unit propagated from clause c2. During the BCP of ¬h, vg is unit propagated from clause
c3. But the call to the constraint solver for vg returns no solution and thus by applying
GCR, ¬vg is assigned. This creates a conflict on clause c3.

The procedure gc analyze conflict() is called. It identifies that, vg is the conflicting
variable and it is intrinsically unsolvable. So, vg is dropped from cl (i.e., c3). After dropping
vg from cl, it becomes

h ∨ p

So, resolution continues with cl. But since cl is an asserting clause, cl is learned and search
backtracks to the decision level dl′ (decision level of p) and unassign all the assignments up
to the decision variable of the decision level dl′+1. After backtracking cl becomes unit and
h is unit propagated from cl. The search continues from there.

Example 4 Suppose a part of the SAT(gc) formula Π consists of

(c1) ¬r ∨ d
(c2) r ∨ vg
(c3) t ∨ s ∨ ¬x1a ∨ p
(c4) t ∨ s ∨ ¬x1a ∨ ¬p

where vg is a gc-variable denoting the calls

• vg : allDiff(x1 : {a}, x2 : {b})

So, we have

• V GΠ = {vg}, Xg = {x1, x2}

• Dom(x1) = {a}, Dom(x2) = {b}

Let the current decision level be dl, and suppose at a previous decision level dl′, ¬s and ¬t
were assigned. At the decision level dl, ¬r is decided to be true. After performing BCP on
¬r, vg is unit propagated from clause c2. The call to the constraint solver for vg returns
the CSP solution {x1 = a, x2 = b}. So, by applying GCR, the corresponding value variables
x1a and x1b are assigned to true. But during BCP of x1a , a conflict occurs on c4. So, the
gc analyze conflict() is called.

The gc analyze conflict() resolves c4 (conflicting clause) with c3 (antecedent clause of
the conflicting variable p) and thus cl becomes

t ∨ s ∨ ¬x1a

37

Then in the same iteration of the while loop of gc analyze conflict(), it checks the last
assigned literal lit (¬x1a) in cl and finds that it is generated by the solution of vg. So, it re-
turns the assignment point of vg as the backtrack point. The procedure gc backtrack(blevel)
unassigns every assignments upto the gc-variable vg. At this stage, vg is assigned again and
the constraint solver is again called for generating the next alternative solution. But at this
time vg generates no alternative solution. So, by applying GCR, vg is assigned to false. As
a result, a conflict occurs on the clause c2. The procedure gc analyze conflict() is again
called.

It identifies that, the conflicting variable is a forced gc-variable vg and a solution was
previously generated for vg. So, gc analyze conflict() returns the current decision level as
the backtracking level. The procedure gc backtrack(blevel) backtracks up to the assignment
¬r, and flips it to r. This flipping immediately satisfies the clause c2 and the literal d is
unit propagated from c1 (thus satisfying c1). The search continues from there.

5.3 Correctness of SAT(gc) Solver

We can argue informally that the SAT(gc) solver formulated in this chapter is correct in
the following sense:

Given a SAT(gc) instance Π, Algorithm 7 returns SATISFIABLE if and only
if Π is satisfiable, and Algorithm 7 returns UNSATISFIABLE if and only if
Π is unsatisfiable.

Of course, this is under the assumption that the constraint solver is sound and complete,
and terminating. A proof sketch of the statement can be constructed based on the following
arguments.

• If there are no occurrences of gc-variables in Π, then Algorithm 7 reduces to a stan-
dard SAT solver with the FirstUIP scheme in conflict analysis and backtracking. Its
correctness, along with the correctness of other variants, have been shown formally by
a transition system [52]. That is, any learned clause is a logic consequence of Π so
their additions do not change the nature of satisfiability of Π.

• If conflict analysis and backtracking in Algorithm 8 does not involve any gc-variable,
i.e., no ”last failed literal” is a gc-literal and every ”last failed literal” has an antecedent
clause. Clearly, in this case the algorithm behaves in a way similar to standard SAT, as
no conflict is due to the failure of a call to a gc-variable, nor it is due to the generation
of a solution to a gc-variable.

• Otherwise, the conflict does involve a gc-literal. But note that in Algorithm 8 the
only possibly learned clause involving gc-literal is one, which remains non-unit after
lit being dropped from cl. It is clear that in this case the failure can only be possibly
rescued by the rest literals in clause cl. It can be shown by induction on the number
of resolution steps that such a learned clause follows from Π. Note that in other cases
of involving a gc-literal, backtracking is chronological so that no possibility of any
satisfying assignment may be missed.

• It is clear that Algorithm 7 is terminating, as it traverses a search tree where the
nodes are normal variables, value variables, and gc-variables. Algorithm 7 employs
two while loops, one is nested inside the other. The inner loop terminates when no
more deduction is possible in a decision level. Inside the inner loop,

– it invokes the gc deduce() function. This gc deduce() function always returns,
because it makes implication on normal, value and gc-variables. For normal
and value variables gc deduce() returns because it makes propagation in a finite
formula. The only difference for a gc-variable is that it may have only one phase,

38

false (the corresponding global constraint is not solvable), or one or more phases
corresponding to one or more solutions. Then, the termination of the constraint
solver guarantees that a call to the gc deduce() function always returns.

– In case of conflict, the gc analyze conflict() is called. A call to this function
is also guaranteed to return as the while loop of Algorithm 8 is guaranteed to
break for all the possible types of conflicts. An asserting clause is guaranteed
to be found if the conflict does not involve any gc/value variable, in which case
the while loop breaks normally. In other cases, if the conflict involves a gc/value
variable, Algorithm 8 returns either a backtracking point or a backtracking level
which ensures the termination of the while loop.

As a call to gc deduce() and gc analyze conflict() returns, the situation that “No
further deduction is possible at the current decision level” is guaranteed to occur in
Algorithm 7. So the inner loop of Algoritm 7 always breaks after finite number of
iterations.

With conflict directed backtracking and chronological backtracking employed by Al-
gorithm 7, a variable cannot be assigned to the same value twice with the same partial
assignment. Under such setting, repeated exploration of the same search space is not
possible. So, after a finite number of traversal in a finite search tree, the outer loop of
Algorithm 7 also terminates, which ensures the termination of Algorithm 7.

• Finally, it should be clear that if SATISFIABLE is returned with an assignment θ,
then Π is satisfiable. The only situation where this may not be the case is when value
variable assignments in θ imply a solution of a gc-variable while vg is assigned to false
in θ. This is prevented by checking of consistency.

5.4 SMT verses SAT(gc) : A Comparison

As one of our inspirations for integrating SAT with a constraint solver is SMT, here we shall
compare SMT and SAT(gc) and discuss their similarities and differences. In this section,
SMT refers to the lazy approach to SMT solving.

Both solving frameworks adopt a DPLL based SAT solver as the overall solver. The
embedded component of an SMT solver is a theory solver and for SAT(gc) it is a constraint
solver. The SMT solver uses a theory solver to determine the satisfiability of a portion of
a T -formula. On the other hand, the SAT(gc) solver uses a constraint solver to compute a
solution of a global constraint for which the constraint solver is invoked. In the following we
compare SMT with SAT(gc), in terms of problem representation, deduction and learning.

1. In SMT, the T -formula is abstracted in a Boolean representation by encoding the
theory components of the T -formula into propositional literals. In SAT(gc), we also
make a Boolean abstraction by representing a global constraint as a gc-literal.

2. The SMT solver treats a theory literal as a Boolean literal and makes assignments on
those literals as it does for other non-theory literals. Whenever a partial assignment is
obtained from the DPLL solving, the SMT solver extracts the theory literal assignment
from that partial assignment and checks the T -satisfiability. However, unlike SMT, in
SAT(gc) solving, whenever a positive global constraint literal assignment is found in
the partial assignment, the constraint solver is called to solve the global constraint.
Once a solution is returned, the propositional literals corresponding to the returned
solution are added to the partial assignment. So, during deduction, a theory solver
is used for checking the T -satisfiability of the T -literals, but in SAT(gc) a constraint
solver is used to compute a solution for the global constraint for which it is invoked.
In other words, in SMT, the T -solver is used to determine the consistency of the literal
assignments already made by the DPLL solver, while in SAT(gc), the constraint solver
is used to make new literal assignments.

39

3. In SMT, whenever an inconsistent assignment is found by the T -solver, it informs
the DPLL solver about the inconsistency and the T -solver sends information back
to the DPLL solver as theory lemma, so that the DPLL solver can learn a clause
and backtrack to a previous point. On the other hand, in SAT(gc) no such con-
flicting information is sent back from the constraint solver. The DPLL component
of SAT(gc) identifies the conflicts/inconsistencies related to the global constraint at
hand and does the necessary domain setup for the respective CSP variables, clause
learning and backtracking. The constraint solver is used as a black box, to solve the
global constraints for which it is called.

5.5 Constraint Answer Set Solving and SAT(gc) : A
Comparison

In a related work [15], the authors have developed a framework for integrating CSP style
constraint solving in Answer Set Programming (ASP), referred to as CDNL-ASPMCSP.
Following the lazy SMT approach, the framework creates an abstraction of constraints pre-
sented in an ASP program. The ASP solver passes the portion of its (partial) Boolean
assignment associated with constraints to a CP solver. The constraint solver checks these
constraints against its theory via constraint propagation. The call results either in a unsat-
isfiability signal or extension of the current partial assignment by adding relevant constraint
atoms. For conflicting driven analysis, every inferred atom needs a reason from which it
is inferred. As CP solver does not provides any reason for the solutions it generates, this
approach constructs a non-trivial reason from the structural properties of the underlying
CSP problem in the ASP program at hand. For a constraint variable which is conflicting in
question, other variables it shares constraints with are considered as potential reasons. From
this constructed reason, it finds a learned clause and backtracking level by using resolution
based conflict analysis process.

SAT(gc) is more eager than CDNL-ASPMCSP, in the sense that, whenever a Boolean
literal associated with constraints (i.e gc-literal) is implied, it calls the constraint solver
immediately. If any solution is returned, the current partial assignment is also eagerly
extended by adding relevant value literals.

In contrast to CDNL-ASPMCSP, whenever a conflict involves a gc-literal or value literal
(i.e., constraint atoms), SAT(gc) performs chronological backtracking. The more eager
approach of SAT(gc) identifies immediate occurrence of conflict due to a gc-literal or a
value literal (if any exists) and enables SAT(gc) to perform chronological backtracking, as
the backtracking points are obvious.

40

Chapter 6

Implementation of a Prototype
of SAT(gc)

To demonstrate the feasibility of the SAT(gc) framework, we have implemented a prototype
system of SAT(gc), which we refer as satCP. In satCP, zchaff [30], a state of the art
DPLL based complete SAT solver is used as the DPLL engine and a constraint solver named
gecode [44] is used as the constraint solving engine. Both zchaff and gecode are open
source, implemented in C++. In the next two sections, we will briefly review these two
solvers followed by the details on our implementation of satCP .

6.1 ZCHAFF - A State of the Art SAT Solver

zchaff accepts a CNF problem instance in the DIMACS format [41] and determines its
satisfiability. In the case that formula is satisfiable, zchaff outputs a variable assignment
along with some statistics.

zchaff stores the input clauses in a clause database. A clause consists of a fixed number
of literals. All the literals in a given problem instance are stored in a large vector, called
the literal pool, in which each clause has a pointer, which points to its starting literal in the
literal pool. All the other literals pertaining to that clause are stored consecutively after
that starting literal. zchaff uses 2-watched literal scheme for unit propagation as described
in Chapter2. To implement it, while storing each clause in the clause database, it marks
two of the clause’s literals as watched.

After storing the clauses in the clause database, zchaff starts its solving process with
preprocessing, in which it makes assignments on unused variables, applies pure literal fix-
ingand makes assignment on the literals of unit clauses.

If preprocessing cannot solve the whole problem, then zchaff proceeds with deciding
branching variables and performing unit propagation. For making decisions on variables, it
uses the VSIDS heuristics as described in Chapter 2.

After a decision is made and the decision variable is added to the partial assignment, it
performs unit propagation. As mentioned earlier, for deduction purposes, it uses 2-watched
literal scheme, under which it only checks those clauses which have only one of its watched
literal unassigned to make new assignments or for detecting conflicts. If any conflict is
detected, zchaff calls a conflict analyzer, which is described in Algorithm 3. As a stopping
criterion of the while loop in Algorithm 3, it uses the most efficient stopping heuristics
- namely, first UIP. After finding the first UIP, the conflict analyzer learns a clause and
returns the backtracking level. The solver then backtracks to the returned backtracking
level. After backtracking the learned clause becomes an unit clause. zchaff then proceeds
by assigning the first UIP, as it gets unit propagated from the learned clause. If the returned
backtracking level is 0, zchaff returns UNSAT, as backtracking to level 0 indicates that the

41

conflict has occurred as a reason of an assignment during preprocessing, which was made
before any of the decisions are made.

By adopting the 2-watched literal scheme, conflict directed learning and backjumping,
zchaff has become one of the most efficient SAT solvers, as evidenced by its performance
in recent SAT solver competitions. This was one of our motivations to select zchaff to
develop a prototype implementation of the SAT(gc) framework.

6.2 GECODE - A State of the Art CSP Solver

gecode is a software library for developing applications for solving constraint satisfac-
tion problems. Like zchaff, it is a free software developed in C++. gecode provides
a constraint solver with state-of-the-art performance while being modular and extensible.
gecode won all MiniZinc Challenges1 so far (in all categories): 2010, 2009, and 2008 [44].
Motivated by these facts, we have used gecode as the constraint solver for the prototype
implementation of SAT(gc). In the following subsections, we shall briefly describe the data
structures, search engines and modeling techniques of gecode [36].

Data structure In Chapter 3, we have described the idea of constraint store, where all
the constraints, the CSP variables and their domain values are stored. gecode employs a
construct named SPACE for implementing the constraint store. SPACE is the data structure
which is used for solving a CSP problem in gecode . In gecode , a problem is modeled as
a space with propagators, variables and their domains added into the space. The propagator
of the space are defined and executed when the space is first constructed.

A space has several functionalities. A space can clone itself. The clone of a space is
placed in a stack so that the search engine can come to it later after backtracking. A space
also has a functionality, called status, to check its status to see, whether the store is failed,
solved or distributable. The functionality propagate, forces the space to do propagation, so
that it can become either a failed, solved or a distributable store. If the space becomes a
distributable store after propagation, gecode performs branching on variables and values
to perform the searching.

Figure 6.1: Example of modeling a CSP problem in gecode.

Search engines Every search engine in gecode is implemented in two parts, namely,
templated part and general part. The templated version handles the specialized space in
which the problem at hand is specified and the more general part handles search for any space
object. To perform searching on the specialized space, the templated part calls functions in

1http://www.g12.cs.mu.oz.au/minizinc/challenge2010/

42

the more general version of the search engine. Search engine in gecode works by utilizing
a stack for handling the backtracking of search engines. The stack keeps tracks of which
nodes the search engine has previously been. When a search engine needs a new search
space to work with, it asks for it to the stack. gecode employs a hybrid of two techniques
named, cloning2 and recomputation3 for restoring a space.

6.2.1 Problem modeling in gecode

In gecode, a CSP problem is modeled in object oriented fashion. Models of gecode are
implemented using spaces. A model of the CSP problem is programmed in a subclass,
which inherits a Space class. The constructor of the subclass implements the model, which
includes specification of variables, their domains, propagator functions and branching orders.
In addition to the constructor, the subclass must implement a copy constructor and a copy
function as a requirement to facilitate the searching. An object of the subclass and an
object of a search engine, which is connected with the subclass instance must be created.
The instance of the search engine can be used to obtain any solution of the CSP problem,
specified in the constructor of the subclass.
Figure 6.1 depicts a skeleton code for modeling a CSP problem in gecode . The CSP
problem involves finding a solution which involves four variables with domains ranging from
1 to 16. The problem asks for a solution on the variables with the constraint ”sum of these
four variables must be equal to 34”.

6.3 Integration of ZCHAFF and GECODE

To implement satCP, we have integrated zchaff and gecode. In our implementation, we
have used gecode as a black box to get solutions of global constraints when needed. To
develop satCP, we have minimally modified zchaff to provide the hook for the integration.
Our implementation is in some sense incomplete, but it turns out to be sufficient for the
experimentation presented in this thesis. The changes are as follows:

• The SAT(gc) framework allows a gc-variable to be assigned at any point of the search
process (i.e., by decision or by unit propagation). But satCP assigns the gc-variables
only as decision variables.

• In the SAT(gc) framework, DP operations are performed immediately after a value
variable is assigned to a value. But in satCP, the DP operation is performed on the
CSP variables of a gc-variable before invoking gecode to obtain a solution of that
gc-variable, based on the current partial assignment.

• In the SAT(gc) framework, when no more solution can be generated for a gc-variable,
we assign that gc-variable negatively and a conflict is detected immediately. In satCP,
when no more solution can be generated for a gc-variable, instead of assigning it
negatively, satCP raises a flag to indicate that the conflict has occurred as no more
solution can be generated for the last assigned gc-variable.

• In the SAT(gc) framework, when BCP for a value variable corresponding to a solution
of a gc-variable creates a conflict, that conflict is identified inside the conflict analyzer
(by checking lit, which does not have an antecedent clause). But in satCP, in such
case, it raise a flag to indicate that a conflict has occurred as the last alternative

2Cloning creates a clone of a space. Before following a particular alternative path the space at hand is
stored in the stack and restored and used later, if required.

3Instead of storing the entire space, the recomputation technique stores the information to redo the effect
of the brancher. The stored information is called a choice. Redoing the effect of earlier choice in a space is
called commit a space. When an alternative space is asked for, then given a space, the stored choice is used
to commit to that space.

43

solution by a gc-variable is conflicting. This flag-based identification of the two types
of conflicts enable us to develop satCP with minimal modification to the existing
conflict analyzer of zchaff.

• Under the setting described above, it is not possible that a partial assignment ψ
implies a solution of a gc-variable vg while vg is assigned to false in the assignment.
Therefore, an implementation of consistence checking is not needed for the intended
experimentation, and is thus not carried out.

The implementation of satCP follows Algorithm 7. In the following subsections, we will
describe the implementation satCP in terms of its functionalities.

6.3.1 Preprocessing

From the application point of view the SAT(gc) encoding of a problem instance has the
following properties: A gc-variable occurs only in a unit clause positively. Due to this,
we have changed the preprocessing function of zchaff by ignoring pure literal fixing for
gc-variables. They are not assigned during the preprocessing step. Otherwise, a series of
invocations to gecode would occur during the preprocessing step and we would need to
implement the conflict analysis mechanism to handle the conflicts involving gc-variables
inside the preprocessing step of zchaff. In that case, we would need to modify zchaff
heavily.

6.3.2 Decision

Intuitively, a solution of a gc-variable tends to make a good amount of implications, typically
due to shared CSP variables in different calls to global constraints. This intuition has lead
us to implement a variable selection heuristic, which puts higher priority on gc-variables
of a SAT(gc) formula Π. The order in which gc-variables are considered for decision is
determined by the order of appearance of gc-variables in Π. We term this heuristic as
gc heuristic, which ensures that gc-variables are assigned only as decision variables. All
the value literal assignments get the same decision level as the gc-variable, which generates
them.

After all the gc-variables are assigned, the remaining unassigned propositional variables
are assigned by VSIDS. Thus the decision heuristic that we have used in satCP is essentially
a combination of gc heuristic and VSIDS.

6.3.3 Deduction

The deduction function of satCP utilizes a queue, named implication queue, to temporarily
store the implications it finds in the current decision level. The deduction function pops out
a literal assignment from the implication queue, adds it to the current partial assignment
and performs BCP for that literal assignment. During BCP, if it finds more implications
which are added to the implication queue. This operation is performed repeatedly until the
implication queue becomes empty (i.e no more deduction is possible in the current decision
level) or a conflict due to a gc-variable assignment occurs.

The variable assignment that the deduction function pops out from the implication queue
must be one of these three types of variable assignment: a gc-variable assignment, a value
variable assignment and a normal variable assignment. Depending on the type of the vari-
able assignment satCP performs deduction operation as follows:

• If the variable is a gc-variable, then the deduce function of satCP invokes gecode
to obtain a solution for that gc-variable. Before calling gecode , according to the
current partial assignment, DP operations are performed on the CSP variables of that
gc-variable. To perform the DP operation on a CSP variable x, satCP drops a domain

44

value v from Dom(x), if the corresponding value variable of the domain v is defined
negatively in the current partial assignment.

After the invocation to gecode returns, one of the following two things can happen:

– A CSP solution is returned. The gc-variable is assigned to a positive value and
added to the partial assignment. The value literals corresponding to the returned
CSP solution are added as positive assignments and for all of them BCP is per-
formed. For each positively assigned value variable, CA operation (see Chapter
5) is performed. BCP is also performed for the value literals added as part of the
CA operation.

– No solution is returned. It means that, with the current domain of the CSP
variables of the gc-variable, no more alternative solution can be generated.

If any conflict occurs during BCP of any of the value variables generated by the so-
lution of a gc-variable, the deduce function assigns a flag, named conflict flag to
value literal conflict and returns. If no more alternative solutions can be generated
for a gc-variable, the deduction function assigns the conflict flag to gc failure conflict
and returns. The conflict analyzer checks the value of this conflict flag to see what
type of conflict has occurred.

• Otherwise, the deduce function of satCP adds the variable assignment to the current
partial assignment. If the variable assignment is a positive value variable assignment,
then we perform the CA operation. For every added assignments BCP is performed.

If conflict occurs during the BCP, the conflicting clause is stored. The stored infor-
mation is utilized during the conflict analysis.

If no conflict occurs during the BCP and implication queue is empty, satCP again
calls its decision function for deciding next variable assignment. If any conflict occurs, then
satCP calls its conflict analyzer function.

6.3.4 Conflict analysis and backtracking

For conflict analysis in satCP, we have modified the existing conflict analyzer function
of zchaff slightly. We also have slightly modified the existing backtracking function of
zchaff.

The conflict analyzer function of satCP works as follows:

• If it finds that the conflict flag is assigned to value literal conflict, then it indicates
that, the current alternative solution of the last assigned gc-variable (at the current
decision level) is conflicting. The conflict analyzer of satCP returns the current
decision level as the backtracking level. The backtracker of satCP backtracks up to
the decision variable (which is the last assigned gc-literal) of the current decision level.
After backtracking the decision procedure again decides on the same gc-variable (by
gc heuristic), and the next alternative solution for that gc-variable is generated.

• If it finds that, conflict flag is assigned to gc failure conflict, then it indicates that
the most recent invocation to gecode for the last assigned gc-literal fails to generate
any solution. This failure is a conflict.

The conflict analyzer of satCP returns the previous decision level of the current
decision level as the backtracking level. The backtracker of satCP backtracks up to
that level and unassigns all the assignments up to the decision variable of that decision
level. At the previous decision level, the decision variable is guaranteed to be another
gc-variable. After backtracking to the previous decision level, the decision function of
satCP again chooses that gc-variable and as the deduce function executes, the next
alternative solution for that gc-variable is generated.

45

Notice that, if the first assigned gc-variable (at decision level 1) fails to generate any
solution, the conflict analyzer returns decision level 0 as the backtracking level, in
which case satCP declares the problem unsatisfiable.

• If the conflict flag is not set to any value, then it indicates that, conflict occurs due
to a forced implication (i.e the conflicting variable has an antecedent clause), then we
analyze this type of conflict by the existing conflict analyzing mechanism of zchaff.
As described in Algorithm 8, The conflict analysis proceeds by repeatedly performing
resolution, until

– an asserting clause is found. The conflict analyzer learns the asserting clause, re-
turns the asserting level as backtracking level blevel. The backtracker backtracks
up to blevel and unassigns every assignment up to the decision variable of the
level blevel + 1. After backtracking the learned clause becomes an unit clause.
The first UIP literal4 is unit propagated from the learned clause.

– or a clause cl is found in which the last assigned literal lit (see Algorithm 8) has no
antecedent clause. It indicates that the value variable assignment is generated by
a solution of the gc-variable at the current decision level. This assignment of lit is
responsible for the current conflict. Thus, we need to obtain another alternative
solution for the last assigned gc-variable. The conflict analyzer returns the current
decision level as the backtracking level. The backtracker of satCP backtracks up
to the current decision level. After backtracking the decision function of satCP
again decides on the same gc-variable, and the next alternative solution for that
gc-variable is generated.

6.4 GC-variables and Search Engines

6.4.1 Creating models and search engines in satCP

As mentioned earlier, CSP problems are modeled in gecode by creating a subclass of a
built-in class named Space and specifying the model inside that subclass (see Subsection
6.2.1). The solution for a CSP model are searched by creating search engines [45].

From the CP perspective, every global constraint vgi in a SAT(gc) instance Π is an
independent CSP problem. So, before starting executing satCP, for every gc-variable
vgi ∈ Π we create a subclass of the class Space, which models the global constraint vgi ∈ Π
as an independent CSP model (for instance, as shown in Figure 6.1). At the very beginning
of the execution of satCP, for each of the CSP models it creates a search engine globally.

6.4.2 Searching for CSP solutions

satCP uses the Branch and Bound (BAB) search engine, which is a built-in search engine
of gecode [45].

The BAB search engine in gecode has a public method, named next() [45], which
provides the next alternative solution for the CSP model to which it is attached. The next()
method returns null when there is no more alternative solution exists for the attached model.

Whenever a gc-variable vgi is assigned, satCP executes the next() method of the search
engine attached to the model of vgi to get the next alternative solution for that vgi . When
the attached search engine does not find any alternative solution for vgi , it returns null and
expires. If that vgi is assigned again, satCP creates a new search engine (as the previous
search engine for vgi has expired) at the local scope which searches for alternative solutions
for vgi . Here, one point is worth mentioning. Every time an alternative solution needs to
be generated for such a vgi (once failed), a local search engine needs to be created. So, for
getting the ith alternative solution for such vgi , i−1 solutions need to be generated.

4The one and only literal assigned at the current decision level in the asserting clause.

46

Chapter 7

Experiments

In this chapter we will present the experiments that we have done with satCP, a prototype
implementation of SAT(gc). We use four benchmark problems. These are - the Latin square
problem, the magic square problem, the ferry planning problem with numerical constraints,
and the planning problem of block stacking with numerical constraints. In solving the
Latin square problem, satCP is more efficient than SAT. The magic square problem has
given us some important insights about the integration of SAT and CP. These insights have
motivated us to design the two planning problems as mentioned above. In this connection,
these two benchmarks have demonstrated new usability of SAT(gc).

The experiments are conducted in a UNIX server assembled with 2.10 GHZ Intel Core 2
Duo CPU (T5600) and 4GB of RAM. For all the experiments, the cut off time is 15 minutes,
that is, we manually terminated the execution of satCP for any instance which did not
give output within 15 minutes.

In the rest of this chapter, we will describe these benchmarks, their encodings in satCP,
experimental results, and an analysis of these results. But before that, let us briefly discuss
how SAT(gc) instances are represented in satCP.

7.1 Encoding of SAT(gc) Formula

7.1.1 SAT instance representation in zchaff

zchaff accepts SAT problem instances encoded following the DIMACS CNF format [9].
In the DIMACS CNF format, a SAT instance starts with a problem line, which has the
following format

p CNF var num cls num

where p signifies that the line is the problem line, by CNF it signifies that the format
of that problem is in the CNF format, var num and cls num are two integers signifying
the number of variables and the number clauses in that problem instance, respectively.
The clauses appear right after the problem line. The variables that form the clauses are
numbered from 1 to var num. The non-negated version of variable v is presented by v and
the negated version of variable v is presented as −v. A clause is presented by a sequence
of numbers, each separated by a space. The termination of a clause is indicated by the
sentinel 0. Termination of SAT formula is indicated also by the sentinel 0. For example,
the DIMACS CNF format of the SAT problem

(p1 ∨ p2 ∨ ¬p4) ∧ (p4) ∧ (p2 ∨ ¬p3)

47

is represented by

p CNF 4 3

1 3 −4 0

4 0

2 −3 0

0

7.1.2 Representation in SAT(gc)

As we adopt zchaff as the SAT engine in our implementation, we will use the DIMACS
CNF format in our prototype implementation, where

• zero or more global constraints are incorporated into a SAT instance;

• global constraints are represented by integer numbers starting from var num+1; and

• the correspondence between the value variables and their corresponding domain val-
ues is maintained in such a way that the mapping between a domain value and its
corresponding value variable can be easily performed.

Table 7.1 shows a sample SAT(gc) instance Π0 on the left column, with 5 variables, 4
clauses, and 1 global constraint which is

gc(x1 : {10, 12}, x2 : {10, 12}).

Our prototype implementation takes a formula such as Π0 and converts it to the DIMACS
CNF format.

Π0 Converted to flat CNF
p cnf gc 5 4 p cnf gc 6 4
1 2 0 1 2 0
1 −3 4 0 1 −3 4 0
gc(x1 : {10, 12}, x2 : {10, 12}) 0 6 0
3 5 0 3 5 0
0 0

Table 7.1: A SAT(gc) instance.

The right column of Table 7.1 shows the converted CNF formula of Π0 in the DIMACS
CNF format. Notice that, the global constraint

gc(x1 : {10, 12}, x2 : {10, 12})

is encoded by the propositional variable 6 (var num+ 1).
As a domain value of a CSP variable corresponds to a value variable, we need to store

the correspondence between the domain values and the value variables. We call this storage
a mapping dictionary. In a mapping dictionary, the correspondence between a value variable
and its corresponding domain value is presented by a pair of numbers separated by “/” as
value variable/domain value. The number on the left side of “/” is a value variable and
the number on the right side of “/” is its corresponding domain value. Table 7.2 shows
the mapping dictionary for the example in Table 7.1. The two rows of Table 7.2 show the
correspondence between domain values and value variables of the CSP variables x1 and x2.

48

x1 1/10 2/12
x2 3/10 4/12

Table 7.2: Mapping dictionary.

7.2 The Latin Square Problem

The Latin square can be defined as follows:

A Latin square of order n is an n by n array of n numbers (symbols) in which
every row and columns must contain distinct numbers (symbols).

Figure 7.1 shows an example of Latin square of order 3.

Figure 7.1: A Latin square of order 3.

The problem of finding a Latin square of order n is called the Latin square problem of
order n.

7.2.1 Encoding of the Latin square problem in SAT(gc)

The SAT encoding of Latin square of order n requires n3 propositional variables. Each
propositional variable pijk denotes that a number k is assigned to the cell belonging to the
ith row and jth column, where 1 ≤ i, j, k ≤ n [27].

Like SAT encoding, to encode our SAT(gc) instance Πlatin of Latin square of order n,
we use n3 propositional variables. An obvious way to encode this problem in SAT(gc) is
to encode it by using both SAT clauses and the allDiff global constraint. We encode the
constraint “no two numbers are assigned to the same cell” by clauses of propositional literals
and the constraint “every number must appear exactly once in a row and in a column” is
encoded by using n allDiff global constraints as follows:

• Constraint 1: No two numbers are assigned to the same cell.

n∧
i=1

n∧
j=1

n∧
k=1

n∧
l=k+1

(¬pijk ∨ ¬pijl)

• Constraint 2: No row and column has the same number repeating on them. This
constraint assigns different numbers in different cells of a row and column. We encode
this constraint using n calls to the allDiff global constraint as follows:

n∧
k=1

allDiff(xk1 , x
k
2 , . . . , x

k
n)

where

Dom(xk1) = Dom(xk2) = · · · = Dom(xkn) = {1 . . . n}

The assignment xki = j (where 1 ≤ i, j, k ≤ n) asserts that the number k is placed on
the ith row and jth column of the square. Thus each of the allDiff global constraints
assigns a particular number k in n different cells of the n by n Latin square (see
Subsection 7.2.3).

49

7.2.2 Experimental results

We have run the Latin square problem on zchaff (with SAT encoding) and on our prototype

n Running Time for zchaff Running Time for SAT(gc)
(in seconds) (in seconds)

3 0 0
4 0 0
5 0 0
6 0.01 0.01
7 0.02 0.01
8 1.42 0.30
9 48.20 10.02
10 — 169.51

Table 7.3: Experiments with Latin square.

implementation system, satCP (with SAT(gc) encoding Πlatin) for instances of different
sizes, starting from order of 3 to order of 10. The running time for zchaff and for satCP
are shown in Table 7.3, where we can see that, for smaller instances, the prototype system
runs in similar speed as zchaff. But for larger instances, the former clearly runs faster than
the latter. For example, for instance with order 10, satCP solves it within 170 seconds,
while zchaff was unable to determine the satisfiability within 15 minutes. This is why for
Latin square problem, satCP is more efficient than zchaff.

The next subsection analyzes this performance of the prototype implementation of the
SAT(gc) framework, by taking a small SAT(gc) instance of Latin square as an example.

7.2.3 Solving Latin square of order three

In this subsection we present an analysis of the performance of satCP by examining some
of the details for Latin square of order 3, with three numbers n1,n2 and n3.

For encoding this problem in satCP, we require 27 (33) propositional variables starting
from 1. Let the propositional variables have the following interpretation:

1 : n1 is on cell (1, 1), 2 : n2 is on cell (1, 1), 3 : n3 is on cell (1, 1)

4 : n1 is on cell (1, 2), 5 : n2 is on cell (1, 2), 6 : n3 is on cell (1, 2)

7 : n1 is on cell (1, 3), 8 : n2 is on cell (1, 3), 9 : n3 is on cell (1, 3)

10 : n1 is on cell (2, 1), 11 : n2 is on cell (2, 1), 12 : n3 is on cell (3, 1)

13 : n1 is on cell (2, 2), 14 : n2 is on cell (2, 2), 15 : n3 is on cell (3, 2)

16 : n1 is on cell (2, 3), 17 : n2 is on cell (2, 3), 18 : n3 is on cell (3, 3)

19 : n1 is on cell (3, 1), 20 : n2 is on cell (3, 1), 21 : n3 is on cell (3, 1)

22 : n1 is on cell (3, 2), 23 : n2 is on cell (3, 2), 24 : n3 is on cell (3, 2)

25 : n1 is on cell (3, 3), 26 : n2 is on cell (3, 3), 27 : n3 is on cell (3, 3)

As shown in Table 7.4, we encode this problem with CNF clauses of propositional vari-
ables (to encode ”No two numbers are assigned to the same cell”) and with 3 allDiff global
constraints (to encode ”No row and column has the same number repeating on them”). Col-
umn 3 of Table 7.4 shows the converted flat CNF of the SAT(gc) formula, where the three
allDiff global constraints are encoded as propositional variables 28, 29 and 30 respectively.
That is, 28, 29 and 30 are the three gc-variables in this Πlatin instance of order 3. Column
4 shows the mapping dictionary for the problem.

Figure 7.2 shows the implication graph for the Πlatin instance in Table 7.4. In Figure
7.2, the dashed box attached to the gc-variables shows the consistent value variables of the

50

Constraint1 Constraint 2 CNF Mapping
Clauses Dictionary

-1 -2 0 allDiff1(x
1
1, x

1
2, x

1
3) -1 -2 0 x11 1/1 2/4 3/7

-1 -3 0 -1 -3 0 x12 1/10 2/13 3/16
-2 -3 0 -2 -3 0 x13 1/19 2/22 3/25

-4 -5 0 allDiff2(x
2
1, x

2
2, x

2
3) -4 -5 0 x21 1/2 2/5 3/8

...
... x22 1/11 2/14 3/17

-25 -26 0 -25 -26 0 x23 1/20 2/23 3/26

-25 -27 0 allDiff3(x
3
1, x

3
2, x

3
3) -25 -27 0 x31 1/3 2/6 3/9

-26 -27 0 -26 -27 0 x32 1/12 2/15 3/18
28 0 x33 1/21 2/24 3/27
29 0
30 0

Table 7.4: Coding details of Πlatin of order 3.

CSP variables of the corresponding global constraints after DP operation being performed.
The implications generated by the invocation to gecode, are shown by green arrows. These
generated implications make more implications - both by the unit propagation and by ap-
plying the CA operation. Implications generation by unit propagation are shown by blue
arrows, while the generation of implications by CA operation are shown by red arrows.

For the Πlatin instance specified in Table 7.4, gc heuristic first chooses the gc-variable
28 and assigns it to true. Note that as no assignment is made by gc preprocess(), no change
occurs in the domains of x11, x

1
2 and x13 (as reflected in the dashed box attached to gc-literal

28). The call to the gecode generates 3 implications for this global constraint (green ar-
rows). This 3 implications again generate more implications both by unit propagation (blue
arrows) and by CA operation (red arrows). At this point, no more literals can be implied.
Then gc heuristic chooses the next gc-variable 29 and makes a positive assignment on it.
Before calling the constraint solver for a solution for 29, DP operations are performed on its
CSP variables. As a result, one value from each of its CSP variables domain are dropped
(indicated on the attached box of 29). After the call to gecode for allDiff2(x

2
1, x

2
2, x

2
3)

returns, as before some more literal assignments are generated. DP operations are also per-
formed on the CSP variables of allDiff3(x

3
1, x

3
2, x

3
3) (30). After all the possible implications

are made, then the gc-variable 30 is decided at decision level 3. Notice that, DP operations
are performed on the CSP variables of the gc-variable 30. As a result, the domains of its
CSP variables become singleton (indicated in the attached box of 30). The invocation of
gecode for this global constraint returns a solution, and the corresponding value literals
are assigned (green arrow). At this point, all the literals are assigned and thus the instance
Πlatin becomes satisfiable.

Figure 7.3 shows how three calls for the three different global constraints solve Latin
square of order 3. The left, middle and right squares show the status of the Latin square,
after the value variables (1, 13, 25), (5, 17, 20) and (9, 12, 24) are assigned (which are induced
by the solutions of allDiff1, allDiff2 and allDiff3 respectively). These solutions map different
numbers in different cell position in the following way:

• (1, 13, 25) 7→ (n1 is on cell (1,1),n1 is on cell (2,2), n1 is on cell (3,3)) (Figure 7.3 left)

• (5, 17, 20) 7→ (n2 is on cell (1,2),n2 is on cell (2,3), n2 is on cell (3,1)) (Figure 7.3
middle)

• (9, 12, 24) 7→ (n3 is on cell (1,3),n3 is on cell (2,1), n3 is on cell (3,2)) (Figure 7.3 right)

51

Figure 7.2: Implication graph for 3x3 Latin square for the SAT(gc) encoding.

Figure 7.3: Solving 3X3 Latin square of by prototype of SAT(gc).

7.2.4 Performance analysis

For the Latin square problem satCP runs faster than zchaff. To encode Latin square
in SAT, total number of clauses required are O(n4) [27]. The Πlatin instance has O(n3)
clauses. Thus, by the use of global constraints, one can write more compact representations
in SAT(gc) than in SAT. This plus the efficient propagators for allDiff global constraint
as implemented in gecode seems to be the main reasons for the better performance of our
implementation of satCP.

A call to the global constraint assigns a particular number to n different cells of the
square. Each call is solving a part of the problem, which could be solved after searching
through O(n4)−O(n3)/n SAT search space.

7.3 The Magic Square Problem

A normal magic square can be defined as follows:

A magic square of order n is an arrangement of n2 numbers, usually distinct
integers, in a square, such that the sum of n numbers in rows, columns, and in

52

both diagonals are equal to a constant number.

A normal magic square contains the integers from 1 to n2. The constant sum over rows,
columns and diagonals is called the magic sum, which is known to be n(n2 + 1)/2. The
problem of finding a normal magic square is called the normal magic square problem.

There are variations of magic square, based on different conditions to be satisfied. But
in this thesis, magic square refers to normal magic square.

Figure 7.4 shows a magic square of order 3. The magic sum in this case is 15.

Figure 7.4: A normal magic square of order 3.

7.3.1 Encoding of magic square in SAT(gc)

As mentioned in Chapter 5, due to the Boolean nature of SAT, the size of encoding of
numerical constraints in SAT can be exponential. As the problem of normal magic square
involves numerical constraints, to the best of our knowledge, no direct SAT encoding for
the problem is described in the SAT literature.

Here we will present two different encodings of normal magic square problem in SAT(gc),
their experimental results and some analysis. The first encoding encodes the normal magic
square problem as a monolithic constraint. We call this encoding monolithic because the
encoding consists of a single CSP constraint composed of a number of global constraints.
Thus, to solve the magic square problem in SAT(gc) becomes a single call to gecode. This
will be contrasted with the second encoding where the monolithic constraint is decomposed
into a collection of global constraints and SAT clauses. We call this encoding decomposed.

7.3.2 Monolithic SAT(gc) encoding

In this approach of encoding in SAT(gc), we encode the whole magic square problem by a
monolithic constraint magic square as follows:

magic square(x11, x12 . . . xij . . . xnn)

where Dom(x11) = Dom(x12) = · · · = Dom(xnn) = {1 . . . n2}. The assignment xij = k
represents that the number k is placed at the jth column of ith row (where 1 ≤ i, j ≤ n and
1 ≤ k ≤ n2).

For encoding the monolithic magic square problem of order n in SAT(gc), we need n4

propositional variable pijk, where pijk means that, the number k is assigned in to the cell
(i, j), with 1 ≤ i, j ≤ n and 1 ≤ k ≤ n2. These propositional variables are the value variables
which correspond to the domain values of the CSP variables x11, x12 . . . xij . . . xnn.

In gecode, we implement magic square(x11, x12 . . . xij . . . xnn) by using a allDiff global
constraint on the variables x11 . . . xnn and 2n+2 sum global constraints, where n sum global
constraints map the sum constraint across the n rows, the other n sum global constraints
map the sum constraints across the n columns, and 2 addition sum global constants are
for constraints are for mapping the sum constraint across left to right diagonal and right
to left diagonal, respectively. Table 7.5 shows the monolithic SAT(gc) instance for n by n
normal magic square and its gecode implementation. Notice that, as the whole normal
magic square problem is encoded using one monolithic constraint, all the constraints, CSP
variables on the right column of Table 7.5 are put into a single constraint store.

53

Monolithic SAT(gc) Encoding gecode implementation
of magic square

(Mapping distinct symbols constraint)
allDiff(x11, . . . , xnn)

———————————-
(Mapping sum across rows)

sum(x11, . . . , x1n)
sum(x21, . . . , x2n)

...
sum(xn1, . . . , xnn)

magic square(x11, . . . , xnn) 0 ———————————-
(Mapping sum across columns)

sum(x11, . . . , xn1)
sum(x12, . . . , xn2)

...
sum(x1n, . . . , xnn)

———————————-
(Mapping sum across diagonals)

sum(x11, . . . , xnn)
sum(xn1, . . . , x1n)

Table 7.5: SAT(gc) encoding of magic square with a monolithic constraint.

7.3.3 Experiments with monolithic encoding

Table 7.6 shows the experimental results for the SAT(gc) encoding of normal magic square
with monolithic constraint. By this encoding we are able to solve the magic square problem
up to size 7 by 7 by satCP within 15 minutes time.

n time in (seconds)
3 0.00058
4 0.02
5 0.61
6 0.04
7 3.92
8 —

Table 7.6: Experiments with magic square under monolithic constraint .

7.3.4 Comparison to SAT with weight constraints

It is worth commenting on a related experiment on answer set programming (ASP) [4, 16, 17],
for the same magic square problem. An efficient solver in ASP is clasp,1 which can be
applied as a SAT solver; actually, it is considered a top-notch SAT solver, as it won the
SAT/UNSAT category in the 2009 SAT Competition. One difference between clasp and
other sate-of-the-art SAT solvers is that clasp supports weight constraints which can be
used to encode aggregates and numerical constraints [23]. In fact, almost all ASP systems
support aggregates of certain kind [25, 38, 47]. However, weight constraints in ASP are not
implemented in the same way as global constraints in CP.

Recently in [50], the authors considered adding (evaluable) function in weight constraint
programs, and translated such a weight constraint program to an equivalent instance of

1http://www.cs.uni-potsdam.de/clasp/

54

CSP. The solution of that CSP instance corresponds exactly to answer sets of the original
program. A prototype system extending FASP2 is implemented for the computation of
answer set for weight logic programs with functions. With that system, the authors carried
out some experiments with benchmarks including the normal magic square problem. They
show two encodings of the normal magic square problem in weight constraint programs. In
one version, to encode the constraint “no number is repeated in any two cells of the square”,
they use a allDiff global constraint. In another version, they used equivalent ASP rules
to encode the all-different constraint. In general, the version that was encoded with the
all-different global constraint runs faster than the other one. For the same problem, they
also compared the running time of clasp with FASP. With the version encoded with all-
different global constraint, FASP runs much faster, sometimes orders of magnitude faster,
than clasp. For example, FASP solves the normal magic square problem (encoded with
allDiff) of order 7 in 1.63 seconds, while clasp solves the same instance (encoded with
aggregates) in 450.58 seconds.

The experimental results with the monolithic encoding of normal magic square running
on satCP confirms the results of [50], as with this encoding satCP runs much faster
than clasp. It also demonstrates that, the propagators of global constraints from CSP
are more efficient than the aggregates from the logic programming framework. Finally, one
methodology for SAT(gc) is that one can always define a CSP constraint to solve part of a
given program, and in our implementation satCP such a user-defined CSP constraint can
be invoked like a global constraint.

7.3.5 Decomposed SAT(gc) encoding

In this encoding of magic square, we encode the normal magic square problem in SAT(gc) by
decomposing the magic square constraint (described in the previous subsection) into CNF
clauses and global constraints. To encode the constraint that, “all the numbers in the square
must be distinct”, we use CNF encoding. And to encode the constraints that “the total
sum across a column, row or diagonal must be equal to the magic sum”, we use the sum
global constraints, i.e., to encode each of the sum constraints for each of the rows, columns
and diagonals we use a sum global constraint.

Like the monolithic SAT(gc) encoding, the decomposed SAT(gc) encoding of the normal
magic square problem of order n requires n4 propositional variable, where a variable pijk
means that, the number k is assigned in to the cell (i, j), with 1 ≤ i, j ≤ n and 1 ≤ k ≤ n2.

The decomposed SAT(gc) encoding contains both CNF clauses and global constraints,
as follows:

• No number is repeated in any two cells of the square:

n∧
i=1

n∧
j=1

n2∧
k=1

n2∧
l=k+1

(¬pijk ∨ ¬pijl)

• The sum of the numbers in any row equals the magic sum M :

n∧
r=1

sum(xr1, xr2, . . . , xrn,M),

where Dom(xr1) = Dom(xr2) = · · · = Dom(xrn) = {1, . . . , n2}. The assignment
xrj = k asserts that, in order to satisfy the sum constraint across row r the number
k must be placed on jth column of the rth row of the square.

2http://www.cse.ust.hk/fasp/

55

• The sum of the numbers in any column equals the magic sum M :

n∧
c=1

sum(x1c, x2c, . . . xnc,M)

where Dom(x1c) = Dom(x2c) = · · · = Dom(xnc) = {1, . . . , n2}. The assignment
xic = k asserts that, in order to satisfy the sum constraint across column c the
number k must be placed on cth column of the ith row of the square.

• The sum of the numbers in the left to right diagonal equals the magic sum M :

sum(
n∪
r=1

n∪
s=1

xrs,M)

where r = s and Dom(xrs) = {1, . . . , n2}. The assignment xrs = k asserts that, in
order to satisfy the sum constraint across left to right diagonal the number k must be
placed on sth column of the rth row of the square.

• The sum of the numbers in the right to left diagonal is equal to the magic sum M :

sum(
n∪
r=1

1∪
s=n

xrs,M)

where r = s and Dom(xrs) = {1, . . . , n2}. The assignment xrs = k asserts that, in
order to satisfy the sum constraint across right to left diagonal the number k must be
placed on sth column of the rth row of the square.

7.3.6 Experiments with decomposed encoding and analysis

satCP solved Πmagic of order 3 in 3.17 sec. But for Πmagic instances of higher order, it
failed to generate a solution within 15 minutes.

In the decomposed encoding of normal magic square, we have used separate sum global
constraints for modeling the sum constraints across each of the rows, columns and diagonals.
Thus, at the gecode end, we model each of these global constraints as separate CSPs. When
satCP executes on a decomposed magic square instance, these global constraints are put
into separate constraint stores and are treated as independent and unrelated constraints.
But, notice that these sum global constraints are related, as they are sharing CSP variables
with each other. Assigning a CSP variable x to a value by any of the global constraints
effects all CSP variables of the global constraints those have x on their scope. Though
we are performing DP operation, after an assignment on a CSP variable x is made by a
global constraint, the propagator for other related global constraint (those have x on their
scope) are not getting notified of that assignment, as the sum global constraints are put on
different constraint store. Therefore, the result of DP operation cannot be propagated to
other related CSP variables.

Figure 7.5: Dependency of variables in magic square problem

56

For the decomposed encoding, sumr1(x11, x12, x13) is related with sumc1(x11, x21, x31),
sumc2(x12, x22, x32), sumc3(x13, x23, x33), sumdiaglr (x11, x22, x33) and sumdiagrl(x13, x22, x31)
as sumr1(x11, x12, x13) is sharing exactly one CSP variable with each of them. The red area
in Figure 7.5 shows which variables are effected when x11 is assigned to a value by sumr1.
During the execution of satCP on this decomposed magic square instance, when x11 is as-
signed to a value by sumr1, that assignment is only propagated on Dom(x12) and Dom(x13)
(by the propagator of sumr1). This assignment of x11 cannot be propagated on Dom(x22)
and Dom(x33), Dom(x21) and Dom(x31), because the propagators for sumdiaglr and sumc1

are not notified about this assignment of x11 as they locate on different constraint stores.
The effect of putting related global constraints and variables in separate global constraint

is drastic. The invocation to gecode for solving a sum constraint returns solution without
propagating the solution into other constraint stores, where the related sum constraints are
stored. It results in an exponential number of enumerations of CSP solutions via a series
of backtracking between the related global constraints. The problem of solving the normal
magic square problem with decomposed encoding becomes the problem of enumerating
solutions of global constraints. For example, the magic square of order 3 is solved after 711
enumerations of solutions of the 8 sum global constraints. With the increment of the problem
size, the number of enumerations also increases exponentially. Aside this, as the problem
size grows, more time is needed to search for an alternative solution for a global constraint.
For these reasons, our prototype implementation of SAT(gc) provides no solution within
a reasonable amount of time for the decomposed SAT(gc) encoding for the orders greater
than 3.

7.4 Planning by SAT Solvers

SAT solvers can be used to solve the planning problem competitively. Usually domain
independent planning is specified in a special language, called STRIPS [43]. A STRIPS
problem specification includes a statement of the initial condition, possible actions and
goals to achieve. The actions are specified in terms of their preconditions and effects. Before
solving a planning problem specified in STRIPS using a SAT solver, a STRIPS specification
is converted into an equivalent SAT instance. If the equivalent SAT planning instance is
satisfiable, then the specified goal state can be reached from the initial state, by performing
a series of actions. The automated planning community has developed a few SAT based
planners, among which the most well-known SAT-based planner is SatPlan [22], which takes
a STRIPS problem specification, converts it to a SAT formula, determines the satisfiability
and extracts the plan from a propositional variable assignment. In our experiments, we
have used SatPlan to obtain the converted SAT formulas from the STRIPS specifications
of selected planning problems.

SatPlan encodes the planning problem by generating a planning graph. The planning
graph is a layered graph3 in which the layers of vertices form an alternating sequence of
literals and operators:

(L1, O1, L2, O2, L3, O3, . . . , Lk, Ok, Lk+1)

The edges are defined as follows. To each operator oi ∈ Oi, a directed edge is made from
each li ∈ Li that is a precondition of oi. To each literal li ∈ Li, an edge is made from each
operator oi−1 ∈ Oi−1 that has li as an effect [24].

The planning graph generated by SatPlan contains all the goal literals at the kth layer
(highest layer). SatPlan then generates clauses that asserts the following facts [22]:

• Goal state at layer k and initial state at layer 0.

3A layered graph is a graph that has its vertices partitioned into a sequence of layers, and its edges are
only permitted to connect vertices between successive layers

57

• If a fluent holds at layer k, the disjunction of actions that have that fluent as an effect
hold at layer k − 1.

• Actions at each level imply their preconditions.

• Actions with conflicting effects or preconditions are mutually exclusive and encoded
as negative binary clauses.

• Fluents that are inferred to be mutually exclusive are encoded as negative binary
clauses.

7.5 Ferry Planning with Numerical Constraints

In this section, we will describe how we have solved the ferry planning problem with numer-
ical constraints in satCP, followed by some experimental results.

7.5.1 Problem specification

The original ferry planning problem can be described as the follows:

There are a number of cargoes and a ferry, each at a location at the beginning.
The ferry can transport one cargo at a time. The goal is to transport all cargoes
to their destinations.

Our prototype system of SAT(gc) can be used to solve an enhanced version of the ferry
planning problem with numerical constraints, which would present a challenge to the state-
of-the-art SAT-based planners such as SatPlan. For example, for the ferry problem specified
above, we can enhance the usability of the ferry, by making it capable of transporting
multiple cargoes at the same time, with the consideration of their weights and volumes and
the weight and volume carrying capacity of the ferry. In this thesis, to demonstrate the
usability of SAT(gc), we choose to deal with a simple ferry planning problem, as follows:

There are n cargoes and a ferry at an initial location. The ferry can transport
multiple cargoes at the same time, but the number of cargoes it can transport is
limited to its weight and volume carrying capacity. The goal is to transport all
the cargoes to their destinations, by taking a group of cargoes, whose weight and
volume does not exceed the weight and volume carrying capacity of the ferry, at
each turn of the ferry.

To further simplify the problem, we assume the destinations are unique. It is clear that
the ability to solve this problem by a SAT-based planner can be extended to the general
case of planning with multiple original locations for cargoes and the ferry and different
destinations of cargoes.

58

(define (problem FERRY PROBLEM)
(:domain FERRY3)
(:objects C1, C2, C3, LOC1, LOC2)
(:INIT (CARGO C1) (CARGO C2) (CARGO C3) (LOCATION LOC1)
(LOCATION LOC2) (FERRY-AT LOC1) (ORIGIN C1 LOC1)
(ORIGIN C2 LOC1) (ORIGIN C3 LOC1) (DESTINATION C1 LOC2)
(NEXT-TO LOC1 LOC2) (DESTINATION C2 LOC2)
(DESTINATION C3 LOC2))
(:goal (AND (SERVED C1) (SERVED C2) (SERVED C3)
(FERRY-AT LOC1))))

(:action board
:parameters (?loc-source ?c)
:precondition(and (location ?loc-source) (cargo ?c) (ferry-at ?loc-source)

(origin ?c ?loc-source))
:effect(and

(boarded ?c)
(in-ferry ?c ?loc-source)))

(:action unboard
:parameters (?loc-destination ?c)
:precondition (and (location ?loc-destination) (cargo ?c)
(destination ?c ?loc-destination) (boarded ?c) (ferry-at ?loc-destination))
:effect (and

(served ?c)
(not (boarded ?c))
(not (in-ferry ?c ?loc-destination))))

(:action move-to
:parameters (?x ?y)
:precondition (and (location ?x) (location ?y) (next-to ?x ?y) (ferry-at ?x))
:effect(and

(ferry-at ?y)
(not (ferry-at ?x))))

(:action move-back
:parameters (?x ?y)
:precondition (and (location ?x) (location ?y) (next-to ?y ?x) (ferry-at ?x))
:effect(and

(ferry-at ?y)
(not (ferry-at ?x)))))

Table 7.7: STRIPS specification for the ferry problem.

We use a monolithic numerical constraint (composed of three sets of sum global con-
straints depicted in Table 7.8) to create the groups of the cargoes to be transported for
each turn of the ferry. The solution of this monolithic constraint directs the planning by
determining which group of cargoes to be transported in which turn. The details of the
encoding are discussed in the next subsection.

7.5.2 Encoding in SAT(gc)

To encode the ferry planning problem with numerical constraints in SAT(gc), first we gen-
erate a CNF problem instance which is encoded from a STRIPS specification such as the
one described in Table 7.7.

For a STRIPS specification such as the one described in Table 7.7, SatPlan generates
a CNF problem instance which states that, the ferry boards all the cargoes available at

59

the source location, moves to the destination location and unboards all the cargoes and
then moves back to the source location. As we intend to give ferry the ability to generate
a plan based on the weights and volumes of the cargoes and enables the ferry to make
multiple moves between source and destinations, we need to extend this SAT instance. We
use the phrase a turn to describe each movement of ferry between the source location and
destination location. So, in each turn the ferry transports a subset of cargoes from the set of
n cargoes, which satisfies the weight and volume constraints. To make a SAT(gc) instance
with numerical constraints from this SAT instance, we apply the following steps:

• A group of cargoes are transported in a turn of the ferry. In the SAT instance (such
as those, which generated from STRIPS of Table 7.7), we only encode one turn of
the ferry. If there are m groups of cargoes, then that SAT instance is required to be
replicated m times (where each of the replicated part serves as one group of cargoes).
We extend that SAT instance by replicating it n − 1 times. Extending that SAT
instance by replicating it n− 1 times guarantees that, all of the cargoes are served for
all possible number of groups. Of course, this assumes that each single cargo fits the
ferry.

• The grouping of cargoes for each turn is encoded by a monolithic constraint

group(x11, x21 . . . xn1 . . . xij . . . xnn)

where Dom(xij) = {0, 1}. The assignment xij = 1 asserts that the cargo i is served
at turn j and the assignment xij = 0 asserts that the cargo i is not served at turn j.

We introduce n2 propositional variables to form the value variables4 which correspond
to the domain values of these CSP variables. Let us write these value variables by rij
(where 1 ≤ i, j ≤ n). We assign rij to true when xij is assigned to value 1 and assign
rij to false when xij is assigned to 0.

• In the jth part of the extended CNF instance, we add ¬rij to the clause which contains
the unboarding literal for ith cargo at jth turn. We also add another clause rij ¬uij
(uij represents the unboarding of the ith cargo at the goal layer of the jth turn) to
disable the generation of plan for serving ith cargo at the jth turn, in the case when
solution to group contains the assignment xij = 0.

• The gecode implementation of this monolithic constraint group is described in Table
7.8. Three different sets of sum global constraints are used. The first set models the
weight capacity constraint, the second set models the volume capacity constraints and
the third set models the constraint that one cargo is served exactly once. Wf and Vf
denote the maximum weight and volume respectively that the ferry can carry in one
turn. weights and volumes are two arrays which hold the weights and volumes of the
cargoes c1, c2 . . . , cn−1, cn respectively.

The solution of this monolithic constraint makes groups of cargoes, where each group
i is taken at each turn (by the ith part of the extension).

4Note that the total number of domain values in the CSP variables x11 . . . xij . . . xnn are 2n2. But as
the domains are binary, we can represent each of these domain values by using one propositional variable.

60

group constraint gecode implementation
(Constraining weights for each turn)
sum(x11, . . . , xn1, weights,Wf)
sum(x12, . . . , xn2, weights,Wf)

...
sum(x1n, . . . , xnn, weights,Wf)

group(x11, . . . , xij , . . . xnn) 0 ———————————-
(Constraining volumes for each turn)

sum(x11, . . . , xn1, volumes, Vf)
sum(x12, . . . , xn2, volumes, Vf)

...
sum(x1n, . . . , xnn, volumes, Vf)

———————————-
(Constraining that one cargo is served exactly once)

sum(x11, . . . , x1n, 1)
sum(x12, . . . , x2n, 1)

...
sum(xn1, . . . , xnn, 1)

Table 7.8: gecode model for grouping cargoes.

7.5.3 Solving ferry planning with numerical constraints

At the very beginning, gc heuristic chooses the the literal corresponding to the monolithic
constraint group. gecode is invoked to solve the group constraint. As the solution of group
is returned, if xij is assigned to 1 (the ith cargo is served in the jth turn), then it creates
an implication rij and by the assignment of rij to 1 (Figure 7.6), the unboarding clause for
the ith cargo at the jth turn becomes a unit clause.

Figure 7.6: Determination of the plan for serving ith cargo in jth turn

At this point, the planning for serving ith cargo at jth turn is generated by the chaining of
actions (via unit propagation) from the current layer back to the initial layer. The selection
of the ith cargo at this jth turn is propagated back up to the initial layer for the jth turn. As
shown in Figure 7.6, at the goal layer of the jth turn, the unboarding literal uij is assigned
to true. This creates unit propagation and as a result, at the middle layer, move-to action
literal, mij , is assigned to true (as the clause becomes unit), which enables the move-to
action for cargo i at turn j. And during the BCP of mij at the initial layer of turn j,
boarding action literal bij is assigned to true. This assignment of bij enables the boarding
events of the ith cargo at the jth turn.

61

In case xij is assigned 0 (ith cargo is not served in jth turn), rij is assigned to false. By
the last clause depicted in Figure 7.6, this assignment of rij prohibits the generation of the
plan to serve the ith cargo at the jth turn.

In this way, a plan for serving the cargoes is generated.

7.5.4 Experimental results

We have run three instances with different numbers of cargoes for this ferry planning problem
in satCP. We are able to solve those problems under 0.05 seconds. The results are shown
in Table 7.9.

n weights volumes Wf Vf served cargoes time
(w1, w2 . . . wn) (v1, v2 . . . vn) (by turn) (in sec)

3 (23,45,18) (150,180,100) 50 250 turn1:c1,c3 0.01
turn2:c2
turn3:

6 (23,45,53, (150,180,120, 100 400 turn1:c1,c2 0.03
51,53,18) 200,190,200) turn2:c3,c6

turn3:c4
turn4:c5
turn5:
turn6:

9 (12,25,16, (150,180,120, 100 600 turn1:c1,c2,c3,c4 0.04
15,18,25, 100,190,170, turn2:c5,c6,c7
25,12,36) 160,150,140) turn3:c8,c9

turn4:
turn5:
turn6:
turn7:
turn8:
turn9:

Table 7.9: Experiments with the ferry problem.

7.6 Planning of Block Stacking with Numerical Con-
straints

The planning problem of block stacking with numerical constraints can be described as
follows:

In a table, there are n (n > 1) stacks of blocks, each having mi number of blocks,
where 1 ≤ i ≤ n. Let blockij be the jth (1 ≤ j ≤ mi) block of ith (1 ≤ i ≤ n)
stack. In the initial configuration in every stack i the first block blocki1 is placed
on the table. If mi > 1, then blockij is placed on blocki(j−1). Every block blockij
has a weight wij . We have to generate a plan of actions for building a new stack
of blocks by taking exactly one block from each of the initial n stacks in such a
way that

• The total weight of the selected blocks should be equal to a certain to-
tal weight Wmax. That is, if block j1, j2 . . . jn are selected respectively
from stacks 1, 2 . . . n, then w1j1 + w2j2 + · · · + wiji + · · · + wnjn = Wmax

(Constraint1).

• Block selected from the ith stack must be placed over block selected from
the (i− 1)th stack (Constraint2).

62

Figure 7.7: Example of block stacking with numerical constraint.

Figure 7.7 shows an example of block stacking with 3 stacks. The left side of the arrow
depicts the initial configuration of the stacks. In stack1, block B is placed on block A, in
stack2, block D is placed on block C and in stack3, block F is placed on block E. Suppose
the weights of blocks A, B , C, D, E and F are wA (5 kg), wB (4 kg), wC (3 kg), wD (6 kg),
wE (7 kg) and wF (3 kg) respectively. Wmax is 15 kg. This planning problem requires to
provide a solution in such a way that blocks selected form stack1, stack2 and stack3 must
be equal to 15kg (Wmax). By this constraint, three blocks A, C and E are selected from
stack1, stack2 and stack3, respectively, as wA+wC +wE = (5+3+7)kg = 15kg (satisfying
constraint 1) and E (from stack3) is placed over C (from stack2) and C is placed over A
(from stack1) (satisfying constraint 2).

7.6.1 Encoding in SAT(gc)

There are two different parts involved in solving this block stacking planning problem with
numerical constraints. First, we need to determine which blocks to select to form the goal
stack by solving the weight constraint. Then we need to gather these selected blocks and
make the goal stack in such a way that block ji is placed on block j(i−1). To encode such a
problem in SAT(gc),

1. we first need to generate the action-based CNF problem instance from a STRIPS
specification as given in Table 7.10.

In the action based CNF encoding of planning problem of block stacking such as the
one generated from STRIPS specification in Table 7.10, actions are encoded as Boolean
variables. For each action a and layer l, we have a Boolean variable al representing
that action a is enabled at the layer l. Every al has a corresponding not literal. The
literal not al represents that action a is not enabled at layer l. Two ideas are central
to this encoding:

• If the action a is enabled at the layer l, then the other actions which generate the
preconditions of action a, must be enabled in the layers l′ < l. If action a needs
to be enabled for achieving the goal state, then action a must be enabled in any
of the layers. For a given layer l, all the necessary actions to enable action a at
the layer l is chained from layer l− 1 to the layer initial layer by using the literal
al.

• If the action a needs to be enabled to reach the goal state and it cannot be
enabled at the layer l, then action a must be enabled in any other layers l′ < l.
This requirement is encoded from layer l to the initial layer by using not al via
chaining.

63

(define (problem block-stacking)
(:domain BLOCKS)
(:objects A B C D E F)
(:INIT (ON B A) (ON D C) (ON F E) (ONTABLE A) (ONTABLE C) (ONTABLE E)

(CLEAR B) (CLEAR D) (CLEAR F) (HANDEMPTY))
(:goal (AND (ON C A) (ON E C) (CLEAR E) (ONTABLE A))))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect
(and (not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect
(and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect
(and (holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y)))))

Table 7.10: STRIPS specification for block stacking.

To illustrate how to encode the above two requirements, we assume a part of the initial
state and a part of the goal state of a planning problem of block stacking. In the initial
configuration, at the top of i′th stack, suppose blocki′j′ is placed on blocki′j′′ and at
the top of ith stack, blockij is placed on the blockij0 . In the goal state, as part of the
goal stack, blocki′j′ is placed on blockij , where i

′ = i+1. Let ST lij i′j′ represent “stack

the block blocki′j′ on blockij at layer l”, and U
l
i′j′′ i′j′ represent that “unstack blocki′j′ ,

which resides on blocki′j′′ at layer l”. To assert the goal that,“blocki′j′ is placed on
blockij”, the CNF encoding has the following clauses:

64

(a) Stacking of blocki′j′ on blockij at the goal layer or any of the previous layers.

ST l goalij i′j′ ∨ not ST
l goal
ij i′j′

¬not ST l goalij i′j′ ∨ ST
l goal−1
ij i′j′ ∨ not ST l goal−1

ij i′j′

¬not ST l goal−1
ij i′j′ ∨ ST l goal−2

ij i′j′ ∨ not ST l goal−2
ij i′j′

...

¬not ST 2
ij i′j′ ∨ ST 1

ij i′j′

(b) If the j′th block from the i′th stack is stacked in the jth block from the ith stack
at the layer l, then it must be unstacked from i′th stack at any of the previous
layer.

¬ST lij i′j′ ∨ U l−1
i′j′′ i′j′ ∨ not U

l−1
i′j′′ i′j′

¬not U l−1
i′j′′ i′j′ ∨ U

l−2
i′j′′ i′j′ ∨ not U

l−2
i′j′′ i′j′

...

(c) If blocki′j′ is stacked on blockij at the layer l, then it is not stacked in any of the
previous layers.

¬ST lij i′j′ ∨ ¬not ST lij i′j′

The above set of clauses pertains to blocki′j′ . The full CNF encoding has similar
clauses for each of the blocks which form the goal stack. In the above encoding other
actions (like pick-up and put-down) are not shown, but they are chained in similar
manner.

2. After generating the SAT instance as above, we need to introduce a sum global con-
straint into it. The question of which block ji to select from the ith stack to build
the goal stack is determined by the solution of the sum global constraint. So, the
solution of the global constraint is used to determine the part of the initial condition
and which, in turn, determines the goal state. The sum global constraint is modeled
as follows:

sum(stack1, stack2, . . . , stackn,Wmax)

where weights stack1, stack2, . . . , stackn are the CSP variables and Dom(stacki) =
{wi1, wi2, . . . wij , . . . wimi}. The assignment stacki = wij asserts that the jth block
form the ith stack is selected for building the goal stack. We also introduce n∗m (where

m =

n∧
i=1

mi) propositional variables, which are the value variables corresponding to

the domain values of stacki. We define V al V ar(stacki) = {ri1, ri2, . . . rij , . . . rimi}.
In the CSP solution of the sum global constraint, if stacki is assigned to wij , then rij
is assigned to true, otherwise rij is assigned to false.

3. These value variables are introduced to the SAT instance, in order to associate the
selection literals with stacking action literals (to achieve the goal stack) at the goal
layer of that CNF encoding. For every pair of blocks, blockij and blocki′j′ (where
i′ = i+ 1), we add

¬rij ∨ ¬ri′j′
to stacking action (goal action) clauses (at goal layer) as follows: action of the j′th
block from i′th stack into jth blocks of ith stack

(i) ¬rij ∨ ¬ri′j′ ∨ ST l goalij i′j′ ∨ not ST
l goal
ij i′j′

65

Clause set (i) ensures that if blockij and blocki′j′ are selected, then blocki′j′ is stacked
on blockij at the goal layer or any of the previous layers.

In addition, we must ensure that no blocks, which are not selected by the sum con-
straint, are placed in the goal stack. If the block block1j (where j > 1) is selected from
stack1, block1j has at least one block placed under block1j which is not selected. We
must exclude all the blocks that are placed under block1j from being a part of the goal
stack. To do this, we need to add some more clauses. We add the following clauses
for each of the blocks block1j (j > 1) as follows:

(ii) − r1j ∨ PDl goal−1
1j ∨ · · · ∨ PD1

1j

where PDl
1j represents that block1j is put on the table at layer l. Clause set (ii)

ensures that, if block1j is selected for the building the goal stack, which is not currently
residing on the table (i.e residing on other block), it must be unstacked from stack1
and put-down on the table.

This encoding ensures that, whenever j′th block of i′th stack and jth block of ith stack
satisfies the sum constraint, a plan for putting blocki′j′ on blockij (where i

′ = i+1) to form
the goal stack is generated.

In the following subsection, we will describe the solving process of this planning problem
of block stacking by assuming the example shown in Figure 7.7.

7.6.2 Solving block stacking with numerical constraints

To solve the planning problem of block stacking shown in Figure 7.7 by satCP, first we
need to generate a SAT instance of the STRIPS specification shown on Table 7.10. This
SAT planning instance is converted into a SAT(gc) planning instance by introducing the
global constraint

sum(stack1, stack2, stack3,Wmax)

where

Dom(stack1) = {wA, wB}, Dom(stack2) = {wC , wD}, Dom(stack3) = {wE , wF }.

Let

V al V ar(stack1) = {rA, rB}, Dom(stack2) = {rC , rD}, Dom(stack3) = {rE , rF }

where rA corresponds to wA, rB corresponds to wB , and so on.
In this SAT(gc) planning instance the solution of this sum global constraint determines

which blocks must be taken from each of the stacks to build the goal stack. So, as described
in the previous section in the goal layer of the SAT(gc) instance, we have (now each line
represents the disjunction of the literals appearing in it)

(c1) ¬rE ¬rC ST l goalC E not ST l goalC E

(c2) ¬rE ¬rD ST l goalD E not ST l goalD E

(c3) ¬rF ¬rC STl goal
C F not STl goal

C F

(c4) ¬rF ¬rD ST l goalD F not ST l goalD F

(c5) ¬rC ¬rA STl goal
A C not STl goal

A C

(c6) ¬rC ¬rB ST l goalB C not ST l goalD E

(c7) ¬rD ¬rA ST l goalA D not ST l goalA D

(c8) ¬rD ¬rB ST l goalB D not ST l goalB D

and

(c9) ¬rB PDl goal
B . . . PD1

B

66

By gc heuristic, satCP first chooses the sum global constraint and as a result gecode is
invoked. Suppose the invocation returns the following CSP solution:

stack1 = wA, stack2 = wC , stack3 = wF

satCP then assigns rA, rC and rF to be true. It also applies the CA operation. After
applying the CA operation, among all these 9 clauses only (c3) and (c5) (both in boldface)
remain unsatisfied. All the other clauses are satisfied and stacking action literals for the
blocks on those clause are not assigned. So, these blocks will not be the part of the goal
stack.

As (c3) remains unsatisfied, one of ST l goalC F and not ST l goalC F will later be assigned.

Similarly, as (c5) remains unsatisfied, one of ST l goalA C and not ST l goalA C will be assigned.
These assignments create other required action literal assignments at the other layers and
the plan for building the goal stack with F, C and A is generated.

7.6.3 Results

We have solved three instances with different number of blocks and stacks for the planning
problem of block stacking with numerical constraint by the SAT(gc) prototype. We solve
those problems under 0.30 seconds. The result is shown in Table 7.11.

Stacks Blocks Initial Weights Wmax Goal Time
/Stack Configuration Stack (sec)

2 2 stack1:(ON B A) wA = 4, wB = 5 10 (ON C B) 0.03
stack2:(ON D C) wC = 5, wD = 7

2 3 stack1:(ON B A) wA = 5, wB = 6 11 (ON E B) 0.18
(ON C B) wC = 7, wD = 3

stack2:(ON E D) wE = 5, wF = 8
(ON F E)

3 2 stack1:(ON B A) wA = 3, wB = 4 7 (ON E C) 0.29
stack2:(ON D C) wC = 2, wD = 4 (ON C A)
stack3:(ON F E) wE = 5, wF = 2

Table 7.11: Experiments with block stacking with numerical constraints.

67

Chapter 8

Summary and Future Work

8.1 Summary

In this thesis, we have devised an algorithm for the framework SAT(gc), which incorporates
CSP style constraint solving into SAT solving, by integrating a DPLL based SAT solver
and a generic constraint solver. We also have provided argument on the correctness of the
algorithm. To demonstrate the feasibility of the SAT(gc) framework we have implemented
a prototype system of SAT(gc), namely satCP. We also have performed some experiments
with four benchmarks problems on satCP.

The SAT(gc) framework allows part of a SAT problem to be encoded in terms of global
constraints. The generic constraint solver is used as a black box by the SAT solving engine
to obtain solutions of global constraints when needed. The returned CSP solutions are con-
verted into their corresponding Boolean literals, and these literals are used in the searching
process of the SAT solving engine to determine satisfiability. In case of a conflict generated
by the solution of a global constraint or by a failed global constraint, the framework handles
those conflicts properly.

The SAT(gc) framework is closely related with the SMT framework. We have identi-
fied some similarities and dissimilarities between them. While problem representation is
quite similar in both frameworks, the manners in which deduction and conflict analysis are
performed are quite different.

To develop satCP, we have integrated zchaff, as the DPLL based SAT solving engine
and gecode, as the generic constraint solver. In satCP, we have introduced a heuristic,
named gc heuristic, which puts highest priority on the gc-variables for making decisions.

We have performed experiments on satCP with four benchmark problems. Two of the
benchmarks, Latin Square Problem and Magic Square Problem, are taken from the puzzle
problem domain. Rest of the two, ferry planning problem with numerical constraint and
block stacking planning problem with numerical constraint, are taken from the planning
domain.

We have achieved better efficiency from satCP over zchaff for the Latin Square Prob-
lem, as part of the problem is encoded compactly with allDiff global constraints which
have specialized and efficient propagators implemented in gecode. While we attempted to
solve the Magic Square Problem, we have obtained an important insight about the drastic
consequence of decomposing large constraints into pieces and putting them into separate
constraint stores, in which case constraint propagation is not effective for global constraints
that share CSP variables. As a result, though we solved the magic square of order 3, we
failed to solve larger instances of magic square problem in a reasonable amount of time. Our
attempt to solve this problem in SAT(gc) demonstrates that we can incorporate numerical
constraints, such as sum in SAT solving, which has no direct encoding in Boolean logic.

SAT solvers are competitive in solving the planning problem. But for the planning
problems that require numerical constraints, the SAT solving is not the best choice. The

68

SAT(gc) framework is able to solve this type of problems easily. We have designed two new
planning problems with numerical constraints, namely the ferry Planning problem with
numerical constraints and block stacking planning problem with numerical constraints. We
have solved this two new problems using satCP . This demonstrates the usability of the
SAT(gc) framework to solve new type of problems, which require both SAT and CSP style
problem representation, in order to get solved efficiently.

8.2 Future Work

In this thesis, the conflict analysis involving gc-variables is conservative, in the sense that
whenever a conflict analysis occurs due to a gc-variable basically chronological backtracking
is performed without learning. In this connection, an interesting question arises as how
non-chronological backtracking with learning can be performed for the conflicts involving
gc-variables.

The problem with the decomposed magic square problem raises another interesting point
in regards to implementation. A more rigorous and successful implementation can be done
by modifying a constraint solver, which will enable constraint propagation between separate
constraint stores. In satCP, for getting the ith alternative solution for a failed gc-variable,
we need to generate i−1 alternative solutions from the search engine created in the local
scope. This is clearly undesirable as the same work is repeated carried out. This is a
major weakness of the current implementation of satCP. To avoid this, it appears that
the constraint solver needs to be modified so that the search engines that are created at the
beginning of the execution of satCP (at global scope) for each of the global constraints,
can be utilized for the failed gc-variables.

Another interesting point worthy of an investigation is potential applications. That is,
what type of industrial benchmarks can be devised for the SAT(gc) framework so that the
full power of SAT(gc) can be utilized. A possible direction is to design benchmarks which
subsume planning and scheduling (with numerical constraints) at the same time.

69

Bibliography

[1] SMT-COMP’06: 2nd satisfiability modulo theories competition, 2006.
http://www.csl.sri.com/users/demoura/smt-comp/.

[2] Global constraint catalog, 2011. http://www.emn.fr/z-info/sdemasse/gccat/.

[3] K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[4] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2006.

[5] F. Benhamou, N. Jussien, and B. O Sullivan. Trends in Constraint Programming. ISTE
Ltd, 2007.

[6] Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, and
Toby Walsh. Propagating conjunctions of alldifferent constraints. In Proc. AAAI’10,
2010.

[7] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and constraint
programming: A comparative survey. ACM Computing Surveys, 38(4), 2006.

[8] M. Buro and H. Kleine-Buning. Report on a sat competition. Technical Report Tech-
nical Report, University of Paderborn, 1992.

[9] DIMACS center. Satisfiability suggested format, 1993. http://personnel.univ-
reunion.fr/fred/Enseignement/CalculComplex/SAT/DIMACS.pdf.

[10] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Transac-
tions on Computer-Aided Design of Intergrated Circuits and Systems, 24(3):305–317,
2005.

[11] M. Davis and H. Putnam. A computing procedure for quantification theory. J. Assoc.
Computing Machinery, 7(3):201–215, 1960.

[12] L. de Moura and H. Ruess. An experimental evaluation of ground decision procedures.
In Proc. CAV’04, LNCS 3114. Springer, 2004.

[13] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[14] J.W. Freeman. Improvements to propositional patisfiability search Algorithm. PhD
thesis, Department of Computer and Information Science, University of Pennsylvania,
1995.

[15] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Proc. of
the 25th International Conference on Logic Programming, pages 235–249, 2009.

[16] M. Gelfond. Answer sets. In Handbook of Knowledge Representation. Elsevier, 2008.

[17] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. ICLP, pages 1070–1080, 1988.

70

[18] E. Goldberg and Y. Novikov. BerkMin – a fast and robust SAT solver. In Design
Automation and Test in Europe (DATE2002), pages 142–149, 2002.

[19] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2:225–231, 1973.

[20] G. Hou. Relating constraint propagation techniques in CSP with Answer Set Program-
ming. Master’s thesis, University of Alberta, 2004.

[21] R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals of
Mathematics and Artificial Intelligence, 1:167–187, 1990.

[22] H. Kautz, B. Selman, and J. Homann. SatPlan: Planning as satisfiability. In Abstracts
of the 5th International Planning Competition, 2006.

[23] D. B. Kemp and J. S. Peter. Semantics of logic programs with aggregates. In Logic
Programming, Proceedings of the 1991 International Symposium, pages 387–404, 1991.

[24] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[25] G. Liu and J. You. Lparse programs revisited: semantics and representation of aggre-
gates. In Proc. ICLP’08, pages 347–361, 2008.

[26] A. Lońpez-Ortiz, C-G. Quimper, J. Tromp, and P. van Beek. A fast and simple algo-
rithm for bounds consistency of the alldifferent constraint. In Proc. IJCAI ’03, pages
245–250, 2003.

[27] I. Lynce. Propositional Satisfiability: Techniques, Algorithms and Applications. PhD
thesis, Instituto Superior Tcnico, Universidade Tcnica de Lisboa, 2005.

[28] M. Logman M. Davis and D. Loveland. A machine program for theorem proving.
CACM, 5:394–397, 1962.

[29] S. Malik. The quest for efficient sat solvers. Distinguished Lecture Series, The
Gaschnig/Oakley Memorial Lecture, 2004.

[30] S. Malik and L. Zhang. zChaff: a state of the art SAT solver, 2011.
http://www.princeton.edu/~chaff/zchaff.htm.

[31] J. Marques-Silva. The impact of branching heuristics in propositional satisfiabilityal-
gorithms. In Proc. 9th Portuguese Conference on Artificial Intelligence, 1999.

[32] J. Marques-Silva. Practical applications of boolean satisfiability. In Proc. 9th Interna-
tional Workshop on Discrete Event Systems, pages 74–80, 2008.

[33] J. Marques-Silva and K.A. Sakallah. GRASP – a new search algorithm for satisfiability.
In Proc. IEEE International Conference on Tools with Artificial Intelligence, pages 220–
227, 1996.

[34] K. Marriott and P. Stuckey. Programming with Constraints. MIT Press, 1998.

[35] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In Proc. 38th Annual Design Automation Conference, pages
530–535, 2001.

[36] M. Nielsen. Parallel search in gecode. Master’s thesis, KTH Royal Institute of Tech-
nology, 2006.

[37] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
from an abstract davis-putnam-logemann-loveland procedure to dpll(t). Journal of the
ACM, 53(6):937–977, 2006.

71

[38] N. Pelov. Semantics of Logic Programs with Aggregates. PhD thesis, Ketholieke Uni-
versiteit Leuven, 2004.

[39] P. Prosser. Hybrid algorithm for the constraint satisfaction problem. Computational
Intelligence, 9(3):268–299, 1993.

[40] J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proc. AAAI,
pages 362–367, 1994.

[41] F.S. Roberts. Center for discrete mathematics and theoretical computer science, 2011.
http://www.dimacs.rutgers.edu/.

[42] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., 2006.

[43] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2nd edition, 2003.

[44] C. Schulte, M. Lagerkvist, and G. Tack. Gecode : Generic constraint development
environment, 2011. http://www.gecode.org/.

[45] C. Schulte, G. Tack, and M. K. Lagerkvist. Modeling and Programming with Gecode.
2008.

[46] R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean
Modeling and Computation, 3:141–224, 2007.

[47] T.C. Son and E. Pontelli. A constructive semantic characterization of aggregates in
answer set programming. Theory and Practice of Logic Programming, 7:355–375, 2007.

[48] W.-J. van Hoeve and I. Katriel. Global constraints. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chapter 7. Elsevier, 2006.

[49] M. Wallace. Practical applications of constraint programming. Constraints, 1(1/2):139–
168, 1996.

[50] W. Yisong, J. You, F. Lin, L. Yuan, and M. Zhang. Weight constraint programs with
evaluable functions. Annals of Mathematics and Artificial Intelligence, 60(3-4):341–380,
2010.

[51] H. Zhang and M. Stickel. An efficient algorithm for unit-propagation. In Proc. Inter-
national Symposium on Artificial Intelligence and Mathematics, 1996.

[52] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in
a boolean satisfiability solver. In Proc. The 2001 IEEE/ACM international conference
on Computer-aided design, pages 279–285, 2001.

[53] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In Proc.
CAV’02, LNCS 2404, pages 17–36. Springer, 2002.

72

	Introduction
	Constraint Programming and Boolean Satisfiability
	Contributions
	Thesis Layout

	Boolean Satisfiability
	Application of SAT
	Boolean Satisfiability Solvers
	The basic DPLL framework
	Components of a DPLL SAT solver

	Constraint Programming
	CP in a Nutshell
	Types of Constraints in the CP Paradigm
	State of the Art CP Solver
	Variable and value ordering heuristics
	Constraint propagation
	Conflict analysis in CP

	SAT Modulo Theory
	Lazy SMT Approach
	Eager SMT Approach
	Issues in Lazy and Eager Approaches to SMT
	Issues in lazy approach
	Issue with the eager approach

	The SAT(gc)Framework
	Motivation
	Cross fertilization of SAT and CP
	Why global constraints
	Issues with SAT and CP
	Motivation in a nutshell

	The SAT(gc)Framework
	Language and notation
	A SAT(gc)solver
	Examples

	Correctness of SAT(gc)Solver
	SMT verses SAT(gc): A Comparison
	Constraint Answer Set Solving and SAT(gc): A Comparison

	Implementation of a Prototype of SAT(gc)
	ZCHAFF - A State of the Art SAT Solver
	GECODE - A State of the Art CSP Solver
	Problem modeling in gecode

	Integration of ZCHAFF and GECODE
	Preprocessing
	Decision
	Deduction
	Conflict analysis and backtracking

	GC-variables and Search Engines
	Creating models and search engines in satCP
	Searching for CSP solutions

	Experiments
	Encoding of SAT(gc)Formula
	SAT instance representation in zchaff
	Representation in SAT(gc)

	The Latin Square Problem
	Encoding of the Latin square problem in SAT(gc)
	Experimental results
	Solving Latin square of order three
	Performance analysis

	The Magic Square Problem
	Encoding of magic square in SAT(gc)
	Monolithic SAT(gc)encoding
	Experiments with monolithic encoding
	Comparison to SAT with weight constraints
	Decomposed SAT(gc)encoding
	Experiments with decomposed encoding and analysis

	Planning by SAT Solvers
	Ferry Planning with Numerical Constraints
	Problem specification
	Encoding in SAT(gc)
	Solving ferry planning with numerical constraints
	Experimental results

	Planning of Block Stacking with Numerical Constraints
	Encoding in SAT(gc)
	Solving block stacking with numerical constraints
	Results

	Summary and Future Work
	Summary
	Future Work

