Exploiting Glue Clauses to Design Effective CDCL

Branching Heuristics

Md Solimul Chowdhury Martin Miiller Jia-Huai You

Department of Computing Science, The University of Alberta.

October 1, 2019

© Introduction

© Empirical Observations

© Proposed Branching Heuristics
@ Empirical Evaluation

e Additional Experiments

@ Conclusions and Future Work

Introduction

@ In this work, | study Boolean Satisfiability (SAT)

o Given a Boolean formula, the task is to determine assignments of the
variables to satisfy that boolean formula, if one exists. Otherwise,
report unsatisfiability

@ SAT solving is NP-Complete — Intractable, in general.

@ Modern SAT solvers — Conflict Directed Clause Learning (CDCL)
Solvers.

e Applications in many domains: Hardware design verification,
Software testing, encryption, planning ..

Introduction

Two basic SAT operations: decision and propagation.
CDCL workflow:

o decide — propagate — decide — propagate
e decide — propagate — conflict

o conflict: a clause cannot be satisfied wrt. the current partial
assignment.

e conflict— conflict analysis — clause learning and back-jumping.

o Conflict Generation at a fast rate is crucial for CDCL SAT solvers.
e conflict— learned clause — space pruning.

@ A CDCL SAT solver learns clauses at a fast rate.

e May affect the overall speed of a solver.
o Learnt clause DB management is necessary — periodic reduction.

Introduction

@ One criterion for clause DB management is Literal Block Distance
(LBD) score of the learned clauses.

o Number of distinct decision levels in a learned clause.
@ The learned clause X has 4 decision levels: P, Q, R and S.

KRS

0 ENEE ENE 00 -— X

o Lower the better.

@ Glue Clause: Learned clauses with LBD score 2.
e are known to possess high pruning power.

@ In this work, we relate Glue clauses to branching decisions.
e At any given state of the search:

@ Glue Variable: a variable that appears in at least one glue clauses.
@ NonGlue Variable: never appears in any of the glue clauses.

Contributions

o Contribution I:
o We empirically show that
@ Decisions with glue variables are more conflict efficient.
o CDCL branching heuristics show a clear bias toward Glue variables.
o Contribution IlI:
o Developed a structure aware variable bumping scheme - Glue Bumping
(GB)
@ prioritizes selection of Glue variables
o Empirically evaluated the GB method on four state-of-the-art CDCL
SAT solvers.
o Contribution IlI:
o Have introduced the Glue to Learned (G2L) metric

o G2L: fraction of the learned clauses that are glue.
o consistently explain the performance of the GB method.

@ For a run of a solver with a given SAT formula
o Learning Rate (LR)

@ number of conflicts per decisions.
o Average LBD (aLBD)
o average LBD scores of the learned clauses derived from the generated
conflicts.
e Glue and NonGlue decisions
The branching decision that selects

@ a Glue variable is called a Glue decision.
@ a NonGlue variable is called a NonGlue decision.

Contribution I: Conflict Efficiency of Glue Variables

@ We study LR and aLBD over Glue and NonGlue decisions.

o For all the maintrack instances from SAT-2017 and 2018 (750).
e Using four state-of-the-art solvers:

o Glucose,
MaplePureLRB (MapleLRB),
MapleLCMDist (MLD, winner of SAT-2017) and
MapleLCMDistChronoBT (MLD_CBT, winner of SAT-2018).

@ For each run (time limit=5000s), we separately measure LR and
aLBD over Glue and NonGlue decisions.

19

Conflict Efficiency of Glue Variables (LR)

* Learning Rate (LR) with Glue Decisions
Learning Rate (LR) with NonGlue Decisions

1.4 1.4 1.4
77.7% 77.0% 85.60%
1.2 1.2 1.2

[
[

- = =
© = = B
a - o W}
v 0.8 - 2.8 2 0.8 1 L
x [= 3
[}
o = £ =
[S— 1
£o6 £ 0.6 206 E
— - g
5 = z _
0.4 0.4 0.4
0.2 0.2 0.2
of o (] = (1] -
[} 500 1000 0 500 1000 [500 1000 0 500 1000
Instances Instances Instances Instances

Conflict Efficiency of Glue Variables (aLBD)

+ alBD with Glue Decisions (Log Scale)
alLBD with NonGlue Decisions (Log Scale)

5 6 8 6 2
48.6% 81.9%
H 7
T
- [. .
o - 4 —_ [] w@
“w = 4- < 4
8 = 3 5 i UI
3 o - 4 o
0] L] = -
s £3 =4 1 = {
= £ a y £
o =y @3 a
- [=]
g 82 = H
[= 1
- 2
1 s 4
1 T 1
0.5, 1
0 o o o
1] 500 1000 1] 500 1000 '] 500 1000 L] 500 1000
Instances Instances Instances Instances

10/19

Biased Selection of Glue Variables

@ For a run with a given solver for a given instance F, we define

o Glue Percentage (GP): GP = % *100
(A) (B) _

Systems Average for Gllfe.Varlable

GP (B1)|Glue Decisions % (B2)

Glucose 25.32% 65.43%
MapleLRB | 21.8% 63.14%
MLD 22.05% 47.60%
MLD_CBT| 22.19% 48.76%

11/19

Contribution Il: The Glue Bumping (GB) method

@ How can we exploit this empirical characteristics of glue variables?

o Glue Bumping: which bumps the activity score of glue variables
e based on appearance count of a variable in glue clauses and its
current activity score.

@ Glue Level (gl):

o Let G be the set of learned glue clauses so far.
o gl(v) of a variable v is the appearance count of v in the glue clauses in

G.
Alg. 1: Increase Glue Level Alg. 2: Bump Glue Variable
Input: A newly learned glue clause 8 Input: A glue variable v
1 Fori+ 1to |6
2 v+ varAt(0,1) 1 bf, + activity(v) * (%)
3 gl(v) < gl(v)+ 1 2 activity(v) < activity(v) + bf,
4 End

12 /19

Delayed Bumping in GB

o GB delays the bumping of v until it is unassigned by backtracking.
o 0 is the latest learned clause and every variables are currently assigned.

o T =d° — d° > 0 be the decision window.

Less recent bf of v
[

Within T, possibilities are: F

A

Decision Window T = d* - d®

Changes
Bumping
Factor (bf)
forv

(I) learning of more glue clauses
(1) v involves in more conflicts

+ Glue Clause © (hosting v)
is learned.
v is assigned, at this state.

@ Hence, GB method delays the bumping until d°.

More recent bf of v

v is unassigned.

13/19

Empirical Evaluation

o Extended Glucose, MapleLRB, MLD and MLD_CBT with the GB.

@ Performed experiments (timeout=5000s) — Apple-to-Apple
comparison.

o 13 additional instances solved by both MapleLRB&” and MLD&®.

Svstems SAT Comp-2017 and 2018 |
: SAT |UNSAT| Total |PAR-2]
Glucose 180 191 7 4167

Glucose™ 182 (+2) 193 (+2)| 375 (+4) | 4141 |
MapleLRB 194 190 384 | 3966 |
MapleLRB” 204 (+10) 193 (+3) | 397 (+13) 3851
MLD 235 207 442 3442
MLD* 246 (+11) 209 (+2) 455 (+13) 3318
MLD_CBT | 238 215 453 | 3365
MLD_CBT?"| 240 (+2) | 215 (+0)| 455 (+2) | 3295

14/19

Solve Time Comparison

==Glucose®® — Glucose

==MapleLRB®" — MapleLRB
MLD®® — MLD

==MLD CBT®" — MLD CBT

Instances Difference

1000 2000 3000 4000 5000
CPU Time (Seconds)

Solve time comparisons. For any point above 0 in the vertical axis, our extensions solve
more instances than their baselines at the time point in the horizontal axis.

Surprising observation for GLR and aLBD

@ Better branching heuristics have higher GLR and lower aLBD, on
average (Liang 2017 et. al.)
o We take two subsets (Extreme cases) into considerations:

@ GBeyclusive : Instances are solved by the GB extension, not by its
baseline.

o Baselineg,qusive : Instances are solved by the baseline, not by its GB
extension.

o Expectations:

o For GBexclusive, our GB extensions achieve higher GLR and lower
aLBD, on average.

o For Baselineeycusive, our GB extensions achieve lower GLR and higher
aLBD, on average.

@ We observe almost opposite scenario:

o Average GLR does not hold the expectations, at all.
o Average aLBD is also inconsistent for these two subsets.

16/19

Contribution Ill: G2L- A new measure for performance

s e Meurist GB:,S.,M Baselir(lzimum
Systems mployed Heuristics #inst|avg. GLR |avg. aLBD avg. G2L #inst|avg. GLR avg. aLBD avg. G2L
Glucose (VSIDS) 3 | 0356 2860 | 0.0005 [o[059 1852 | 0.0015
Glucose?” (VSIDS) " 0.53 24.69 | 0.0016 | © 0.62 20.14 | 0.00078
MapleLRB {LRB} »7 | 050 2606 [0.00073]] 047 30.75 | 0.00046
MapleLRB?” {LRB}?® - 0.46 2038 | 0.00126 0.48 3202 | 0.00037
MLD {DisyVSIDS/LRB} | o | 0.55 2360 000029 o] 053 26.70 | 0.0011
MLD?" [(Dist/VSIDS/LRB}?*| ~ 051 26.04 |0.00032 0.58 2321 | 0.0009 |
MLD_CBT | {Dist.VSIDSLRB} [, | 049 2608 | 0.0006 |, | 051 29.64 | 0.00065 |
MLD_CBT?"|{Dist/VSIDS/LRB}?"| ~ 043 36.24 | 0.0011 | © 0.55 2542 | 0.00037 |

#glue_clauses
 #learned_clauses

o Better heuristic for an instance set consistently achieves higher
G2L.

17/19

Peculiarity of Glucose

o Lowest gains with Glucose. — why?

@ Glucose already increases the score of some of the (glue) variables
during conflict analysis.

@ Hypothesis: GB in Glucose®® creates imbalance.
@ We lower the bumping factor with high normalizing factor —
improved performance with Glucose®®.
e Solves 11 additional instances.

@ In comparison, the version with lower normalization factor solves 4
additional instances.

18/19

Conclusions and Future Work

@ Conclusions:
o Decisions with Glue variables are conflict efficient.
o GB method with delayed bumping of Glue variables.
e Empirical evaluation shows performance gain.
o G2L correlates well with performance.

o Future Work:

o Relationships between normalized glue level and other centrality
measures.

o Design clause deletion heuristics based on the notion of glue level?

o New branching heuristics based on G2L?

19/19

	Introduction
	Empirical Observations
	Proposed Branching Heuristics
	Empirical Evaluation
	Additional Experiments
	Conclusions and Future Work

