
CMPUT 655
           Introduction to RL

Marlos C. Machado Class 7/12

“For even the very wise cannot see all ends.”

J.R.R. Tolkien, The Fellowship of the Ring



● Finish Chapter 8: Planning and Learning with Tabular Methods.

● Chapter 9: On-policy Prediction with Approximation.

● Chapter 10: On-policy Control with Approximation.

○ I will not talk about the Average Reward formulation today.

Plan
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You should be enrolled in the private session we created in Coursera for CMPUT 655.

I cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting 
quizzes and assignments to the private section. 

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us 

cmput655@ualberta.ca.

Reminder I
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● On the project

○ The project proposal is due Wednesday 😉.

○ The course project is very different from what we generally ask undergraduate students to do. It is 
to be done over an extended period of time.

○ Recommended readings:

■ The Elements of Style by W. Strunk Jr.

■ Empirical Design in Reinforcement Learning by A. Patterson, S. Neumann, M. White, and A. White.

● There is no scheduled Coursera activity for you to do next week

Reminder II
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● I want your feedback!

○ Mid-term Course and Instruction Feedback online evaluation opened today.

○ It will close today.

○ 21 of 54 students responded so far 😭

Reminder III
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Please, interrupt me at any time!
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Last Class: When the Model Is Wrong

● A model can be wrong for all sorts of reasons (e.g., stochastic environment, 
function approximation, non-stationarity in the environment).

● An incorrect model often leads to suboptimal policies.

● One needs to constantly explore to refine the learned model.
○ Exploration: take actions that improve the model.
○ Exploitation: behaving in the optimal way given the current model.

● Dyna-Q+: Provides “bonus rewards” for long-untried actions.
Specifically, consider the reward r + κ√𝜏, where 𝜏 is the number of time steps 
since that transition was tried for the last time.
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Last Class: Dyna-Q+ Sometimes Works ¯\_(ツ)_/¯
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● How should we select transitions to simulate for the planning update? 

● Working backward from goal states seem like a good idea, but it is dependent 
on the idea of a “goal state”.
○ More generally, we want to work back from any state whose value has changed.

● Prioritized sweeping is the idea of prioritizing updates according to their urgency.
○ When the effect of a change is greater than a threshold, the state in which that change happened 

is added to a priority queue.

Prioritized Sweeping
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Prioritized Sweeping
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Expected vs. Sample Updates
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● There are three dimensions in the updates one can do:
○ Should we use state values or action values? 
○ Should we estimate the value for the optimal policy or for an arbitrary given policy?
○ Should we use expected or sample updates?



14

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 655 – Class 7/12



Expected vs. Sample Updates

● If possible, are expected updates always preferable?
○ They yield a better estimate because they are uncorrupted by sampling error, but they also require 

more computation, and computation is often the limiting resource in planning.

● Do we have enough time to do an expected update?

● Is it better to  have a few sample updates at many state–action pairs or to have 
expected updates at a few pairs?

Marlos C. Machado
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Often, the error falls dramatically with a fraction of b updates

Marlos C. Machado
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● The classical approach, from dynamic programming, is to perform sweeps 
through the entire state space, updating each state once per sweep.

● However, in many tasks, most states are irrelevant under good policies.

● What if we sampled states from the state or state–action space according to 
some distribution?

● Trajectory sampling is the idea of sampling states from the on-policy distribution.

Trajectory Sampling
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Inconclusive Results
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Real-time Dynamic Programming

● Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling 
version of the value-iteration algorithm of dynamic programming (DP).

● RTDP updates the values of states visited in actual or simulated trajectories by 
means of expected tabular value-iteration updates.

● RTDP is an example of an asynchronous DP
algorithm. In RTDP, the update order is dictated
by the order states are visited in real or
simulated trajectories.

● It has some interesting convergence results in
stochastic optimal path problems.

20
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● We’ve been discussing background planning: using planning to gradually improve 
a policy or value function based on simulated experience obtained from a model.
○ Well before an action is selected for any current state St, planning has played a part in improving 

the table entries needed to select actions for many states, including St.

● Decision-time planning uses planning to begin and complete it after encountering 
each new state St, as a computation whose output is the selection of an action 
At; on the next step planning begins anew with St+1 to produce At+1, and so on. 

● We can still see decision-time planning as proceeding from simulated experience 
to updates and values, and ultimately to a policy.
○ Now the values and policy are specific to the current state and the action choices available there.

● The response time really matters in this choice.

Decision-time Planning
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Heuristic Search

● The classical state-space planning methods in artificial intelligence are 
decision-time planning method collectively known as heuristic search.

● If one has a perfect model and an imperfect action-value function, then in fact 
deeper search will usually yield better policies.

● Much of its effectiveness is due to its search tree being focused on the states 
and actions that might immediately follow the current state.

23
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Heuristic Search 

Heuristic search can be implemented as a sequence of one-step updates (shown 
here outlined in blue) backing up values from the leaf nodes toward the root. The 
ordering shown below is for a selective depth-first search.
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● Rollout algorithms are decision-time planning algorithms based on MC control 
applied to simulated trajectories that all begin at the current environment state.
○ They estimate action values for a given policy by averaging the returns of many simulated 

trajectories that start with each possible action and then follow the given policy.

● Unlike the Monte Carlo control algorithms previously described, the goal of a 
rollout algorithm is not to estimate a complete optimal action-value function, q*, 
or a complete action-value function, qπ, for a given policy π.
○ They produce Monte Carlo estimates of action values only for each current state and for a given 

policy usually called the rollout policy.

● They are not learning algorithms per se, but they do leverage the RL toolkit.

Rollout Algorithms
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● MCTS is a great example of a rollout, decision-time planning algorithm.
○ But enhanced by the addition of a means for accumulating value estimates obtained from the MC 

simulations in order to successively direct simulations toward more highly-rewarding trajectories.

● The core idea of MCTS is to successively focus multiple simulations starting at the 
current state by extending the initial portions of trajectories that have received high 
evaluations from earlier simulations.
○ Monte Carlo value estimates are maintained only for the subset of state–action pairs that are most 

likely to be reached in a few steps, which form a tree rooted at the current state.

Monte Carlo Tree Search (MCTS)
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Monte Carlo Tree Search (MCTS)
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Upper Confidence Bound 1 Applied to Trees (UCT)
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Choose in each node of the game tree the move as the argmax of

● wi: number of wins for the node considered after the i-th move.
● ni: number of times the child node has been visited after the i-th move.
● Ni: number of times the parent node has been visited after the i-th move.
● κ: scalar parameter for trading-off exploration and exploitation.

Monte Carlo Tree Search (MCTS)
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● MCTS is a decision-time planning algorithm based on MC control applied to simulations 
that start from the root state (it is a kind of rollout algorithm).
○ It benefits from online, incremental, sample-based value estimation and policy improvement.

● It saves action-value estimates attached to the tree edges and updates them using 
reinforcement learning’s sample updates.
○ It focuses the Monte Carlo trials on trajectories whose initial segments are common to high-return 

trajectories previously simulated.

● By incrementally expanding the tree, MCTS effectively grows a lookup table to store a 
partial action-value function, with memory allocated to the estimated values of 
state–action pairs visited in the initial segments of high-yielding sample trajectories
○ MCTS avoids the problem of globally approximating an action-value function while it retains the benefit of 

using past experience to guide exploration.

MCTS incorporates several RL principles

32
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● We have finished Part I of the textbook, Tabular Solution Methods.

● Reinforcement learning can be seen as being more than a collection of individual 
methods, but a coherent set of ideas cutting across methods. 
○ They all seek to estimate value functions.
○ They all operate by backing up values along actual or possible state trajectories.
○ They all follow the general strategy of generalized policy iteration (GPI).

Wrapping Up
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Wrapping Up
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● Absolutely everything we did was in the tabular case.

○ There’s a huge memory cost in having to fill a table with a ridiculous total number of states.

○ We might never see the same state twice.

○ We cannot expect to find an optimal policy (or value function) even in the limit of infinite time and data.

● What about…

What We Have Done So Far: Tabular RL
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● Instead, we should find a good approximate solution using limited computational 
resources.

● We need to generalize to  from previous encounters with different states that are in 
some sense similar to the current one.

● We obtain generalization with function approximation (often from the supervised 
learning literature).

From Now On: Generalization
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Finally! The Three Fundamental Problems of RL
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Generalization
Credit 

Assignment

Exploration

Bandits

Bellman 
Equations

Supervised 
Learning

Tabular 
MDP Algs.

Contextual
Bandits

Policy 
Optimization

???

[Inspired by John Langford’s slides]
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Function Approximation – An Example
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S

G

State space: <x, y> coordinates (continuous, no grid) 
and <ẋ, ẏ> velocity (continuous).

Start state: Somewhere in the bottom left corner, where 
a suitable <x, y> coordinate is selected randomly.

Action space: Adding or subtracting a small force to ẋ 
velocity or ẏ velocity, or leaving them unchanged.

Dynamics: Traditional physics, collisions with obstacles 
are fully elastic and cause the agent to bounce.

Reward function: +1 when you hit the region in G.

γ: 0.9.



● In the tabular case, vπ ∈ ℝ|𝒮|.

● Instead, we will approximate vπ using a function parameterized by some weights  
w ∈ ℝd where d ≪ |𝒮|. We will write v̂(s,w) ≈ vπ(s).

Function Approximation
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● In the tabular case, vπ ∈ ℝ|𝒮|.

● Instead, we will approximate vπ using a function parameterized by some weights  
w ∈ ℝd where d ≪ |𝒮|. We will write v̂(s,w) ≈ vπ(s).

● An example:

s =            w =              v̂ (s, w) = s⊤w  

Function Approximation
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● In the tabular case, vπ ∈ ℝ|𝒮|.

● Instead, we will approximate vπ using a function parameterized by some weights  
w ∈ ℝd where d ≪ |𝒮|. We will write v̂(s,w) ≈ vπ(s).

● An example:

s =            w =              v̂ (s, w) = s⊤w  

● Extending RL to function approximation also makes it applicable to partially 
observable problems, in which the full state is not available to the agent.
I’ll often use o to denote the agent’s observation (instead of s).

Function Approximation
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Generalization: When something         
changes, many  states can be affected.
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● We can interpret each update we have seen so far as an example of the desired 
input-output behavior of the value function.

● Let s ↦ u denote an individual update, where s is the state updated and u the 
update target that s’s estimated value is shifted to.
○ St ↦ Gt
○ St ↦ Rt+1+ γ vπ(St+1)
○ St ↦ Gt:t+n
○ s ↦ 𝔼π [Rt+1 + γ vπ(St+1) | St = s]

● Supervised learning methods learn to mimic input-output examples, and when 
the output are numbers, the process is called function approximation.

Value-function Approximation
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A note from the textbook
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● In the tabular case we can have equality, but with FA, not anymore.
○ Making one state’s estimate more accurate invariably means making others’ less accurate.

● Mean Squared Error:

The Prediction Objective (A Notion of Accuracy)
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How much do we care about 
the error in each state s.

Usually, the fraction of time spent in s. 
On-policy distribution.



● In the tabular case we can have equality, but with FA, not anymore.
○ Making one state’s estimate more accurate invariably means making others’ less accurate.

● Mean Squared Error:

● When doing nonlinear function approximation, we lose pretty much every 
guarantee we had (often, even convergence guarantees).

The Prediction Objective (A Notion of Accuracy)
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How much do we care about 
the error in each state s.

Usually, the fraction of time spent in s. 
On-policy distribution.
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● The approximate value function, v̂(s,w), needs to be a differentiable function of w 
for all states.

● For this class, consider that, on each step, we observe a new example St ↦ vπ(St). 
Even with the exact target, we need to properly allocate resources.

● Stochastic gradient-descent (SGD) is a great strategy:

Stochastic-gradient and Semi-gradient Methods
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Few (one)
state at a time We need to consider the impact 

of our update. Thus, small 
updates are often preferred.



A More Realistic Update

● Let Ut denote the t-th training example, St ↦ vπ(St), of some (possibly random), 
approximation to the true value.

CMPUT 655 – Class 7/12

Marlos C. Machado

56



● Let v̂(x, w) = x⊤w. We have ∇wv̂(x, w) = x(s).

● Thus, wt+1 ≐ wt + α [Ut - v̂(x, w)] ∇wv̂(x, w) becomes:

wt+1 ≐ wt + α [Ut - v̂(x, w)]x.

A Clearer Instantiation — Linear Function Approximation
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● What if Ut ≐ Rt+1 + γ v̂(St+1,wt)?

● We lose several guarantees when we use a bootstrapping estimate as target.
○ The target now also depends on the value of wt, so the target is not independent of wt.

● Bootstrapping are not instances of true gradient descent. They take into account 
the effect of changing the weight vector wt on the estimate, but ignore its effect on 
the target. Thus, they are a semi-gradient method.

● Regardless of the theoretical guarantees, we use them all the time ¯\_(ツ)_/¯

Semi-gradient TD
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Semi-gradient TD(0)

CMPUT 655 – Class 7/12

Marlos C. Machado

60



61

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 655 – Class 7/12



● We do have convergence results for linear function approximation.

  

TD Fixed Point with Linear Function Approximation

CMPUT 655 – Class 7/12

Marlos C. Machado

62



● We do have convergence results for linear function approximation.

  

In a steady state, for any given wt, the expected next weight vector can be written

TD Fixed Point with Linear Function Approximation

where
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● We do have convergence results for linear function approximation.

  

In a steady state, for any given wt, the expected next weight vector can be written

It converges to:

TD Fixed Point with Linear Function Approximation

where
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n-Step Semi-gradient TD
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How are tabular methods related to linear function approximation?

Question
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● Linear methods can be effective, but they heavily rely on how states are 
represented in terms of features.

● Feature construction is a way of adding domain knowledge; but at the same time, 
it went out of fashion because of deep reinforcement learning.

● Naïve linear function approximation methods do not take into consideration the 
interaction between features.

Feature Construction for Linear Methods
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State Aggregation

● Simplest form of representation

● States are grouped together  (one component of the vector w) for each group.

● State aggregation is a special case of SGD in which the gradient, ∇v̂(St,wt), is 1 
for St’s group’s component and 0 for the other components. 

S

G
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● Doesn’t work so well, but they are one of the simplest families of features.

Polynomials
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● Doesn’t work so well, but they are one of the simplest families of features.

● Suppose an RL problem has states with two numerical dimensions. 

Polynomials
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● Doesn’t work so well, but they are one of the simplest families of features.

● Suppose an RL problem has states with two numerical dimensions. 

But what about interactions? What if both features were zero?

Polynomials
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● Doesn’t work so well, but they are one of the simplest families of features.

● Suppose an RL problem has states with two numerical dimensions. 

But what about interactions? What if both features were zero?

And we can keep going… 

Polynomials
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Polynomials
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● Fourier series expresses periodic functions as weighted sums of sine and cosine 
basis functions (features) of different frequencies.

● Fourier features are easy to use and can perform well in several RL problems.

● When using the Fourier series and the more general Fourier transform, with 
enough basis functions essentially any function can be approximated as 
accurately as desired.

Fourier Basis
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Fourier Basis
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● Consider the one-dimensional case. The cosine basis consists of the n + 1 features

 
for i = 0, …, n. The figure below shows one-dimensional Fourier cosine features xi, 
for i = 1, 2, 3, 4; x0 is a constant function.

79



Fourier Basis Beyond One Dimension
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Fourier Basis – Example
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ci = (ci

1, c
i
2)
⊤.

81

The feature is constant 
over the first dimension 

and varies over the 
second dimension 
depending on c2.

The feature varies 
along both 

dimensions and 
represents an 

interaction 
between the two 
state variables
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● Consider a task in which the natural representation of the state set is a 
continuous two- dimensional space.

● We define binary features indicating
whether a state is present or not in
a specific circle.

Coarse Coding
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Receptive
Field



● Tile coding is a form of coarse coding for multi-dimensional continuous spaces
(with a fixed number of active features per timestep).

Tile Coding
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Tile Coding
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● Successor Representation [Dayan, Neural Computation 1993].

●

●

It Isn’t that We do Function Approximation Because We 
Cannot do Tabular Reinforcement Learning
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● The basics of deep reinforcement learning.

● Idea: Instead of using linear features, we feed the “raw” input to a neural network 
and ask it to predict the state (or state-action) value function.

Nonlinear Function Approximation: Artificial Neural Networks
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Neural Networks
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Neural Networks
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The activation function 
introduces non-linearity

E.g.: f(x) = max(0, x)



Neural Networks
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(Learned features)
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Deep Convolutional Network
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[Figure from demo in https://cs231n.github.io/convolutional-networks/]

]
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[Figure from https://cs231n.github.io/understanding-cnn/]

]
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● With more computation per time step we can do better.

● Why not compute the TD fixed point exactly?

● Why not use the data to estimate A and b?

Least-Squares TD (LSTD)
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Ensures it is
always invertible



Least-Squares TD (LSTD)
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Sherman-Morrison
formula
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● Instead of updating some parameters and discarding the training example, we 
save (a subset of) training examples in memory as they arrive.

● When we want to query a state’s value estimate, we retrieve examples from 
memory and use them to compute such an estimate. That’s lazy learning.

● These are nonparametric methods.

● Nearest neighbor is the simplest example, and weighted average a slightly more 
complicated one. 
○ It finds the example in memory whose state is closest to the query state and returns that example’s 

value as the approximate value of the query state.

● Naturally they inherit the benefits and trade-offs of nonparametric methods.

Memory-based Function Approximation
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● The function that assigns the weights in the weighted average is called a kernel 
function, or simply kernel, k(s, s’).

● k(s, s’) is a measure of the strength of generalization from s’ to s. How relevant is 
the knowledge about state s to state s’.

● Kernel regression, where g(s’) denotes the target for state s’. 

Kernel-based Function Approximation
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Example of a kernel function: Radial Basis Functions (RBFs)
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Control



● More of the same, but now
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Overview
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Episodic Semi-gradient n-step Sarsa
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Average Reward: A New Problem Setting for Continuing Tasks


