"The wide world is all about you: you can fence yourselves in, but you cannot forever fence it out."

J. R. R. Tolkien, The Fellowship of the Ring

CMPUT 655 RL 1 Class 12/12

Image from THE ONE RING™ Roleplaying Game, Second Edition.

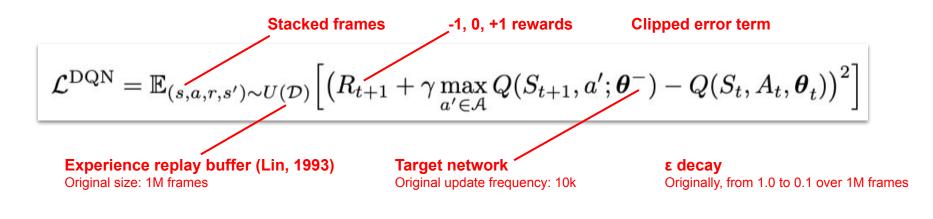
Marlos C. Machado

Reminders

- The final Project Report is due on December 15th.
 - The link on eClass is already open.
 - I cannot accept late submissions.
- The Student Perspectives of Teaching (SPOT) Survey is now available.

Please, interrupt me at any time!

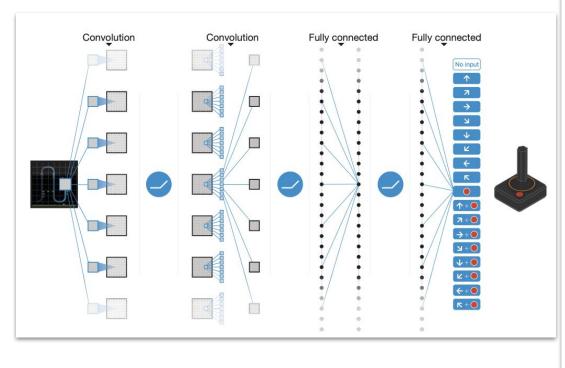
Last Class: Deep Q-Network (DQN) [Mnih et al. 2013, 2015]

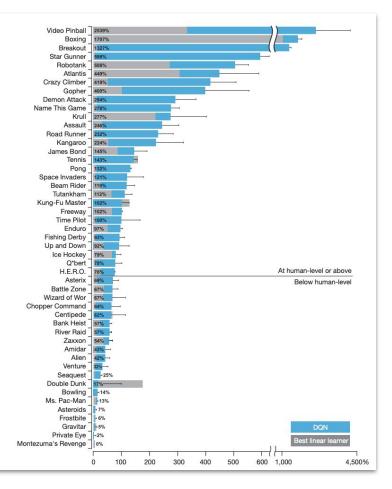


$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \Big[R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(S_{t+1}, a'; \boldsymbol{\theta}^-) - Q(S_t, A_t, \boldsymbol{\theta}_t) \Big] \nabla_{\boldsymbol{\theta}_t} Q(S_t, A_t; \boldsymbol{\theta}_t)$$

RMSProp

Last Class: Deep Q-Network [Mnih et al. 2013, 2015]





Deep Q-Network (DQN) [Mnih et al. 2013, 2015]

Game	Random Play	Best Linear Learner	Contingency (SARSA)	Human	DQN (± std)	Normalized DQN (% Human)
Alien	227.8	939.2	103.2	6875	3069 (±1093)	42.7%
Amidar	5.8	103.4	183.6	1676	739.5 (±3024)	43.9%
Assault	222.4	628	537	1496	3359(±775)	246.2%
Asterix	210	987.3	1332	8503	6012 (±1744)	70.0%
Asteroids	719.1	907.3	89	13157	1629 (±542)	7.3%
Atlantis	12850	62687	852.9	29028	85641(±17600)	449.9%
Bank Heist	14.2	190.8	67.4	734.4	429.7 (±650)	57.7%
Battle Zone	2360	15820	16.2	37800	26300 (±7725)	67.6%
Beam Rider	363.9	929.4	1743	5775	6846 (±1619)	119.8%
Bowling	23.1	43.9	36.4	154.8	42.4 (±88)	14.7%

7

Deep Q-Network (DQN) [Mnih et al. 2013, 2015]

Game	Random Play	Best Linear Learner	Contingency (SARSA)	Human	DQN (± std)	Normalized DQN (% Human)
Alien	227.8	939.2	103.2	6875	3069 (±1093)	42.7%
Amidar	5.8	103.4	183.6	1676	739.5 (±3024)	43.9%
Assault	222.4	628	537	1496	3359(±775)	246.2%
Asterix	210	987.3	1332	8503	6012 (±1744)	70.0%
Asteroids	719.1	907.3	89	13157	1629 (±542)	7.3%
Atlantis	12850	62687	852.9	29028	85641(±17600)	449.9%
Bank Heist	14.2	190.8	67.4	734.4	429.7 (±650)	57.7%
Battle Zone	2360	15820	16.2	37800	26300 (±7725)	67.6%
Beam Rider	363.9	929.4	1743	5775	6846 (±1619)	119.8%
Bowling	23.1	43.9	36.4	154.8	42.4 (±88)	14.7%

Tables can be misleading [Machado et al. 2018]

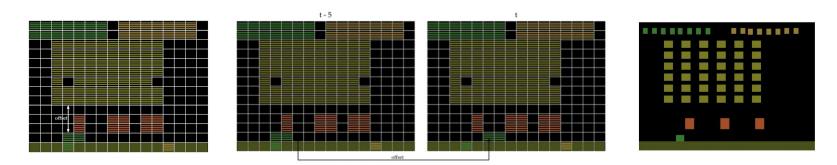
• Tables imply an apples-to-apples comparison, even when they are not:

- DQN saw much more data than the baselines.
- DQN measured its performance differently than the baselines.
- DQN used domain knowledge other baselines didn't:
 - Lives signal
 - Action set

This can be a big deal [Liang et al. 2016]

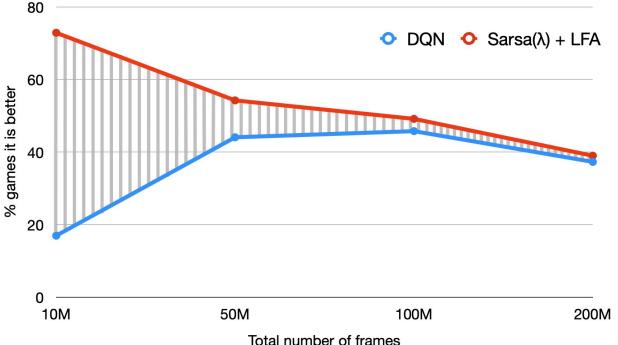
State of the Art Control of Atari Games Using Shallow Reinforcement Learning

Yitao Liang[†], Marlos C. Machado[‡], Erik Talvitie[†], and Michael Bowling[‡] [†]Franklin & Marshall College Lancaster, PA, USA {yliang, erik.talvitie}@fandm.edu {machado, mbowling}@ualberta.ca



It is not that we should be using linear function approxim. ^[Liang et al. 2016; Machado et al. 2018] but we should understand

and be careful with our claims



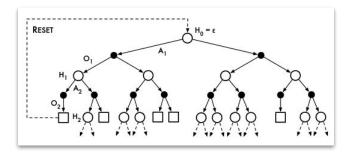
11

Do we need clever data processing?

Understanding your environment [Machado et al. 2018]

- The Arcade Learning Environment (was) deterministic, episodic, and guaranteed a unique starting state, and
- in most Atari 2600 games, purpose matters more than individual actions, i.e., most Atari 2600 games have important high-level goals, but individual actions have little impact.

Can we exploit that?



The Brute

[Bellemare et al. 2015, Machado et al. 2018]

- A history is a sequence of actions and observations $ht = a_1, o_1, a_2, o_2, ..., o_t$, with the reward r_t included in the observation o_t .
- Given a full history tree of finite depth, estimating the value for any history-action pair is simply a matter of bottom-up dynamic programming.
- In fact, we can leverage an important property of history trees: Consider a partially known history tree for a deterministic environment and define $\hat{q}(h, a) = -\infty$ for any unknown history-action pair. Then the equation

$$\hat{q}(h,a) = \sum_{h'} p(h' \mid h,a) \left(r(h,a,h') + \gamma \max_{b \in \mathcal{A}} \hat{q}(h',b)
ight)$$

defines a lower bound on $q_{\star}(h, a)$.

Marlos C. Machado

The Brute

[Bellemare et al. 2015, Machado et al. 2018]

- When learning proceeds in episodes, we can update the lower bound $\hat{q}(h, a)$ iteratively.
- Exploration: ε-greedy policy, with a decreasing ε.

	$H_0 = \varepsilon$	
¢,		0
DQN 3,501 (420) 4,687 (704) 32.2 (0.1) 1,397 (215)	* *	
$\begin{array}{cccc} 32.2 & (0.1) \\ 1,397 & (215) \\ 673 & (18) \end{array}$		

The Brute

(1,018)

(178)

6,909

1,132

 $Sarsa(\lambda) + Blob-PROST$

(872)

(508)

4,173

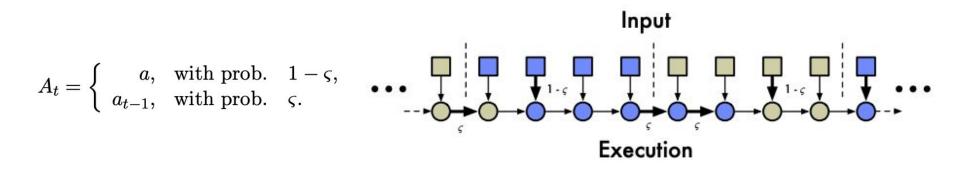
2,098

Game

ASTERIX

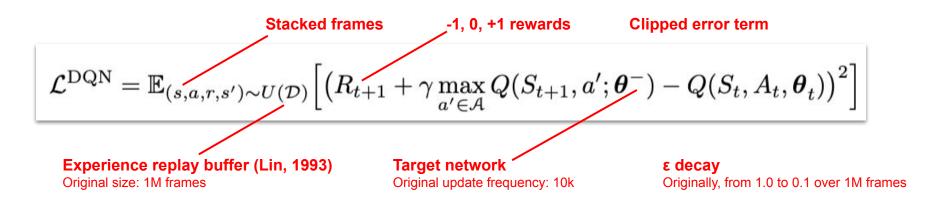
BEAM RIDER

Sticky Actions: Introducing Stochasticity to the ALE [Machado et al. 2018]



Game	The Brute			$Sarsa(\lambda) + Blob-PROST$			DQN					
Game	Dete	ermin.	Stoc	chast.	Dete	rmin.	Stoc	hast.	Dete	rmin.	Stoc	hast.
Asterix	6909	(1018)	308	(31)	4173	(872)	3411	(414)	3501	(420)	3123	(96)
BEAM RIDER	1132	(178)	428	(18)	2098	(508)	1851	(407)	4687	(704)	4552	(849)
FREEWAY	1.1	(0.4)	0.0	(0.0)	32.1	(0.4)	31.8	(0.3)	32.2	(0.1)	31.6	(0.7)
Seaquest	621	(192)	81	(7)	1340	(245)	1204	(190)	1397	(215)	1431	(162)
SPACE INVADERS	1432	(226)	148	(11)	723	(86)	583	(31)	673	(18)	687	(37)

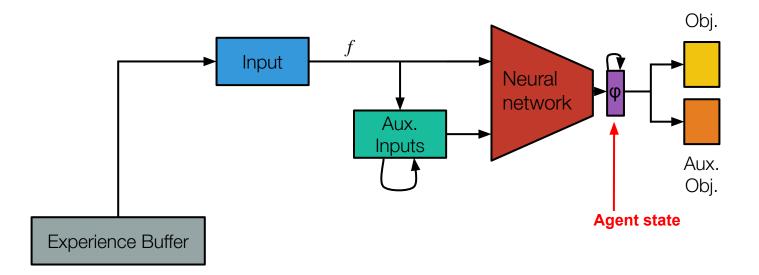
Last Class: Deep Q-Network (DQN) [Mnih et al. 2013, 2015]

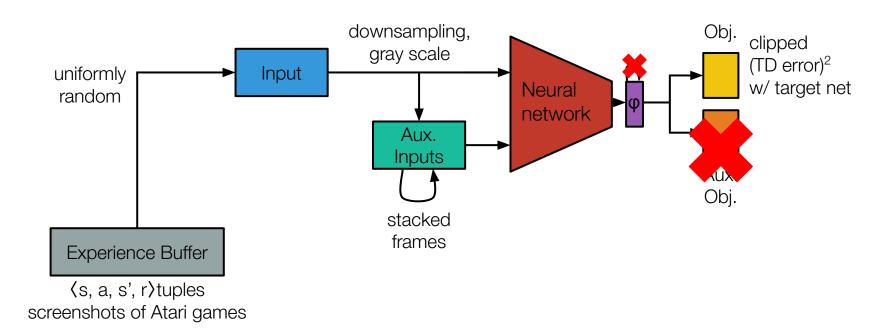


$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \Big[R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(S_{t+1}, a'; \boldsymbol{\theta}^-) - Q(S_t, A_t, \boldsymbol{\theta}_t) \Big] \nabla_{\boldsymbol{\theta}_t} Q(S_t, A_t; \boldsymbol{\theta}_t)$$

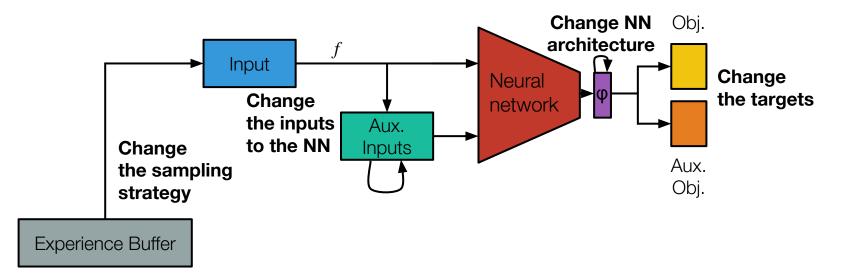
RMSProp

An overview of Deep RL algorithms



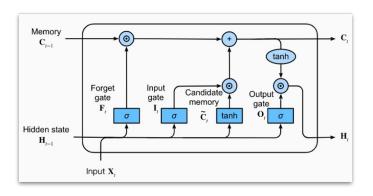


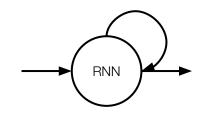
An overview of Deep RL algorithms

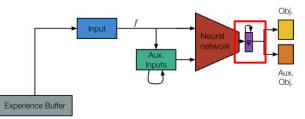


Changing the neural network architecture

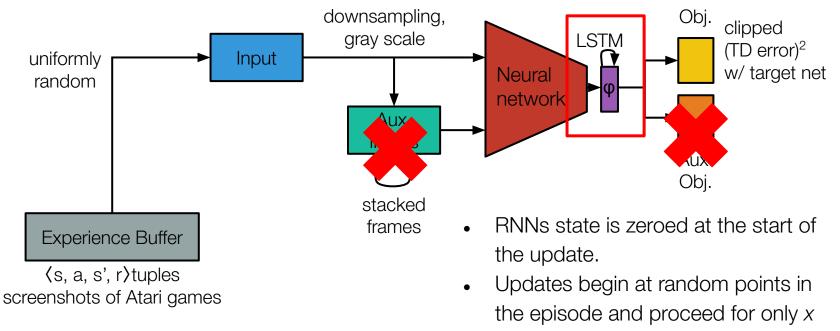
- [Hausknecht, et al. 2015]
 - DQN's memory is limited to 4 timesteps and framestacking is an extra parameter.
 - The problem becomes a POMDP
 - What if instead we *learned* what to remember?
 - LSTM: Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

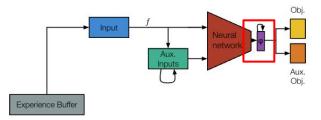






Deep Recurrent Q-Learning (DRQN) [Hausknecht, et al. 2015]

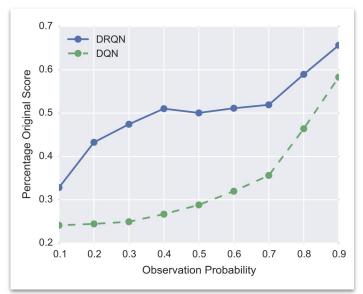




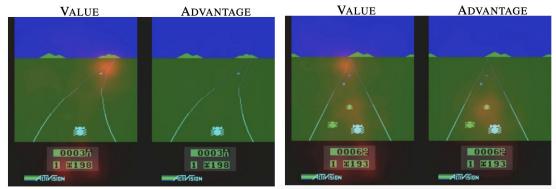
Deep Recurrent Q-Learning (DRQN) [Hausknecht, et al. 2015]

	$DRQN \pm std$	DQN	$1\pm std$
Game		Ours	Mnih et al.
Asteroids	$1020 (\pm 312)$	$1070 (\pm 345)$	$1629 (\pm 542)$
Beam Rider	$3269(\pm 1167)$	6923 (±1027)	$6846 (\pm 1619)$
Bowling	$62 (\pm 5.9)$	$72(\pm 11)$	42 (±88)
Centipede	$3534(\pm 1601)$	$3653 (\pm 1903)$	$8309 (\pm 5237)$
Chopper Cmd	$2070(\pm 875)$	$1460 (\pm 976)$	$6687 (\pm 2916)$
Double Dunk	$-2(\pm 7.8)$	$-10(\pm 3.5)$	$-18.1(\pm 2.6)$
Frostbite	2875 (± 535)	$519(\pm 363)$	$328.3(\pm 250.5)$
Ice Hockey	$-4.4(\pm 1.6)$	$-3.5(\pm 3.5)$	$-1.6(\pm 2.5)$
Ms. Pacman	$2048(\pm 653)$	$2363(\pm 735)$	$2311(\pm 525)$

DRQN is said to be more robust to partial observability. Agent trained on fully-observable setting and evaluated in a flickering setting.

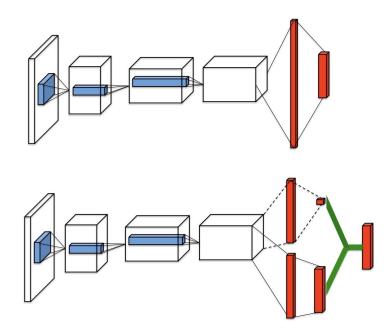


- An architecture designed with reinforcement learning in mind.
- The dueling architecture explicitly separates the representation of state values and (state-dependent) action advantages.
 - $\circ \quad a_{\pi}(s, a) = q_{\pi}(s, a) v_{\pi}(s) \rightarrow \text{Note } \mathbb{E}_{\pi}[a_{\pi}(s, a)] = 0 \text{ because } v_{\pi}(s) = \mathbb{E}_{\pi}[q_{\pi}(s, a)].$
- Key claim: for many states, it is unnecessary to estimate the value of each action choice.



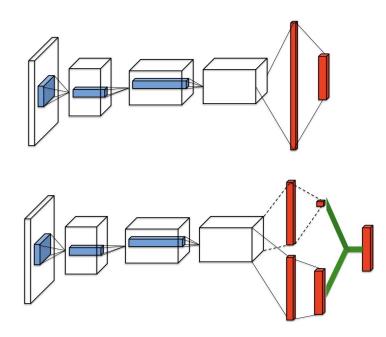
Marlos C. Machado

30



- Key innovation is how to combine the two layers.
- Let V(s; $\boldsymbol{\theta}$, $\boldsymbol{\beta}$) \approx v_{π}(s), and A(s, a; $\boldsymbol{\theta}$, $\boldsymbol{\alpha}$) \approx a_{π}(s, a).
 - We might be tempted to do: Q(s, a; $\boldsymbol{\theta}$, $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$) = V(s; $\boldsymbol{\theta}$, $\boldsymbol{\beta}$) + A(s, a; $\boldsymbol{\theta}$, $\boldsymbol{\alpha}$).

But why V and A will have any of the semantics we expect them to have? This equation is actually **unidentifiable**!



• Instead, we force the adv. function to have zero adv. at the chosen action:

 $\begin{aligned} \mathsf{Q}(\mathsf{s},\,\mathsf{a};\,\pmb{\theta},\,\pmb{\alpha},\,\pmb{\beta}) &= \mathsf{V}(\mathsf{s};\,\pmb{\theta},\,\pmb{\beta}) + \\ (\mathsf{A}(\mathsf{s},\,\mathsf{a};\,\pmb{\theta},\,\pmb{\alpha}) - \max_{\mathsf{a}'} \mathsf{A}(\mathsf{s}',\,\mathsf{a};\,\pmb{\theta},\,\pmb{\alpha})). \end{aligned}$

• For the optimal action we end up with

 $Q(s, a^*; \boldsymbol{\theta}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = V(s; \boldsymbol{\theta}, \boldsymbol{\beta}).$

Now V(s; θ , β) provides an estimate of the VF, while the other stream produces an estimate of the adv. function.

• Alternatively, one can use the average instead of the max, you lose semantics but you gain stability.

$$\begin{aligned} \mathsf{Q}(\mathsf{s},\,\mathsf{a};\,\boldsymbol{\theta},\,\boldsymbol{\alpha},\,\boldsymbol{\beta}) &= \mathsf{V}(\mathsf{s};\,\boldsymbol{\theta},\,\boldsymbol{\beta}) + \\ & (\mathsf{A}(\mathsf{s},\,\mathsf{a};\,\boldsymbol{\theta},\,\boldsymbol{\alpha}) - 1/|\mathsf{A}|\sum_{\mathsf{a}'}\mathsf{A}(\mathsf{s}',\,\mathsf{a};\,\boldsymbol{\theta},\,\boldsymbol{\alpha})). \end{aligned}$$

• "We follow closely the setup of van Hasselt et al. (2015) and compare to their results using single-stream Q-networks."

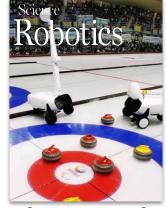
Atlantis		296
Tennis	180.00%	296
Space Invaders	180.00%	
Up and Down	97.90%	
Up and Down Phoenix	94.33%	
Enduro	86.35%	
Chopper Command	82.20%	
Seaguest	80.51%	
Yars' Revenge	73.63%	
Frostbite	70.02%	
Time Pilot	69.73%	
Asterix	63.17%	
Road Runner	57.57%	
Bank Heist	57.19%	
Krull	55.85%	
Ms. Pac-Man	53.76%	
Star Gunner	48.92%	
Surround	44.24%	
Double Dunk	42.75%	
River Raid	39.79%	
Venture	33.60%	
Amidar	31.40%	
Fishing Derby Q*Bert	28.82%	
Q*Bert	27.68% 27.45%	
Zaxxon	26.45%	
Ice Hockey	24.68%	
Crazy Climber Centipede	21.68%	
Defender	21.08%	
Name This Game	16.28%	
Battle Zone	15.65%	
Kung-Fu Master	15.56%	
Kangaroo	14.39%	
Kangaroo	10.34%	
Berzerk	9.86%	
Boxing	8.52%	
Gopher	6.02%	
Gravitar	5.54%	
Wizard Of Wor	5.24%	
Demon Attack	4.78%	
Asteroids	4.51%	
H.E.R.O.	2.31%	
Skiing	1.29%	
Pitfall!	0.45%	
Robotank	0.32%	
Pong	0.24%	
Montezuma's Revenge	0.00%	
Private Eye	-0.04%	
Bowling	-1.89%	
Tutankham	-3.38%	1
James Bond Solaris	-3.42%	
Solaris	-7.37%	
Beam Rider	-9.71%	
Assault	-14.93%	
Breakout	-17.56%	
Video Pinball	-68.31%	
Freeway	-100.00%	

Thinking carefully about your inputs

A common thread across many successes in the "real-world"

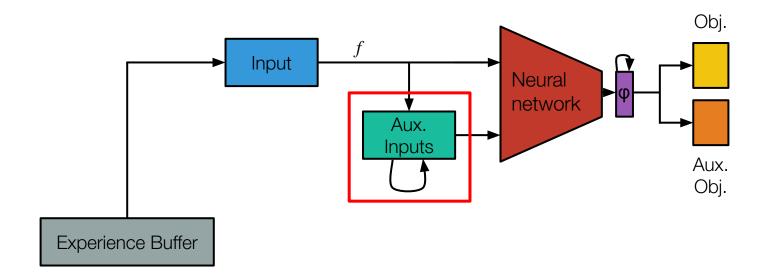
[*Pilarski et al. 2012]

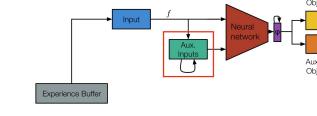
[Mnih et al. 2020]



[Won et al. 2020]

[Bellemare et al. 2020]

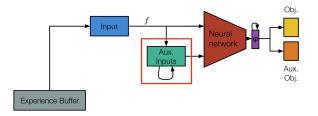


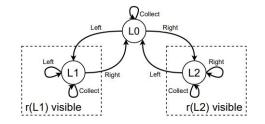


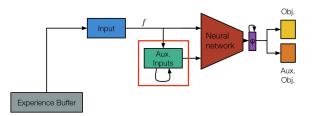
- Traditional agent-state function: $\boldsymbol{x}_{t+1} = u_{\phi}(\boldsymbol{x}_t, a_t, \boldsymbol{o}_{t+1})$
- Auxiliary input: $M : \mathcal{T} \to \mathbb{R}^N$, which acts as a summarizing function. $x_{t+1} \doteq u_{\phi}(x_t, a_t, o_{t+1}, M_{t+1}) \in \mathbb{R}^k$
- Auxiliary inputs can summarize the past and the future:

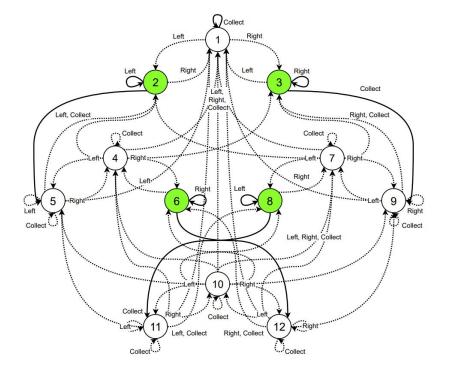
 $egin{aligned} m{M}_t &\doteq m{M}(\{m{o}_0, a_0, ..., m{o}_t, a_t, m{O}_{t+1}, \dots, m{O}_L\}) \ &= m{M}_h(\{m{o}_0, a_0, ..., m{o}_t, a_t\}) + \mathbb{E}_{m{M}_f}\left[\{m{O}_{t+1}, \dots, m{O}_L\}
ight]. \end{aligned}$

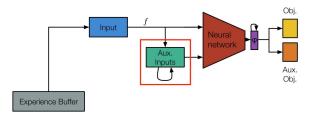
• Auxiliary inputs can be used to discriminate between observations that would otherwise be aliased, leading to more expressive features that smoothly interpolate between different states.

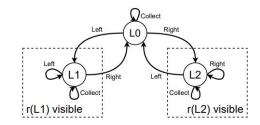




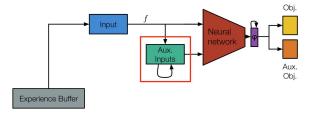


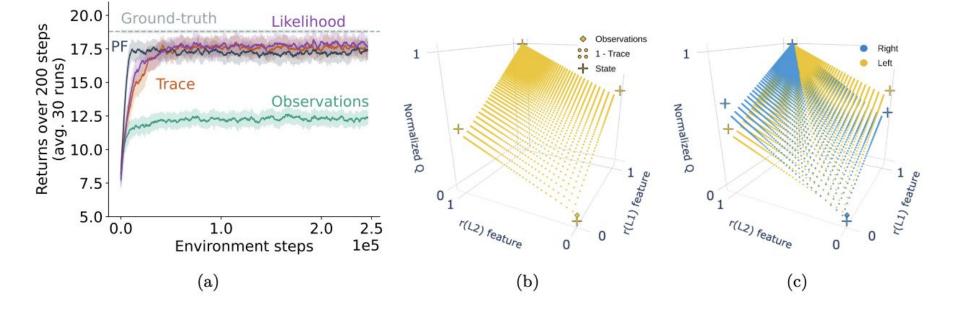






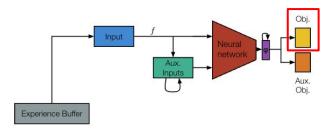
	0. Is the agent in location 0?
	0. Is the agent in location 0? 1. Is the agent in location 1?
	2. Is the agent in location 2?
	3. Is the reward in location 1 observable and missing?
$oldsymbol{o}_t \doteq$	4. Is the reward in location 1 observable and present?
507	5. Is the reward in location 1 unobservable?
	6. Is the reward in location 2 observable and missing?
	7. Is the reward in location 2 observable and present?
	8. Is the reward in location 2 unobservable?

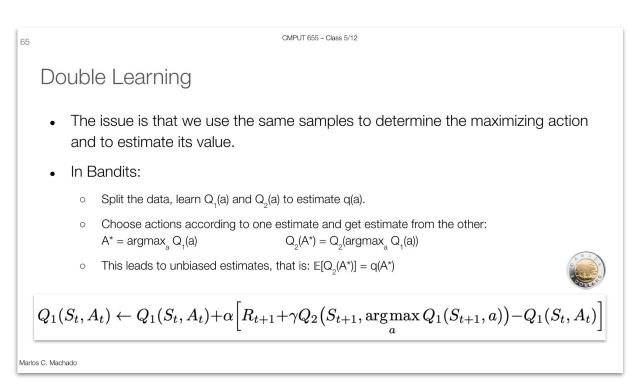


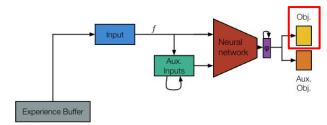


CMPUT 655 - Class 12/12

Changing the target function





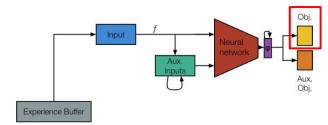


Instead of minimizing $\mathcal{L}^{\mathrm{DQN}} = \mathbb{E}_{(s,a,r,s') \sim U(\mathcal{D})} \left[\left(R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(S_{t+1}, a'; \boldsymbol{\theta}^{-}) - Q(S_t, A_t, \boldsymbol{\theta}_t) \right)^2 \right]$

Double DQN instead minimizes $\mathcal{L}^{\text{DDQN}} = \mathbb{E}_{(s,a,r,s')\sim U(\mathcal{D})} \Big[\big(R_{t+1} + \gamma Q(S_{t+1}, \arg\max_{a\in\mathcal{A}} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}^-) - Q(S_t, A_t; \boldsymbol{\theta}_t) \big)^2 \Big]$

Instead of explicitly maintaining a second value function, DDQN proposes to evaluate the greedy policy according to the online network, but using the *target* network to estimate its value. No need for an additional network.

.



1

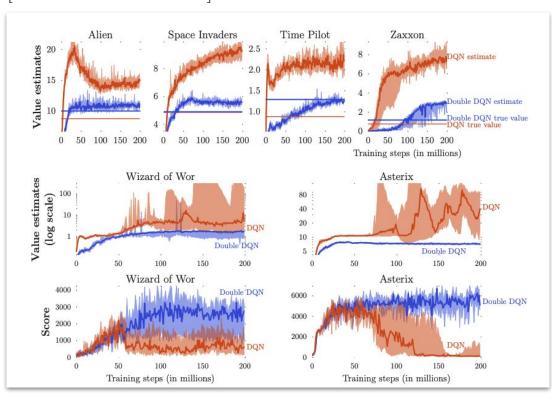
Instead of minimizing

$$\mathcal{L}^{\mathrm{DQN}} = \mathbb{E}_{(s,a,r,s') \sim U(\mathcal{D})} \Big[\big(R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(S_{t+1},a'; \boldsymbol{\theta}^-) - Q(S_t, A_t, \boldsymbol{\theta}_t) \big)^2 \Big]$$

Double DQN instead minimizes $\mathcal{L}^{\text{DDQN}} = \mathbb{E}_{(s,a,r,s')\sim U(\mathcal{D})} \Big[\big(R_{t+1} + \gamma Q(S_{t+1}, \arg\max_{a\in\mathcal{A}} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}^-) - Q(S_t, A_t; \boldsymbol{\theta}_t) \big)^2 \Big]$

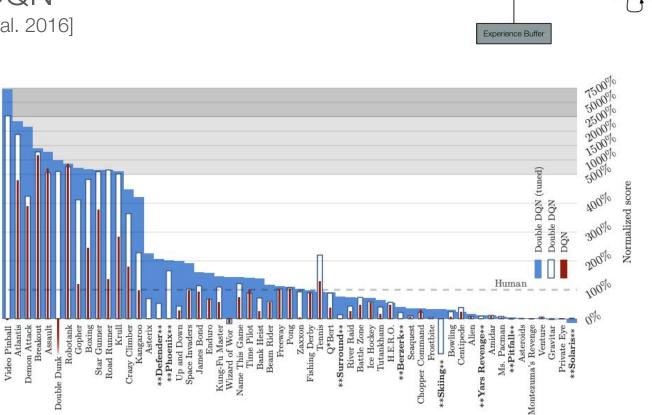
• Notice, there's no coinflip.

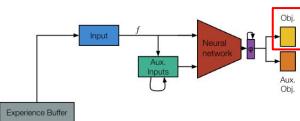
Instead of explicitly maintaining a second value function, DDQN proposes to evaluate the greedy policy according to the online network, but using the *target* network to estimate its value. No need for an additional network.



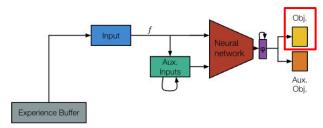
Experience Buffer

- 6 random seeds
- Darker line: median
 Shaded area: 10% and 90%
 quantiles with linear interp.
- Straight lines are the MC estimates of the returns after learning.





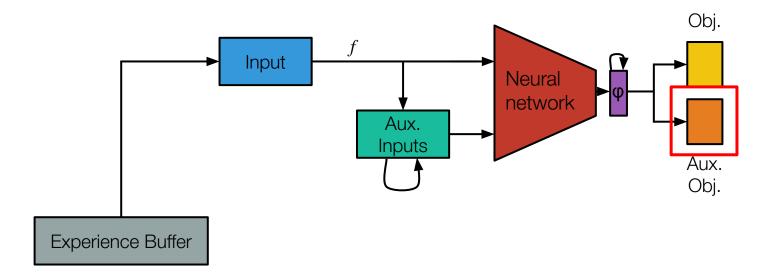
CMPUT 655 - Class 12/12

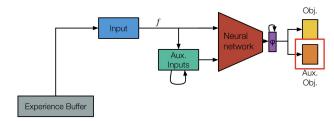


	Game	Random	Human	DQN	Double DQN
	Alien	227.80	6875.40	3069.33	2907.30
	Amidar	5.80	1675.80	739.50	702.10
	Assault	222.40	1496.40	3358.63	5022.90
# seeds?	Asterix	210.00	8503.30	6011.67	15150.00
some measure of spread?	Asteroids	719.10	13156.70	1629.33	930.60
max over learning curve?	Atlantis	12850.00	29028.10	85950.00	64758.00
	Bank Heist	14.20	734.40	429.67	728.30
	Battle Zone	2360.00	37800.00	26300.00	25730.00
	Beam Rider	363.90	5774.70	6845.93	7654.00
	Bowling	23.10	154.80	42.40	70.50
	Boxing	0.10	4.30	71.83	81.70
	Breakout	1.70	31.80	401.20	375.00

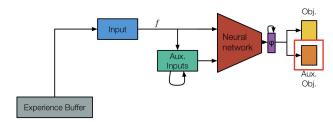
Table 3: Raw scores for the no-op evaluation condition (5 minutes emulator time). DQN as given by Mnih et al. (2015).

Auxiliary Tasks [Jaderberg et al. 2016]

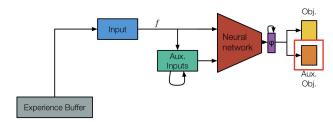




- UNsupervised REinforcement and Auxiliary Learning (UNREAL).
- Idea: To improve the learned representation by taking into consideration other aspects of the env. that, maybe, are not directly associated with rewards.
 - Inspired by unsupervised learning.
- What should one learn about in the "absence" of rewards?
- Very related to ideas like predictive state representations (Littman et al. 2001) and general value functions (Sutton et al. 2011).
- Agent has a convolutional neural network and LSTM as backbone.

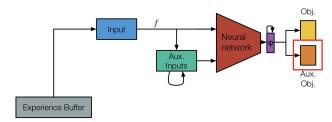


$$\mathcal{L}^{\text{UNREAL}} = \mathcal{L}^{\text{DQN}} + \beta_c \sum_c \mathcal{L}_c^{\text{UNREAL}}$$



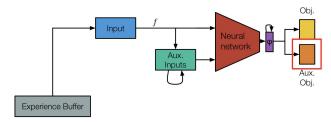
$$\mathcal{L}^{\text{UNREAL}} = \mathcal{L}^{\text{DQN}} + \beta_c \sum_c \mathcal{L}_c^{\text{UNREAL}}$$

• What auxiliary tasks should one consider?

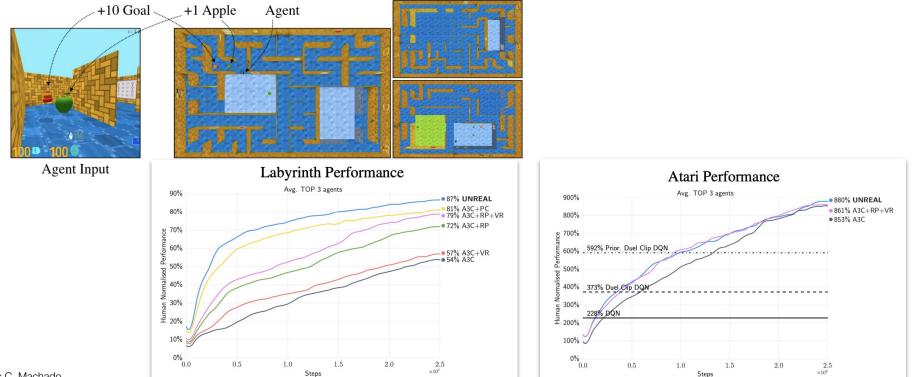


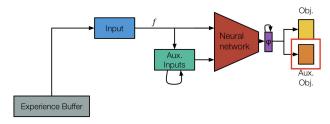
$$\mathcal{L}^{\text{UNREAL}} = \mathcal{L}^{\text{DQN}} + \beta_c \sum_c \mathcal{L}_c^{\text{UNREAL}}$$

- What auxiliary tasks should one consider?
 - Pixel changes
 - Network features
 - Reward prediction



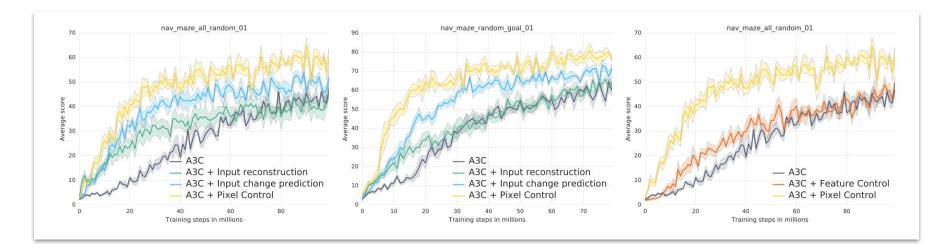
Auxiliary Tasks [Jaderberg et al. 2016]





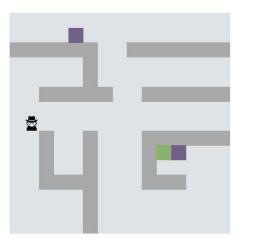
Auxiliary Tasks [Jaderberg et al. 2016]

• An ablation:



What are the best auxiliary tasks? [Wang et al. 2022]

• What are the properties of good representations?



Setting: Transfer Learning Auxiliary tasks:

- Input Reconstruction
- Next Agent State Prediction (NAS)

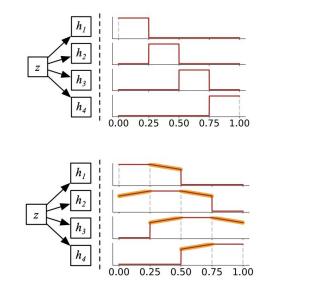
Experience Buffer

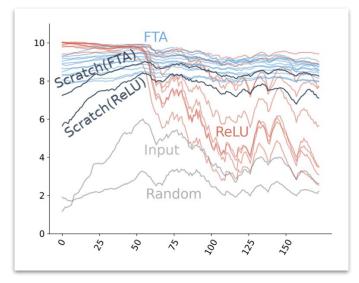
Aux. Inputs

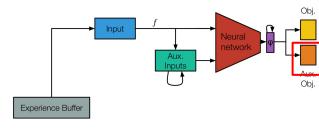
- Successor Feature Prediction
- Reward Prediction
- Expert Target Prediction (XY)
- Virtual Value Function Learning
- Augmented Temporal Contrast

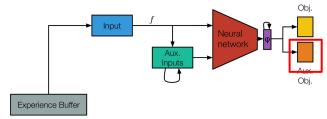
What are the best auxiliary tasks? [Wang et al. 2022]

- Base agent: DQN with Adam
- Two types of activation function: ReLU and FTA (Pan et al. 2021).

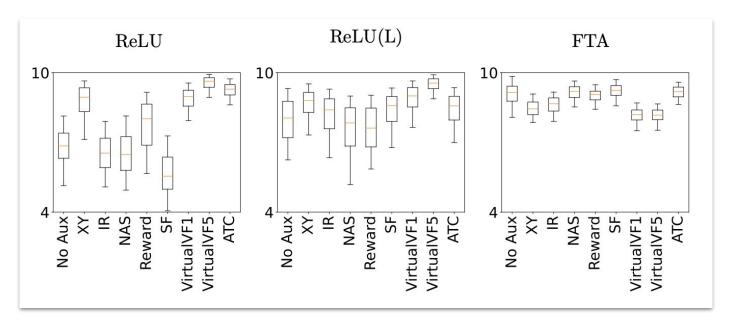




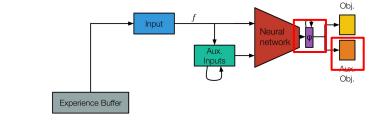




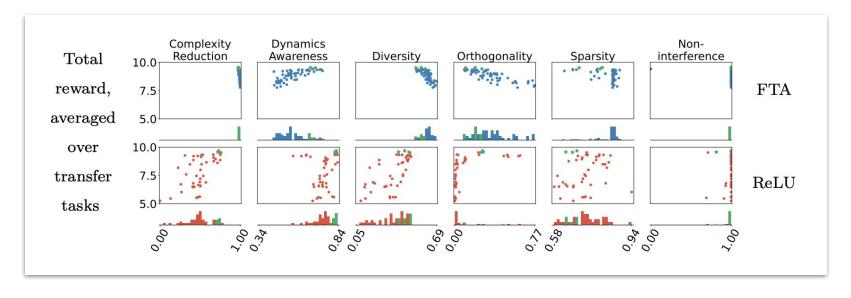
What are the best auxiliary tasks? [Wang et al. 2022]



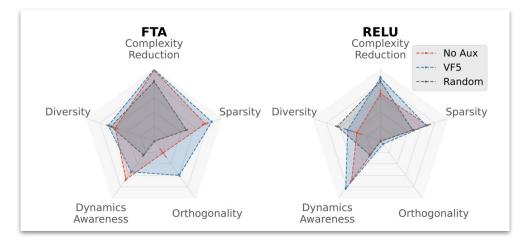
CMPUT 655 - Class 12/12

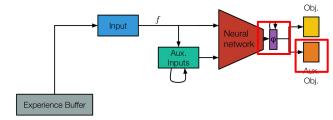


What are the the properties of good representations? [Wang et al. 2022]

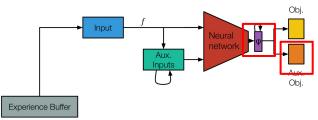


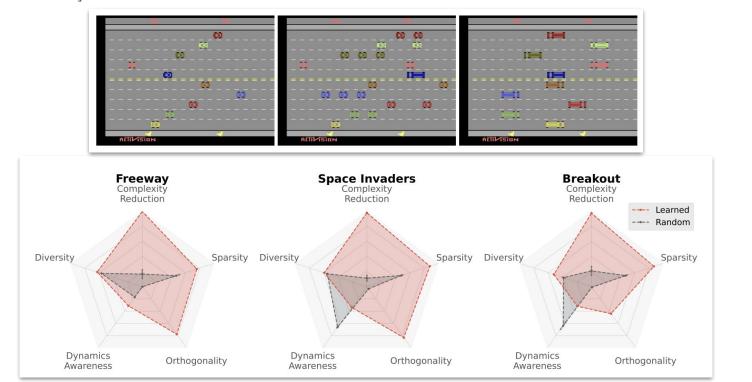
What are the the properties of good representations? [Wang et al. 2022]





What are the the properties of good representations? [Wang et al. 2022]





Marlos C. Machado

CMPUT 655 - Class 12/12

Changing the experience replay buffer

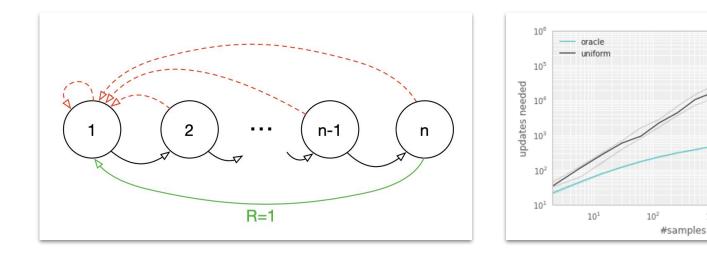
• What if we didn't sample from the experience replay buffer uniformly? What if instead we *prioritized* transitions according to their importance?

10³

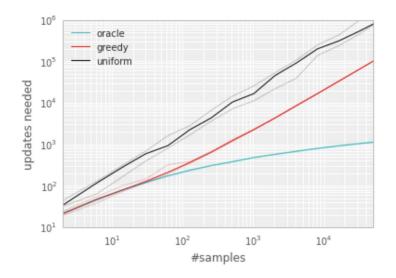
 10^{4}

Prioritized Experience Replay [Schaul et al. 2015]

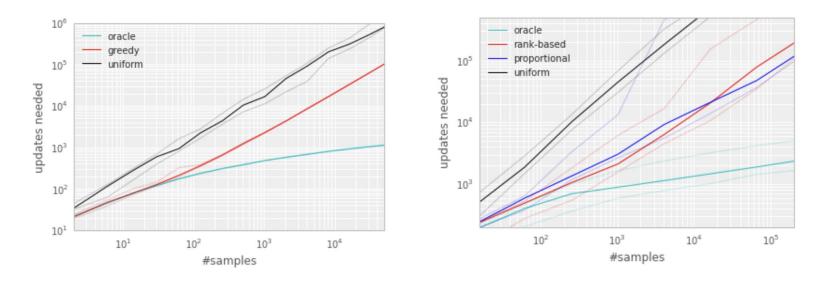
- What if we didn't sample from the experience replay buffer uniformly? What if instead we *prioritized* transitions according to their importance?
- Example:

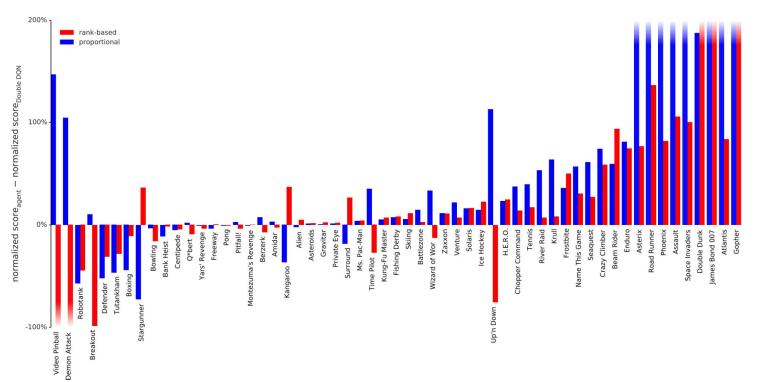


• What about the magnitude of a transition's TD error?



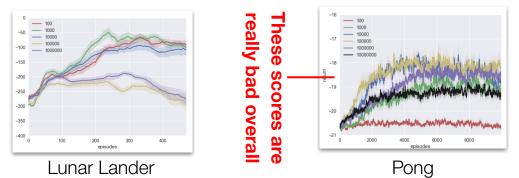
- What about the magnitude of a transition's TD error?
- That's probably too aggressive, let's interpolate between random and this one.





Understanding the Experience Replay Buffer [Zhang & Sutton 2017]

- Should the replay buffer size always be 1M?
 - Obviously, it is task-dependent.
- How can we ensure the latest observation is not ignored?
 - Combined experience replay (CER).
 - It makes learning algorithms more robust to different sizes of the experience replay buffer (in smaller domains, not so much in an Atari game).
- Evaluated only on the RAM state of an Atari game.



Marlos C. Machado

Understanding the Experience Replay Buffer [Fedus et al. 2020]

- We need to disentangle different aspects of experience replay buffers.
 - Capacity: Size of experience replay buffer.
 - Age of a transition: num. of gradient steps taken by the alg. since the transition was generated.
 - Replay ratio: number of gradient updates per environment transition.

		Replay Capacity					
		100,000	316,228	1,000,000	3,162,278	10,000,000	
Oldest Policy	25,000,000	250.000	79.057	25.000	7.906	2.500	
	2,500,000	25.000	7.906	2.500	0.791	0.250	
	250,000	2.500	0.791	0.250	0.079	0.025	
	25,000	0.250	0.079	0.025	0.008	0.003	

Understanding the Experience Replay Buffer [Fedus et al. 2020]

• Some trends in experiments with Rainbow, in 14 Atari games (albeit 3 seeds):

These are

algorithm

dependent

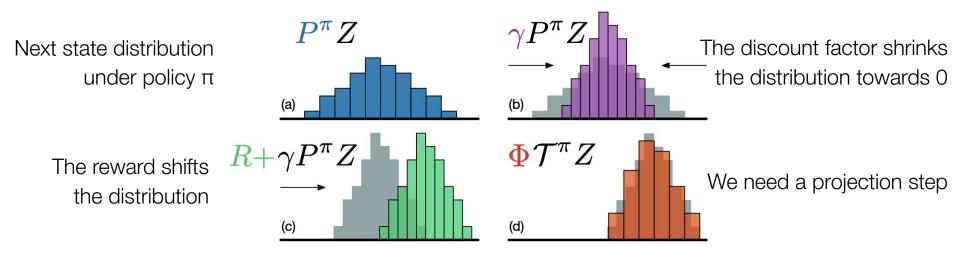
- Increasing replay capacity improves performance.
- Reducing the oldest policy improves performance.
- Increasing buffer size with a fixed replay ratio has varying improvements.

	Replay Capacity				
	100,000	316,228	1,000,000	3,162,278	10,000,000
25,000,000	-74.9	-76.6	-77.4	-72.1	-54.6
2,500,000	-78.1	-73.9	-56.8	-16.7	28.7
250,000	-70.0	-57.4	0.0	13.0	18.3
25,000	-31.9	12.4	16.9		
	2,500,000 250,000	25,000,000 -74.9 2,500,000 -78.1 250,000 -70.0	100,000 316,228 25,000,000 -74.9 -76.6 2,500,000 -78.1 -73.9 250,000 -70.0 -57.4	100,000 316,228 1,000,000 25,000,000 -74.9 -76.6 -77.4 2,500,000 -78.1 -73.9 -56.8 250,000 -70.0 -57.4 0.0	100,000 316,228 1,000,000 3,162,278 25,000,000 -74.9 -76.6 -77.4 -72.1 2,500,000 -78.1 -73.9 -56.8 -16.7 250,000 -70.0 -57.4 0.0 13.0

• *n*-step returns seem to benefit from large replay capacity.

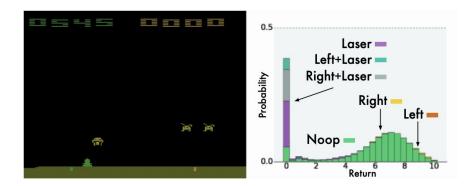
Distributional Q-Learning [Bellemare et al. 2017]

- What if we computed the distribution of the return (instead of the expectation)?
- This is out of the scope of this introductory course, but here's a high-level overview. A distributional Bellman operator with a deterministic reward function:

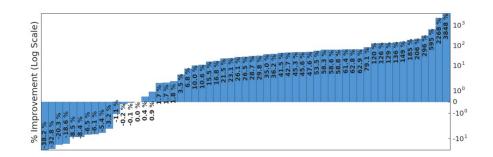


Distributional Q-Learning [Bellemare et al. 2017]

- Why does it work?
 - It makes no difference in the tabular or linear function approximation case (Lyle et al. 2019).
 - Auxiliary tasks? $\ (\Psi)_{/}$
- There's always more nuance
 - "The performance profiles for DQN (Adam) and C51 overlap significantly" (Agarwal et al., 2021).

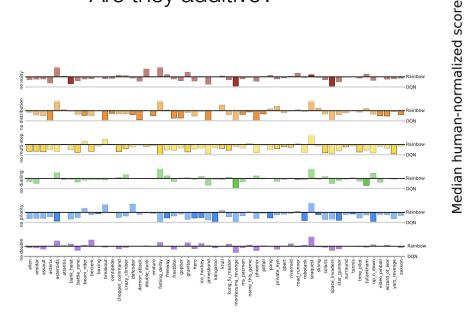


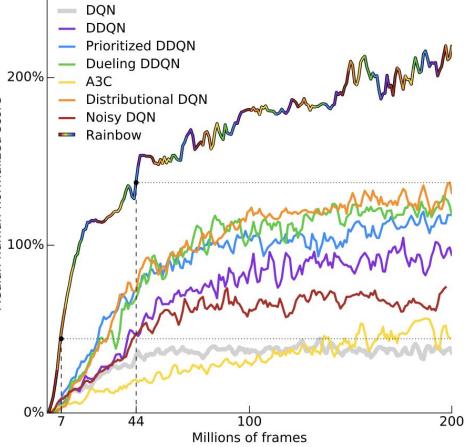
Learned value distribution during an episode.



Rainbow [Hessel et al. 2018]

> • There are many ideas out there. Are they additive?





Marlos C. Machado

