"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along "To look ahead," said he. "And what brought you back in the nick of time?" "Looking behind," said he.

J.R.R. Tolkien, The Hobbit

Class 4/12

CMPUT 655 Introduction to RL

Marlos C. Machado

Plan

- Wrap up MDPs
- An Example: Working with v_{π}
- Dynamic programming / Bellman Equations
 - A different solution, albeit limited
- Monte Carlo Methods

Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

The deadlines in the public session **do not align** with the deadlines in Coursera.

If you have any questions or concerns, **talk with the TAs** or email us cmput655@ualberta.ca.

Please, interrupt me at any time!

4

Optimal Policies and Optimal Value Functions

- Value functions define a partial ordering over policies.
 - $\circ \qquad \pi \geq \pi' \text{ iff } v_{\pi}(s) \geq v_{\pi'}(s) \text{ for all } s \in \mathscr{S}.$
 - There is always at least one policy that is better than or equal to all other policies. The *optimal policy*.

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

Optimal Policies and Optimal Value Functions

 Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

Optimal Policies and Optimal Value Functions

 v_*

 Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$
= $\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$

$$q_*(s,a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a\Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a')\Big].$$

Marlos C. Machado

Also...

I have highlighted a couple of exercises during the class, but there are more. The exercises in Chapter 3 of the book are great. I particularly encourage you to look at Exercises 3.25 - 3.29 as well.

Reinforcement learning is very related to search algorithms

"Heuristic search methods can be viewed as expanding the right-hand side of the equation below several times, up to some depth, forming a "tree" of possibilities, and then using a heuristic evaluation function to approximate v_{*}, at the "leaf" nodes."

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')].$$

Yay! We solved sequential decision-making problems

Except...

1.

2.

11

З.

Yay! We solved sequential decision-making problems

Except...

- 1. we need to know the dynamics of the environment
- 2. we have enough computational resources to solve the system of linear eq.
- 3. the Markov property

An Example: Working with v_{π}

Whiteboard

Chapter 4 Dynamic Programming

Dynamic Programming – Why?

- "DP provides an essential foundation for the understanding of the methods presented in the rest of this book".
- ... but "classical DP algorithms are of limited utility in reinforcement learning both because of their assumption of a perfect model and because of their great computational expense".
- "all of these [RL] methods can be viewed as attempts to achieve much the same effect as DP, only with less computation and without assuming a perfect model of the environment".

Key Idea Behind Dynamic Programming

"To use value functions to organize and structure the search for good policies."

We use the same equations as before, but we replace $an = by a \leftarrow$, that's it (we turn Bellman equations into assignments).

Policy Evaluation (Prediction)

Given a policy and an MDP, what's the corresponding value function?

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right] \\ &\downarrow \\ v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{k}(S_{t+1}) \mid S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{k}(s')\right] \\ \text{expected} \\ \text{update} \end{aligned}$$

Policy Evaluation (Prediction)

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

 $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s') \right]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$

```
Input \pi, the policy to be evaluated
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation
Initialize V(s) arbitrarily, for s \in S, and V(terminal) to 0
Loop:
\Delta \leftarrow 0
Loop for each s \in S:
v \leftarrow V(s)
```

"in-place" update

Policy Evaluation – Example

 v_k for the random policy

Policy Improvement

Given a value function for a policy π , how can we get a better policy π ?

We already know how good policy π is, what if we acted differently now? What if instead of selecting action $\pi(s)$ we selected action $a \neq \pi(s)$, but then we followed π ?

We know the value of doing that!

$$\begin{array}{lll} q_{\pi}(s,a) &\doteq & \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ \text{If this new action is} &= & \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_{\pi}(s') \Big]. \\ \text{this new policy is} &= & s',r \end{array}$$

better, in

Policy Improvement – Intuition

 v_k for the random policy

	←	↔	↔
t	\Leftrightarrow	\Leftrightarrow	↔
\Leftrightarrow	↔	↔	ţ
↔	\Leftrightarrow	→	

.

.

Policy Improvement Theorem

That this is true is a special case of a general result called the *policy improvement* theorem. Let π and π' be any pair of deterministic policies such that, for all $s \in S$,

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s).$$
 (4.7)

Then the policy π' must be as good as, or better than, π . That is, it must obtain greater or equal expected return from all states $s \in S$:

$$v_{\pi'}(s) \ge v_{\pi}(s). \tag{4.8}$$

A more aggressive update

Instead of doing it for a particular action in a single state, we can consider changes at *all* states and to *all* possible actions.

$$egin{aligned} &\pi'(s) &\doteq rg\max_a q_\pi(s,a) \ &= rg\max_a \mathbb{E}[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s, A_t = a] \ &= rg\max_a \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_\pi(s') \Big], \end{aligned}$$

This is called *policy improvement*. And eventually it converges to the optimal policy.

Policy Improvement – Intuition

 v_k for the random policy

	←	←	(
t	¢‡	\Leftrightarrow	Ļ
t	\Leftrightarrow	L→	Ļ
\Leftrightarrow	\rightarrow	→	

Policy Iteration: Interleaving Policy Eval. and Improvement

Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Generalized Policy Iteration

Marlos C. Machado

The Bellman Operator

Functions that map elements of a space onto itself, are called operators.

$$v(s) = \mathbb{E}_{\pi}[r + \gamma v(s')|S_t = s]$$

We are transforming a value-function vector into another value-function vector.

The Bellman Operator

Functions that map elements of a space onto itself, are called operators.

$$v(s) = \mathbb{E}_{\pi}[r + \gamma v(s')|S_t = s]$$

We are transforming a value-function vector into another value-function vector.

The Bellman operator is the mapping $T_{\pi} : \mathbb{R}^{|\mathscr{S}|} \to \mathbb{R}^{|\mathscr{S}|}$ defined by

$$(T_{\pi}v)(s) = \mathbb{E}_{\pi}[r + \gamma v(s')|S_t = s]$$

and we can be quite concise: $v = T_{\pi}v$.

The Bellman Backup is a Contraction

The operator $T_{\pi} : \mathbb{R}^{|\mathscr{S}|} \to \mathbb{R}^{|\mathscr{S}|}$ is a γ - contraction:

$$||T_{\pi}\mathbf{v} - T_{\pi}\mathbf{v}'||_{\infty} =$$

The Bellman Backup is a Contraction

The operator $T_{\pi} : \mathbb{R}^{|\mathscr{S}|} \to \mathbb{R}^{|\mathscr{S}|}$ is a γ - contraction:

$$\begin{split} ||T_{\pi}\mathbf{v} - T_{\pi}\mathbf{v}'||_{\infty} &= ||(\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}\mathbf{v}) - (\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi}\mathbf{v}')||_{\infty} \\ &= ||\gamma \mathbf{P}_{\pi}\mathbf{v} - \gamma \mathbf{P}_{\pi}\mathbf{v}'||_{\infty} \\ &= ||\gamma \mathbf{P}_{\pi}(\mathbf{v} - \mathbf{v}')||_{\infty} \quad \mathbf{P}_{\pi} \text{ is linear} \\ &\leq \gamma ||\mathbf{v} - \mathbf{v}'||_{\infty} \quad \text{Because } (\mathbf{P}_{\pi}\mathbf{v}) \text{ (s) is a convex combination of elements from } \mathbf{v}, \text{ it must be that } ||\mathbf{P}_{\pi}\mathbf{v}||_{\infty} \end{split}$$

CMPUT 655 - Class 4/12

Chapter 5

Monte Carlo Methods

Marlos C. Machado

Monte Carlo Methods – Why?

- This is our **first learning** method.
- We do not assume complete knowledge of the environment.
- "Monte Carlo methods require only experience sample sequences of states, actions, and rewards from actual or simulated interaction with an environment."
- It works! And different variations are used everywhere in the field (n-step returns, TD(λ), MCTS–AlphaGo/AlphaZero–, etc).
- ... but we still need a model, albeit only a sample model.

MC Methods are ways of solving the RL problem based on avg. sample returns (similar to bandits, but instead of rewards we are sampling returns).

Monte Carlo Prediction

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Some useful information / reminders about MC Methods

- Often it is much easier to get samples than to get the distribution of next events. Recall the Blackjack example in the textbook.
- Monte Carlo methods do not *bootstrap* (the estimate for one state does not build upon the estimate of any other state).
- First/every-visit MC converge to $v_{\pi}(s)$ as the number of visits to s goes to infinity. In first-visit MC, each return is i.i.d. and has finite variance $\sqrt{(\mathcal{Y})}$
- The computational cost of estimating the value of a single state is independent of the number of states.

Monte Carlo Estimation of Action Values

- If we don't have access to a model, we need to estimate *action* values.
- Same as before, but now we visit state-action pairs _(𝒴)_/
 But to estimate q_∗ we need to estimate the value of *all* actions from each state.
 Solution? Exploration! ... or exploring starts 😒

Monte Carlo Control

Monte Carlo ES

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
    \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in S
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in S, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
    Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```


MC Control without Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi pprox \pi_*$	
Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow$ an arbitrary ε -soft policy $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow$ empty list, for all $s \in S$, $a \in \mathcal{A}(s)$	
$ \begin{array}{ll} \mbox{Repeat forever (for each episode):} & \\ \mbox{Generate an episode following π: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ \\ $G \leftarrow 0$ \\ \mbox{Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:} & \\ $G \leftarrow \gamma G + R_{t+1}$ \\ \mbox{Unless the pair S_t, A_t appears in $S_0, A_0, S_1, A_1 \ldots, S_{t-1}, A_{t-1}$:} & \\ $Append G to $Returns(S_t, A_t)$ & \\ $Q(S_t, A_t) \leftarrow average(Returns(S_t, A_t))$ \\ $A^* \leftarrow \arg\max_a Q(S_t, a)$ & (with ties broken arbitrarily)$ \\ $For all $a \in \mathcal{A}(S_t)$:} \\ $\pi(a S_t) \leftarrow \left\{ \begin{array}{c} 1 - \varepsilon + \varepsilon/ \mathcal{A}(S_t) & \text{if $a = A^*$} \\ \varepsilon/ \mathcal{A}(S_t) & \text{if $a \neq A^*$} \end{array} \right. \end{array} \right. $	to ensure that the ty we select each not zero.

MC Control without Exploring Starts

On-policy: You learn about the policy you used to make decisions.

Off-policy: You learn about a policy that is different from the one you used to make decisions.

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                   (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```


Policy iteration works for ϵ -soft policies

Why an ϵ -greedy policy w.r.t. q_{π} is an improvement over any ϵ -soft policy $\pi?$

$$\begin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a} \pi'(a|s)q_{\pi}(s,a) \\ &= \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s,a) + (1-\varepsilon) \max_{a} q_{\pi}(s,a) \\ &\geq \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s,a) + (1-\varepsilon) \sum_{a} \frac{\pi(a|s) - \frac{\varepsilon}{|\mathcal{A}(s)|}}{1-\varepsilon} q_{\pi}(s,a) \\ &= \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s,a) - \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} q_{\pi}(s,a) + \sum_{a} \pi(a|s)q_{\pi}(s,a) \\ &= v_{\pi}(s). \end{aligned}$$

Next class

- What <u>I</u> plan to do:
 - Finish overview of Monte Carlo Methods (Chapter 5 of the textbook)
 - Overview of Temporal-Difference Learning (Chapter 6 of the textbook)
 - Overview of n-step Bootstrapping (Chapter 7 of the textbook)
- What I recommend **YOU** to do for next class:
 - Read Chapters 6 and 7 of the textbook.
 - Submit Practice Quiz and Programming Assignment for Sample-based Learning Methods: TD Learning Methods for Prediction (Week 2).
 - Submit Practice Quiz and Programming Assignment for Sample-based Learning Methods: TD Learning Methods for Control (Week 3).