

“A beginning is the time for taking the most delicate care that the balances are correct.”

Frank Herbert, *Dune*

CMPUT 628

Deep RL

Plan

Overview / Refresher of Model-Free Value-Based Reinforcement Learning

Warning! *This will be quick. It is meant to start establishing a common language between us, but it is too fast for you if you are seeing this for the first time.*

Reminder: You can still leave

- I know, I know, *Deep Reinforcement Learning* sounds fun, modern, and hyp-ey

But...

- But this course won't be so well-structured as you (or I) would hope
- I won't teach you how to code fancy deep RL algorithms
- I'm not as much fun as you might think
- I don't care about grades – I might have a reputation :-)
 - *There won't be a practice midterm*
- I don't care if this course ends up being difficult

Please, interrupt me at any time!

Reinforcement learning problem formulation

Reinforcement learning

Reinforcement learning is a computational approach to learning from interaction to maximize a numerical reward signal (Sutton & Barto; 2018)

- The idea of learning by interacting with our environment is very natural
- It is based on the idea of a learning system that wants something, and that adapts its behavior to get that

Some features are unique to reinforcement learning:

- Trial-and-error
- The trade-off between exploration and exploitation
- The delayed credit assignment / delayed reward problem

Reinforcement learning (RL)

- RL is about learning from *evaluative* feedback (an evaluation of the taken actions) rather than *instructive* feedback (being given the correct actions).
 - Exploration is essential in reinforcement learning.
- It is not necessarily about online learning, as it is sometimes said, but more generally about sequential decision-making.
- Reinforcement learning potentially allows for continual learning but in practice, quite often we deploy our systems.
 - Continual learning is important, but this course is not about this.

The Agent-Environment Interface

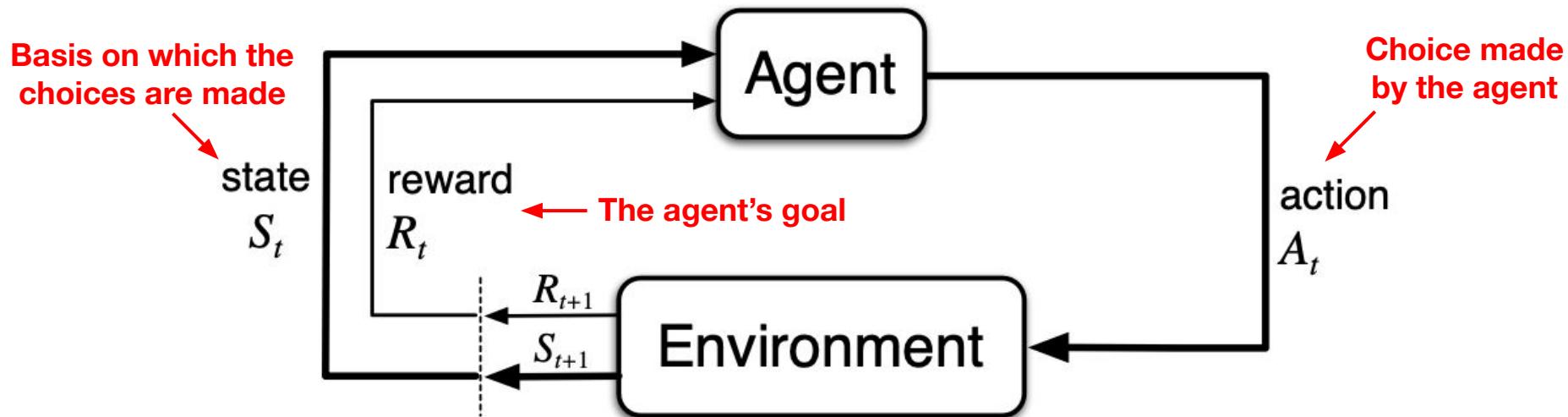


Figure 3.1: The agent–enviro

$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$

The ultimate goal: Maximize Returns

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T$$

End of an episode

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Continuing task

$$\begin{aligned}
 G_t &\doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \\
 &= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} + \cdots) \\
 &= R_{t+1} + \gamma G_{t+1}
 \end{aligned}$$



Tabular value-based model-free reinforcement learning

Value Functions and Policies

- *Value functions* are “functions of states (or state-action pairs) that estimate how good it is for the agent to be in a given state”.
- “How good” means expected return.
- Expected returns depend on how the agent behaves, that is, its *policy*.

Policy

- A policy is a mapping from states to probabilities of selecting each possible action:

$$\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$$

in other words, $\pi(a|s)$ is the probability that $A_t = a$ if $S_t = s$.

Value Function

- The value function of a state s under a policy π , denoted $v_\pi(s)$ or $q_\pi(s, a)$, is the expected return when starting in s , taking a (for q_π), and following π thereafter.

state-value
function for
policy π

$$v_\pi(s) \doteq \mathbb{E}_\pi[G_t \mid S_t = s] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right]$$

$$q_\pi(s, a) \doteq \mathbb{E}_\pi[G_t \mid S_t = s, A_t = a] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

action-value
function for
policy π

Optimal Policies and Optimal Value Functions

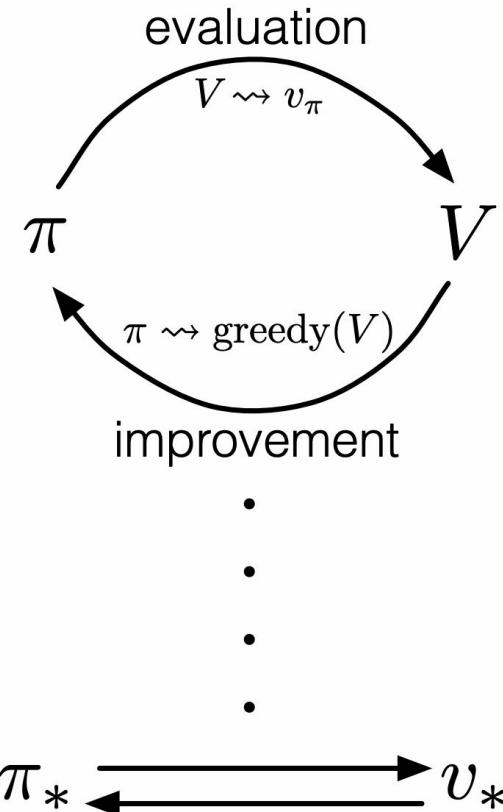
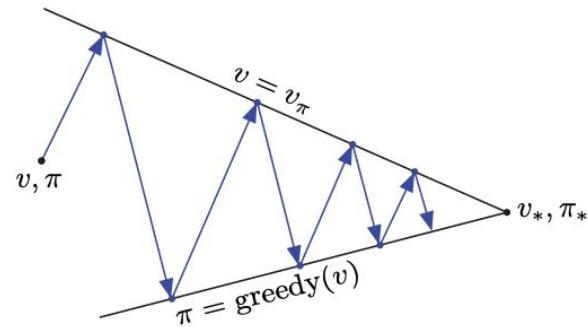
- Value functions define a partial ordering over policies.
 - $\pi \geq \pi'$ iff $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
 - There is always at least one policy that is better than or equal to all other policies. The *optimal policy*.

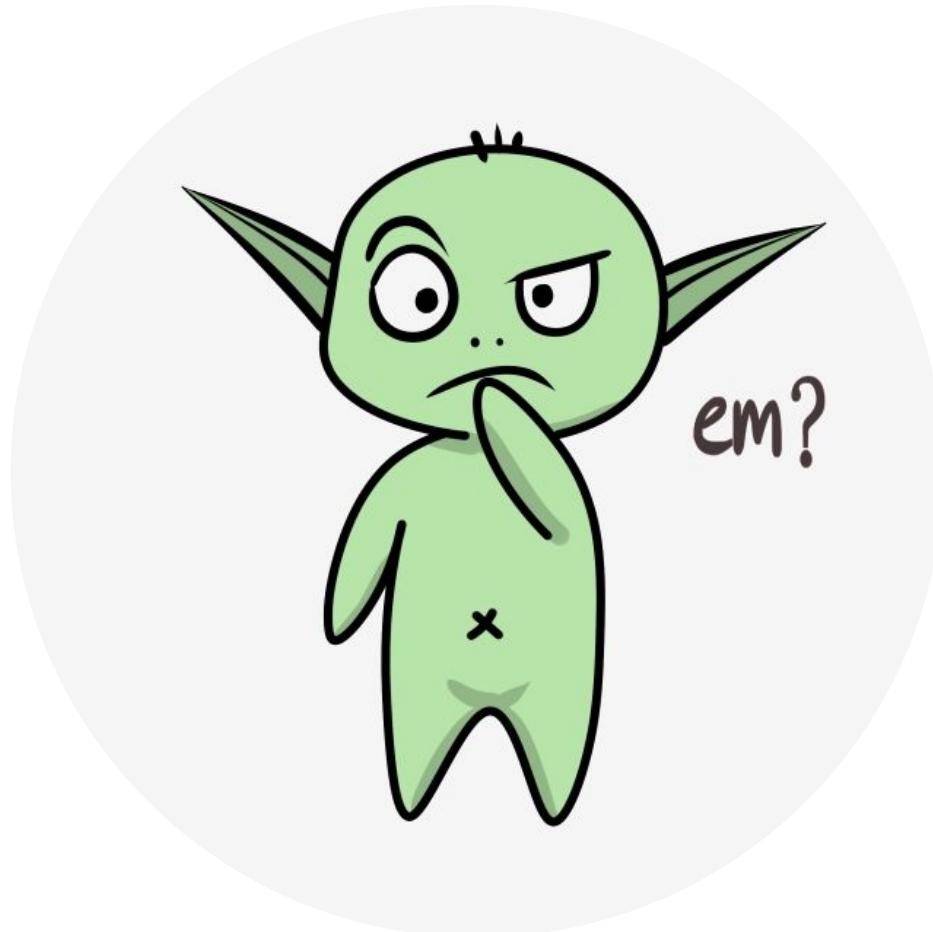
$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$q_*(s, a) \doteq \max_{\pi} q_{\pi}(s, a)$$

Generalized Policy Iteration





TD Prediction

A simple every-visit Monte Carlo method is:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

What if we don't want to wait until we have a full return (end of episode)!

$$\text{NewEstimate} \leftarrow \text{OldEstimate} + \text{StepSize} \left[\text{Target} - \text{OldEstimate} \right]$$

TD Prediction

A simple every-visit Monte Carlo method is:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{G_t - V(S_t)}{\text{Target}} \right]$$

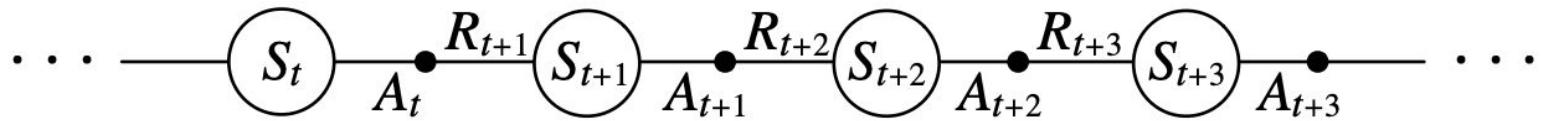
Temporal-Difference Learning:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}{\text{Target}} \right]$$



Sarsa: On-policy Control

- We again use generalized policy iteration (GPI), but now using TD for evaluation.
- We need to learn an action-value function instead of a state-value function.



$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Sarsa: On-policy Control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize $Q(s, a)$, for all $s \in \mathcal{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(\text{terminal}, \cdot) = 0$

Loop for each episode:

 Initialize S

 Choose A from S using policy derived from Q (e.g., ε -greedy)

 Loop for each step of episode:

 Take action A , observe R, S'

 Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$$

$S \leftarrow S'; A \leftarrow A'$;

 until S is terminal

We need to explore!

Q-Learning: Off-Policy Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

↶ ⌂ ↷

- Q directly approximates q_* , regardless of the policy being followed.
- Notice we do not need importance sampling. We are updating a state–action pair. We do not have to care how likely we were to select the action; now that we have selected it we want to learn fully from what happens.

Q-Learning: Off-Policy Control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize $Q(s, a)$, for all $s \in \mathcal{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(\text{terminal}, \cdot) = 0$

Loop for each episode:

 Initialize S

 Loop for each step of episode:

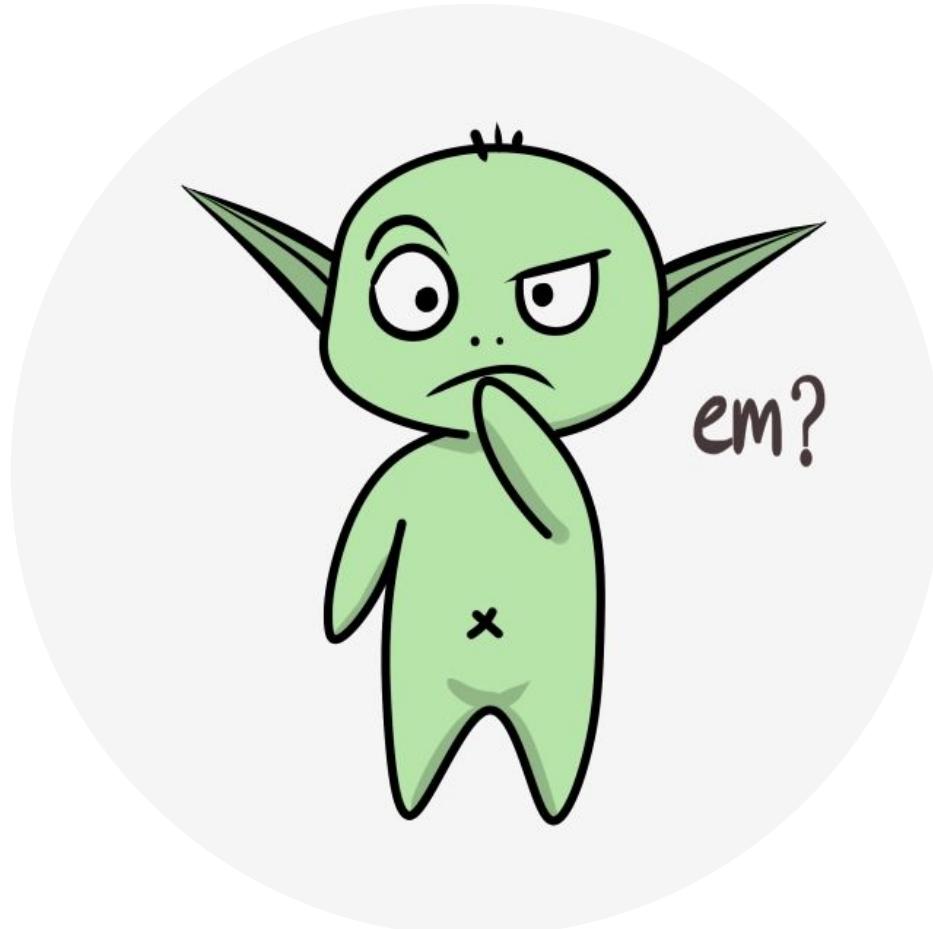
 Choose A from S using policy derived from Q (e.g., ε -greedy)

 Take action A , observe R, S'

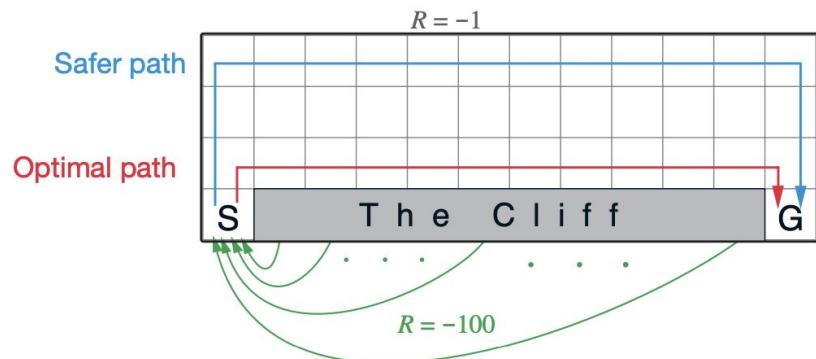
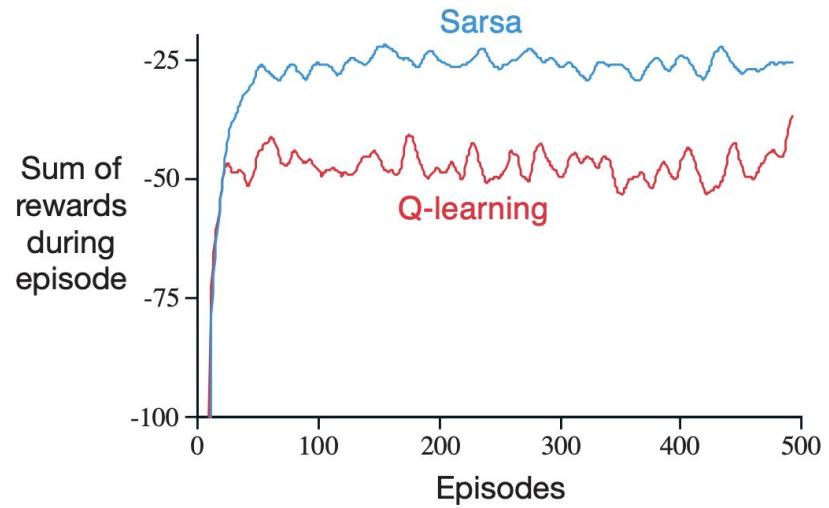
$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

 until S is terminal



Example – Q-Learning vs Sarsa





Model-free value-based reinforcement learning with function approximation

The Prediction Objective (A Notion of Accuracy)

- In the tabular case we can have equality, but with FA, not anymore.
 - Making one state's estimate more accurate invariably means making others' less accurate.
- Mean Squared Error:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2$$

How much do we care about the error in each state s .

Usually, the fraction of time spent in s .
On-policy distribution.

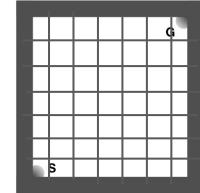
Recipe for Deriving a Concrete Algorithm for SGD

1. Specify a function approximation architecture (parametric form of v_{π}).
2. Write down your objective function.
3. Take the derivative of the objective function with respect to the weights.
4. Simplify the general gradient expression for your parametric form.
5. Make a weight update rule:

$$w = w - \alpha \text{ GRAD}$$

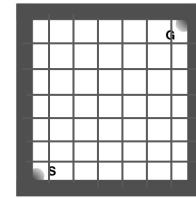
1. Specify a FA architecture (parametric form of v_π)

- We will use *state aggregation with linear function approximation*



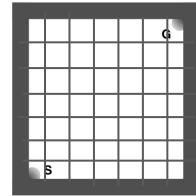
1. Specify a FA architecture (parametric form of v_π)

- We will use *state aggregation with linear function approximation*
- State aggregation
 - The features are always binary with only a single active feature that is not zero



1. Specify a FA architecture (parametric form of v_π)

- We will use *state aggregation with linear function approximation*
- State aggregation
 - The features are always binary with only a single active feature that is not zero
- Value function
 - Linear function

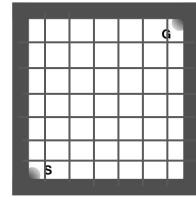


$$v_\pi(s) \approx \hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^\top \mathbf{x}(s) \doteq \sum_{i=1}^d w_i \cdot x_i(s)$$

2. Write down your objective function

- We will use the *value error*

$$\begin{aligned}\overline{\text{VE}}(\mathbf{w}) &\doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^2 \\ &= \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right]^2\end{aligned}$$



3. Take the derivative of the obj. function w.r.t. the weights

$$\begin{aligned}\nabla \overline{\text{VE}}(\mathbf{w}) &= \nabla \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right]^2 \\ &= \sum_{s \in \mathcal{S}} \mu(s) \nabla \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right]^2 \\ &= - \sum_{s \in \mathcal{S}} \mu(s) 2 \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \nabla \mathbf{w}^{\top} \mathbf{x}(s)\end{aligned}$$

4. Simplify the general gradient expression

$$\begin{aligned}\nabla \overline{\text{VE}}(\mathbf{w}) &= - \sum_{s \in \mathcal{S}} \mu(s) 2 \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \boxed{\nabla \mathbf{w}^{\top} \mathbf{x}(s)} \\ &= - \sum_{s \in \mathcal{S}} \mu(s) 2 \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \mathbf{x}(s) \quad \boxed{\nabla \mathbf{w}^{\top} \mathbf{x}(s) = \mathbf{x}(s)}\end{aligned}$$

5. Make a weight update rule

$$\nabla \overline{\text{VE}}(\mathbf{w}) = - \sum_{s \in \mathcal{S}} \mu(s) 2 \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \mathbf{x}(s)$$

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t + \alpha 2 \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \mathbf{x}(s) \\ &= \mathbf{w}_t + \alpha \left[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \right] \mathbf{x}(s) \end{aligned}$$

A More Realistic Update

- Let U_t denote the t -th training example, $S_t \mapsto v_\pi(S_t)$, of some (possibly random), approximation to the true value.

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_\pi$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S} \times \mathbb{R}^d \rightarrow \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T$ using π

Loop for each step of episode, $t = 0, 1, \dots, T - 1$:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G_t - \hat{v}(S_t, \mathbf{w}) \right] \nabla \hat{v}(S_t, \mathbf{w})$$

Semi-gradient TD

- What if $U_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$?
- We lose several guarantees when we use a bootstrapping estimate as target.
 - The target now also depends on the value of \mathbf{w}_t , so the target is not independent of \mathbf{w}_t .
- Bootstrapping are not instances of true gradient descent. They take into account the effect of changing the weight vector \mathbf{w}_t on the estimate, but ignore its effect on the target. Thus, they are a *semi-gradient method*.
- Regardless of the theoretical guarantees, we use them all the time _(ツ)_/

Semi-gradient TD

Semi-gradient TD(0) for estimating $\hat{v} \approx v_\pi$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S}^+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

 Initialize S

 Loop for each step of episode:

 Choose $A \sim \pi(\cdot | S)$

 Take action A , observe R, S'

$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$

$S \leftarrow S'$

 until S is terminal

Episodic Semi-gradient Control

- We need to approximate the action-value function now, $\hat{q} \approx q_\pi$, that is represented as a parameterized function form with weight vector \mathbf{w} .

- Before (until last class): $S_t \mapsto U_t$.

Now: $S_t, A_t \mapsto U_t$.

- Action-value prediction:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[U_t - \hat{q}(S_t, A_t, \mathbf{w}_t) \right] \nabla \hat{q}(S_t, A_t, \mathbf{w}_t)$$

- Episodic semi-gradient one-step Sarsa:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t) - \hat{q}(S_t, A_t, \mathbf{w}_t) \right] \nabla \hat{q}(S_t, A_t, \mathbf{w}_t)$$

Episodic Semi-gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

Input: a differentiable action-value function parameterization $\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \rightarrow \mathbb{R}$

Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

$S, A \leftarrow$ initial state and action of episode (e.g., ε -greedy)

Loop for each step of episode:

Take action A , observe R, S'

If S' is terminal:

$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$

Go to next episode

Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε -greedy)

$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$

$S \leftarrow S'$

$A \leftarrow A'$



This works!

State of the Art Control of Atari Games Using Shallow Reinforcement Learning

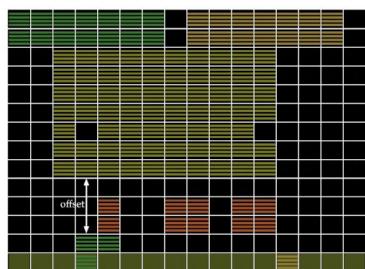
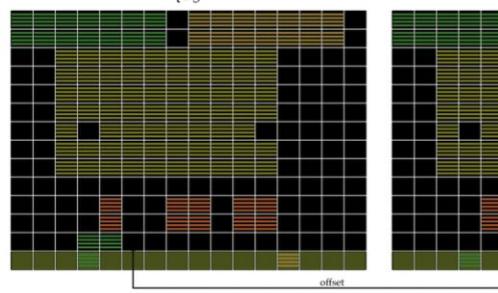
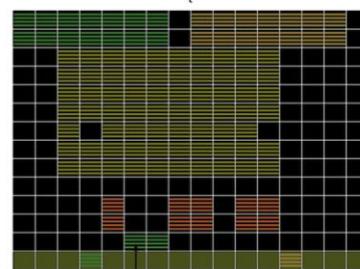
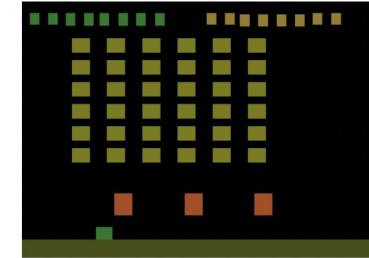
Yitao Liang[†], Marlos C. Machado[‡], Erik Talvitie[†], and Michael Bowling[‡]

[†]Franklin & Marshall College
Lancaster, PA, USA

{yliang, erik.talvitie}@fandm.edu

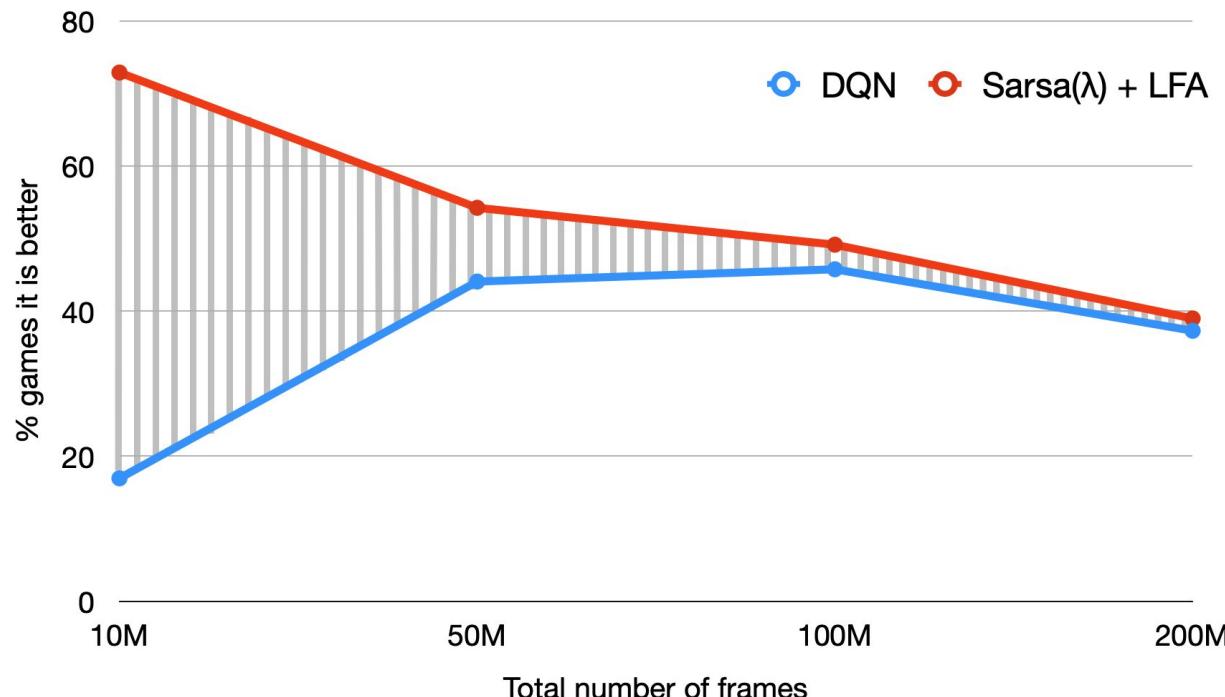
[‡]University of Alberta
Edmonton, AB, Canada

{machado, mbowling}@ualberta.ca



There are many trade-offs, we need to understand them

[Liang et al., 2016; Machado et al. 2018]





Next class

- What I plan to do:
 - Start talking about Deep RL; more specifically, DQN.
- What I recommend YOU to do for next class:
 - Read the DQN paper: V. Mnih et al.: Human-level control through deep reinforcement learning. *Nature* 518(7540): 529-533 (2015).
 - Read evaluation paper: M. C. Machado et al.: Revisiting the Arcade Learning Environment: Evaluation protocols and open problems for general agents. *J. Artif. Intell. Res.* 61: 523-562 (2018).