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Plan

o Chapter 9: On-policy Prediction with Approximation.
o Chapter 10: On-policy Control with Approximation.

o I might not talk about the Average Reward formulation.

o 15:30 to 16:50: Guest Lecture by Andrew Patterson:
Empirical Practices in Reinforcement Learning.

Marlos C. Machado
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Reminder

o On the project

o The project proposal was due on Wednesday. I'll try to mark everything by next week.

o Three people (a group?) have not submitted the project proposal yet.

o There is no scheduled Coursera activity for you to do next week.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Last Class: Linear Function Approximation

o LetV(x, w)=x'w. We have V _V(x, w)=X(s).
o Thus,w,_,=w,+alU -Vx w)] V_ V(x, w)becomes:

w, =W, +aU - Vx, w)x.

Marlos C. Machado
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Last Class: Polynomials Features

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

But what about interactions? What if both features were zero?
T
X(S) = (1, S1, 82, 8182)
And we can keep going...

. 2 .2 2 &2 22\T
X(S) — (1781782a8182781) $9, 81827818278182)

Marlos C. Machado
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Fourier Basis

« Fourier series expresses periodic functions as weighted sums of sine and cosine
basis functions (features) of different frequencies.

o Fourier features are easy to use and can perform well in several RL problems.

« When using the Fourier series and the more general Fourier transform, with
enough basis functions essentially any function can be approximated as
accurately as desired.

Marlos C. Machado
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Fourier Basis

o (Consider the one-dimensional case. The cosine basis consists of the n + 7 features
z;(s) = cos(ims), s € [0,1],

fori=0, ..., n. The figure below shows one-dimensional Fourier cosine features x,
fori=1, 2, 3, 4; X, IS a constant function.

1 1 1 1

o -1 - -1
1O 1 0 1 10 1 0 1

Figure 9.3: One-dimensional Fourier cosine-basis features z;, i = 1, 2, 3,4, for approximating

functions over the interval [0, 1]. After Konidaris et al. (2011).
Marlos C. Machado
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Fourier Basis Beyond One Dimension

o

Suppose each state s corresponds to a vector of k numbers, s = (s, 8, ..., S%) ',
with each s; € [0, 1]. The ith feature in the order-n Fourier cosine basis can then
be written

zi(s) = cos (ms'c'), (9.18)

wherele =N(cimenic: NiSwihic SeR (e S for A=NIEEREETan diy = VISR (o=
This defines a feature for each of the (n + 1)* possible integer vectors c’. The inner
product s'c? has the effect of assigning an integer in {0,...,n} to each dimension
of s. As in the one-dimensional case, this integer determines the feature’s frequency
along that dimension. The features can of course be shifted and scaled to suit the
bounded state space of a particular application.

Marlos C. Machado
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Fourier Basis — Example

« Consider representing a state as a vector of 2 numbers (k = 2), where each
¢ =(c,c).

c=(1,1)7

The feature varies
along both
dimensions and
represents an
interaction
between the two
state variables

The feature is constant
over the first dimension
and varies over the
second dimension
depending on c,,

1

1

Figure 9.4: A selection of six two-dimensional Fourier cosine features, each labeled by the
vector ¢’ that defines it (s1 is the horizontal axis, and c* is shown with the index ¢ omitted).
After Konidaris et al. (2011).

Marlos C. Machado
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Coarse Coding

o Consider a task in which the natural representation of the state set is a
continuous two- dimensional space.

« \We define binary features indicating
whether a state is present or not in
a specific circle.

The shape defines generalization

Receptive
Field

Narrow generalization Broad generalization

Marlos C. Machado
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Tile Coding

« Tile coding is a form of coarse coding for multi-dimensional continuous spaces
(with a fixed number of active features per timestep).

e lngl —_

Tiling 2 —tt-Tht-Tht-— 1 =T

.qs | | ! I

Tiling 3 : E : : !

: Tiling 4 L | S S N !
Continuous ¢ wl e 1] Four active
2D state s _L [RERE | § e | tiles/features

~_ . : : . overlap the point
pac : E=a = iy and are used to

" Pointin |ttt r11d : represent it

state space ! { | P11

to be [T I S [V D I B

represented

Marlos C. Machado
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Tile Coding

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations
for asymmetrically
offset tilings

Marlos C. Machado
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It Isn’t that We do Function Approximation Because \We
Cannot do Tabular Reinforcement Learning

e Successor Representation [Dayan, Neural Computation 1993].

¥, (s,s') [Z‘Ytlst—s'lso—s]

Agent

Average extra steps to goal

Goal | —

Barrier

Marlos C. Machado
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Nonlinear Function Approximation: Artificial Neural Networks

« The basics of deep reinforcement learning.

« lIdea: Instead of using linear features, we feed the “raw” input to a neural network
and ask it to predict the state (or state-action) value function.

But It Is Noi

Marlos C. Machado
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Neural Networks
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Neural Networks
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Q_.
Q_.

h'=a

1 _
s.t.h1_

The activation function
introduces non-linearity

S+ b1)E.g.: f(x) = max(0, x)

1 1 1 1 1
XWX W+ XoW o+ X, W 41+B
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Neural Networks

h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h FEXWL XWX W+ X W 41+B
h? = act(h'W? + b?)

2 _hlg2 162 1 \p2 162
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ
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Neural Networks

Marlos C. Machado
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h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h1_x1wﬁ+x2w21+x3W31+x4w41+B

h2 = act(h'W2 + b?)

2 _ g2 102 112 102
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ
o = act(h®W? + b?)

2 w3 2 .3 2 3 2 3 2
S.’[.Ow—h1W11+h2W21+h3W31+h4W41+B

o = act(act@ctxW' + b"YW? + b?W? + b3)
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Neural Networks

Marlos C. Machado

F'!epresentat'ion
(Learned features)

h' = actxW' + b")

1 _ 1 1 1 1 1
S.t.h1—X1W11+X2W21+X3W31+X4W41+B

h2 = act(h'W2 + b?)

2 _ g2 1,2 112 1,2
S.t.h1—h1W11+h2W21+h3W31+h4W41+
BZ

o = act(h®W? + b?)

2 w3 2 .3 2 3 2 3 2
S.’[.Ow—h1W11+h2W21+h3W31+h4W41+B

o = act(act@ctxW' + b"YW? + b?W? + b3)
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Remember: Semi-gradient TD(O)

Semi-gradient TD(0) for estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : 87 x R — R such that ¢(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|S)
Take action A, observe R, S’
W W+ a[R +v0(S",w) — 9(S,w)| Vi(S,w)
S+ 5

until S is terminal

Marlos C. Machado
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A Note from the Textbook

The backpropagation algorithm can produce good results for shallow networks having
1 or 2 hidden layers, but it may not work well for deeper ANNs. In fact, training a

network with k£ 4+ 1 hidden layers can actually result in poorer performance than training
a network with k£ hidden layers, even though the deeper network can represent all the
functions that the shallower network can (Bengio, 2009). Explaining results like these
is not easy, but several factors are important. First, the large number of weights in

a typical deep ANN makes it difficult to avoid the problem of [overfitting,| that is, the
problem of failing to generalize correctly to cases on which the network has not been
trained. Second, backpropagation does not work well for deep ANNs because the partial
derivatives computed by its backward passes either decay rapidly toward the input side
of the network, making learning by deep layers extremely slow, or the partial derivatives
grow rapidly toward the input side of the network, making learning unstable. Methods

Marlos C. Machado
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Deep Convolutional Network

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
sz S2: f. maps I C5: layer gg.
6@14x14 r rr 120 y F& layer quPUT

I
| | Full ooanection J Gaussian
Convolutions Subsampling Convolutions Subsampling Full / connections
connection

Figure 9.15: Deep Convolutional Network. Republished with permission of Proceedings of the
IEEE, from Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio,
and Haffner, volume 86, 1998; permission conveyed through Copyright Clearance Center, Inc.

Marlos C. Machado
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Deep Convolutional Network

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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Marlos C. Machado [Figure from demo in https://cs231ln.github.io/convolutional-networks/]
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Learned Representations

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet. Notice that the first-layer
weights are very nice and smooth, indicating nicely converged network. The color/grayscale features are clustered because the
AlexNet contains two separate streams of processing, and an apparent consequence of this architecture is that one stream
develops high-frequency grayscale features and the other low-frequency color features. The 2nd CONV layer weights are not as
interpretable, but it is apparent that they are still smooth, well-formed, and absent of noisy patterns.

Marlos C. Machado [Figure from https://cs231n.github.io/understanding-cnn/]
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Least-Squares TD (LSTD)

o With more computation per time step we can do better.
o Why not compute the TD fixed point exactly?
wrp = A 'b,
where
A =E[xi(x¢ —yx¢41)'| and b=E[Ry1x].

« Why not use the data to estimate A and b?

t—1 t—1
A; = Zxk(xk — ’yxk_|_1)T +el and b;= ZRkak

k=0 \ k=0
Ensuresitis

Marlos C. Machado always invertible
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Least-Squares TD (LSTD)

LSTD for estimating 9 = w' x(-) = v, (O(d?) version)

Input: feature representation x : 8t — R such that x(terminal) = 0
Algorithm parameter: small € > 0

A1 71 A d x d matrix
b+« 0 A d-dimensional vector
Loop for each episode:
Initialize S; x < x(95)
Loop for each step of episode:
Choose and take action A ~ 7(:|S), observe R, S’; x" + x(S5”)

vV ‘K—\lT(x —x')
Al A1 — (A-Tx)vT/(1+vTx) <
b+ b+ Rx
W <— FB Al
S+ 8 x+x

until S’ is terminal

Sherman-Morrison
formula

- -l
(At—l + X1 (Xe—1 — VX¢) )
At__llxt—l(xt—l — ’YXt)TlA\t__ll

1+ (x¢1 — 'Yxt)T:&t__llxt—l

A-1
At—l -

Marlos C. Machado
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Memory-based Function Approximation

« Instead of updating some parameters and discarding the training example, we
save (a subset of) training examples in memory as they arrive.

o When we want to query a state’s value estimate, we retrieve examples from
memory and use them to compute such an estimate. That’s lazy learning.

« These are nonparametric methods.

o Nearest neighbor is the simplest example, and weighted average a slightly more

complicated one.
o It finds the example in memory whose state is closest to the query state and returns that example’s
value as the approximate value of the query state.

« Naturally they inherit the benefits and trade-offs of nonparametric methods.

Marlos C. Machado
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Kernel-based Function Approximation

« The function that assigns the weights in the weighted average is called a kernel
function, or simply kernel, k(s, s’).

e K(s, S’) is a measure of the strength of generalization from s’ to s. How relevant is
the knowledge about state s to state s'.

« Kernel regression, where g(s’) denotes the target for state s’

(5,D) = Z k(s,s)g(s" Example of a kernel function: Radial Basis Functions (RBFs)
s’eD _ ( ||3_Ci||2)
z;(s) =exp | —

2
207

Marlos C. Machado
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Control

Marlos C. Machado
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Overview

o More of the same, but now
qA(Sa a’a W) ~ q*(87 a’)

and

Wit1 = Wi + a[Ut — (S, Aq, Wt)] V(S A, wy)

Marlos C. Machado
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Episodic Semi-gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating § ~ q.

Input: a differentiable action-value function parameterization §: 8 x A x R — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <+ w+a[R—§(S,A,w)|V§(S, A,w)
Go to next episode
Choose A’ as a function of §(S’,-, w) (e.g., e-greedy)
w e w+a[R+ (S, A, w) — 4(S, A, w)| Va(S, A, w)
S+ 5
A+ A

Marlos C. Machado
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Episodic Semi-gradient n-step Sarsa

Input: a differentiable action-value function parameterization §: 8 x A x R - R
Input: a policy 7 (if estimating g, )

Algorithm parameters: step size a > 0, small £ > 0, a positive integer n

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

All store and access operations (S, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ao ~ 7(-|Sp) or e-greedy wrt §(So, -, W)

T+ o0
Loop fort =0,1,2,...:
| Ift<T, then:

| Take action A,

| Observe and store the next reward as R;+1 and the next state as Si+1

| If S;y1 is terminal, then:

| T+ t+1

| else:

| Select and store A¢y1 ~ m(:|Sty1) or e-greedy wrt G(Si41,-, W)

| 7+ t—n+1 (7isthe time whose estimate is being updated)

| Ifr>0:

T

| If7+n<T,then G+ G+ v"4(Sr4n;Arin, W) (Grirtn)
| w w+a[G—§(Sr, Ar, W) V§(S-, Ar, w)

Untilt=T -1

Marlos C. Machado = .
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Average Reward: A New Problem Setting for Continuing Tasks

« It is applicable to continuing problems.
o Different from the discounted setting, every time step is equally important.

« In this problem formulation, the quality of a policy ttis defined by the avg. reward.

The MDP needs to be ergodic: in the

- long run the expectation of being in a

r(m) = hh_{{.lo 5 Z E[R; | So, Ao:t—1~7] state depends only on the policy and
the MDP transition probabilities

= lim E[Rt I S(),A()t 1N7T]

t—00
_ / The steady state distribution p_ is the
o Z Ko (8) Z ﬂ-(als) Zp(s 4 | % a)r special distribution under whicIT1[, if you
select actions according to 1, you
remain in the same distribution.

> un(s) Y mw(als)p(s'|s,a) = px(s').

Marlos C. Machado



CMPUT 655 — Class 8/12

47

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht



MPUT -Gl 12
48 CMPUT 655 — Class 8/

What’s a Good Policy in the Average Reward Formulation

« We can order policies by their average reward per time step.
« Returns are defined in terms of difference between rewards and the avg. reward:

Differential

return Gy = Riy1—r(m) + Riyyo—r(m) + Rips—r(w) + ---

Marlos C. Machado
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What's a Good Policy in the Average Reward Formulation

« We can order policies by their average reward per time step.
« Returns are defined in terms of difference between rewards and the avg. reward:

Differential

return Gy = Riy1—r(m) + Riyyo—r(m) + Rips—r(w) + ---
« Correspondingly, we have differential value functions:

vr(s) = Z als)Zps s, a)[r—r(w)—l—vﬁ(s')]
e (8y0) = Zps r|sa[r—r7r)+z a'|s")gx (s )],

U (8) = mngp s',r|s,a) [r — mgxr(w) + s (s’ )}, and

r,s’

q+(s,a) = Zp(s’, r|s,a) [r — max 7 (m) + max g.(s', a’)]

r,s’

Marlos C. Machado
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There’s also the Differential form of TD errors

>,
~
I

= Rt+1_Rt + 0(Sty1,We) — 0(St,We),

0y = Rt—l—l_Rt + Q(St+1, At+1,Wt) — @(St, At,Wt)

Marlos C. Machado
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Things Stay Pretty Much the Same Then

Differential semi-gradient Sarsa for estimating ¢ =~ g,

Input: a differentiable action-value function parameterization §: 8§ x A x R -+ R
Algorithm parameters: step sizes a, 8 > 0, small € > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Initialize average reward estimate R € R arbitrarily (e.g., R = 0)

Initialize state S, and action A
Loop for each step:
Take action A, observe R, S’
Choose A’ as a function of §(5’,-,w) (e.g., e-greedy)
d+ R—R+4(S,A',w) —§(S, A, w)
R+ R+ B¢
w <+ W+ adV{§(S, A, w)
S+ S
A+ A

Marlos C. Machado
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The “Futility” of Discounting in Continuing Problems

Perhaps discounting can be saved by choosing an objective that sums discounted
values over the distribution with which states occur under the policy:

= Z pr(s)v)(s) (where v? is the discounted value function)
= S ele) Son(al) S0l )+ 03] (Belman Fa)
=r(m) + Z L (S) Zﬂ'(a|s) Z Zp(s r|s,a)yv)(s") (from (10.7))

The discounting factor
— r(m) +7Zzﬂ(s ZMW(S)ZW(GIS)P(S'IS 2 (rom B4) sl s & very useful

hyperparameter for the
_ @ - f 10. . .
r(m) +7;v”(8 fin(2) s () algorithm itself.
= r(r) +7J ()

= r(m) +yr(m) +7*J ()
= r(m) +yr(m) + () + y3r(r) + -

1
= 1_7r(7r).

The proposed discounted objective orders policies identically to the undiscounted

(average reward) objective. The discount rate v does not influence the ordering!
Marlos C. Machado
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Differential n-step return and n-step TD error

Gi:tyn = Riqa '—Rt—l—n—l T o e Rt+n—Rt+n—1 + §(St4n, Attn, Wetn—1)

0t = Gt:t+n — @(St, At, W)

Marlos C. Machado
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Things Stay Pretty Much the Same Then

Differential semi-gradient n-step Sarsa for estimating ¢ ~ ¢, or ¢,

Input: a differentiable function § : 8§ x A x R —+ R, a policy 7

Initialize value-function weights w € R¢ arbitrarily (e.g., w = 0)

Initialize average-reward estimate R € R arbitrarily (e.g., R = 0)

Algorithm parameters: step sizes a, 8 > 0, small € > 0, a positive integer n

All store and access operations (S;, A, and R;) can take their index mod n + 1

Initialize and store Sy and Ag
Loop for each step, t =0,1,2,...:
Take action A;
Observe and store the next reward as R;y1 and the next state as Si41
Select and store an action A;yq ~ 7(+|S¢y1), or e-greedy wrt G(Sii1,:, W)
T+ t—n+1 (7 is the time whose estimate is being updated)
If 7 >0:
6_<_ Z_::::-H(R" - R) aF Q(Sf+n7 A'r+na W) - qA(S'ra A'ra W)
R+ R+ (6
W+ W+ adV§(Sy, A, W)

Marlos C. Machado
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