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"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along.  

"To look ahead," said he.

"And what brought you back in the nick of time?"

"Looking behind," said he.

J.R.R. Tolkien, The Hobbit



Reminders & Notes
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● Assignment 2 is out and you should have already started it :-)

● I will release instructions about seminar and paper review                                  
during the reading week (Feb 18 – Feb 21)
You should start thinking about groups, though

● Lecture notes v0.31 are available.
Feedback is more than welcome

● I will be travelling on March 3rd (Monday), 2025
A. Rupam Mahmood will give a guest lecture on streaming deep RL



Please, interrupt me at any time!
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Last class: Double Learning in Deep RL
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This is where we can more 
easily incorporate RL 

knowledge into deep RL

We Continue to Look at Different Objective Functions
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● Pretty much everything we discussed so far are variations of 1-step TD learning

Multi-step methods
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many steps at 
once…

Episode 2

When talking about 
deep RL, we don’t 
have atomic states, 

but the same intuition 
holds with features
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Reinforcement Learning 101
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Reinforcement Learning 101

21 CMPUT 628 – Class 9/25

Marlos C. Machado



22

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 9/25



Monte Carlo returns (instead of TD error)
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Unbiased, but 
high-varianceWe need some care with 

how we store (& sample)  
transitions in the exp. 

replay buffer



n-step returns 
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Yes, but in practice we often don’t use it.
1. For DQN, it would mean simply stopping the update, because the 

probability of the max action is either 0 or 1. For other updates, IS 
corrections can lead to large variance

2. Practitioners often use 3 ≤ n ≤ 7, which might be small enough regardless

Do we need importance sampling?
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Mixed Monte-Carlo Returns
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Do we need importance sampling?

Yes, but in practice we often don’t use it.
1. For DQN, we really don’t want to cut the traces here, bias might not be a 

big deal in many of the environments in which it is used
2. We generally use a small β (e.g., β = 0.1)
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Mixed Monte-Carlo Returns
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Do we need importance sampling?

http://www.youtube.com/watch?v=mmEx5B9tavo


Mixed Monte-Carlo Returns [Ostrovski et al., 2017]
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The λ-return: Considering more than 1 or 2 returns at once
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It is now much harder to justify ignoring IS ratios
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● Decaying and Clipping traces and importance sampling ratios 

● Retrace is not an algorithm per se
ACER (Wang et al. 2017) is an algorithm that implements Retrace
(and many many other things)

Retrace [Munos et al., 2016] 
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Trajectory-aware λ-returns [Daley et al., 2023] 
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Why use λ-returns (instead of simpler n-step returns)?
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[Daley et al., 2024] 
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What about eligibility traces?
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The Forward View
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The Backward View
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● Many of the computational benefits of eligibility traces cannot be observed in 
deep RL algorithms (note I’m talking about eligibility traces, and not λ-returns)
○ The experience replay buffer requires experience to be saved anyway

○ Performing inference in a neural network can be quite expensive (vs simple dot products)

○ Existing algorithms do not perform sequential online updates

○ Eligibility traces are hard to implement when using neural networks

● We will revisit λ-returns when talking about PPO, though
GAE (Generalized Advantage Estimation) is pretty much a λ-return

Eligibility Traces
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● What I plan to do:

○ Continue discussing different instantiations of deep RL algorithms through the objective function, 
more specifically, distributional reinforcement learning.

● What I recommend YOU to do for next class:

○ Read
- Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. In 
Proceedings of the International Conference on Machine Learning. Preprint made available on July 21, 2017.

- Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2018). Distributional Reinforcement Learning with 
Quantile Regression. In Proceedings of the AAAI Conference on Artificial Intelligence. Preprint made available on 
October 27, 2017.

- Farebrother, J., et al. (2024). Stop Regressing: Training Value Functions via Classification for Scalable Deep RL. In 
Proceedings of the International Conference on Machine Learning. Preprint made available on March 6, 2024.

○ Work on Assignment 2!

Next class
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