"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along "To look ahead," said he. "And what brought you back in the nick of time?" "Looking behind," said he.

J.R.R. Tolkien, The Hobbit

CMPUT 628 Deep RL

Class 9/ 25

Marlos C. Machado

https://openart.ai/discovery/sd-1006656316309258270

Reminders & Notes

- Assignment 2 is out and you should have already started it :-)
- I will release instructions about seminar and paper review during the reading week (Feb 18 – Feb 21)
 You should start thinking about groups, though
- Lecture notes v0.31 are available.
 Feedback is more than welcome
- I will be travelling on March 3rd (Monday), 2025
 A. Rupam Mahmood will give a guest lecture on streaming deep RL

Please, interrupt me at any time!

Last class: Double Learning in Deep RL

Y(

$$R_{t+1}, O_{t+1}; \boldsymbol{\theta}_t) = R_{t+1} + \gamma Q \big(O_{t+1}, \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(O_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}^- \big)$$
$$\mathcal{L}^{\mathrm{DDQN}} = \mathbb{E}_{\tau \sim U(\mathcal{D})} \Big[\big(Y(R_{t+1}, O_{t+1}; \boldsymbol{\theta}_t) - Q(O_t, A_t; \boldsymbol{\theta}_t) \big)^2 \Big],$$

Marlos C. Machado

We Continue to Look at Different Objective Functions

This is where we can more easily incorporate RL knowledge into deep RL

• Pretty much everything we discussed so far are variations of 1-step TD learning

7

• Pretty much everything we discussed so far are variations of 1-step TD learning

$$Y(R_{t+1}, O_{t+1}; \theta^{-}) = R_{t+1} + \gamma \max_{a' \in A} Q(O_{t+1}, a'; \theta^{-})$$

$$\mathcal{L}^{\text{DQN}} = \mathbb{E}_{(o, a, r, o') \sim U(\mathcal{D})} \left[\left(Y(R_{t+1}, O_{t+1}; \theta^{-}) - Q(O_t, A_t; \theta_t) \right)^2 \right].$$

• Pretty much everything we discussed so far are variations of 1-step TD learning

But we have to always "connect" to the existing "chain", otherwise we start from scratch

• Pretty much everything we discussed so far are variations of 1-step TD learning

But we have to always "connect" to the existing "chain", otherwise we start from scratch

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

• Pretty much everything we discussed so far are variations of 1-step TD learning

Pretty much everything we discussed so far are variations of 1-step TD learning •

When talking about deep RL, we don't have atomic states, but the same intuition holds with *features*

Reinforcement Learning 101

Reinforcement Learning 101

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

$$G_{t:t+2} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_{t+1}(S_{t+2})$$

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n})$$

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha \left[G_{t:t+n} - V_{t+n-1}(S_t) \right]$$

Monte Carlo returns (instead of TD error)

n-step returns

$$Y_n(R_{t+1:n}, O_{t+n}; \boldsymbol{\theta}^-) = \sum_{t=0}^{n-1} \gamma^t R_{t+1} + \gamma^n \max_{a' \in \mathcal{A}} Q(O_{t+n}, a'; \boldsymbol{\theta}^-)$$
$$\mathcal{L}_{n-\text{step}}^{\text{DQN}} = \mathbb{E}_{\tau^n \sim U(\mathcal{D})} \Big[\big(Y_n(R_{t+1:n}, O_{t+n}; \boldsymbol{\theta}^-) - Q(O_t, A_t; \boldsymbol{\theta}_t) \big)^2 \Big].$$

Do we need importance sampling?

Yes, but in practice we often don't use it.

- 1. For DQN, it would mean simply stopping the update, because the probability of the max action is either 0 or 1. For other updates, IS corrections can lead to large variance
- 2. Practitioners often use $3 \le n \le 7$, which might be small enough regardless

1

Mixed Monte-Carlo Returns

$$Y_{\text{MC}}(R_{t+1:T}) = \sum_{t=0}^{T} \gamma^{t} R_{t+1}$$
$$Y_{\text{TD}}(R_{t+1}, O_{t+1}; \boldsymbol{\theta}^{-}) = R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(O_{t+1}, a'; \boldsymbol{\theta}^{-})$$
$$\mathcal{L}_{\text{MMC}}^{\text{DQN}} = \mathbb{E}_{\tau^{T} \sim U(\mathcal{D})} \Big[(1 - \beta) Y_{\text{TD}} + \beta Y_{MC} - Q(O_{t}, A_{t}; \boldsymbol{\theta}_{t}) \Big)^{2} \Big]$$

Do we need importance sampling?

Yes, but in practice we often don't use it.

- 1. For DQN, we really don't want to cut the traces here, bias might not be a big deal in many of the environments in which it is used
- 2. We generally use a small β (e.g., $\beta = 0.1$)

$$Y_{\text{TD}}(R_{t+1}, O_{t+1}; \boldsymbol{\theta}^{-}) = R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(O_{t+1}, a'; \boldsymbol{\theta}^{-})$$
$$\mathcal{L}_{\text{MMC}}^{\text{DQN}} = \mathbb{E}_{\tau^{T} \sim U(\mathcal{D})} \Big[(1 - \beta) Y_{\text{TD}} + \beta Y_{MC} - Q(O_{t}, A_{t}; \boldsymbol{\theta}_{t}))^{2} \Big]$$

Do we need importance sampling?

Mixed Monte-Carlo Returns

Yes, but in practice we often don't use it.

 $Y_{\rm MC}(R_{t+1:T}) = \sum \gamma^t R_{t+1}$

- For DQN, we really don't want to cut the traces here, bias might not be a big deal in many of the environments in which it is used
- 2. We generally use a small β (e.g., β = 0.1)

Mixed Monte-Carlo Returns [Ostrovski et al., 2017]

The λ -return: Considering more than 1 or 2 returns at once

Images by Sutton & Barto (2018)

It is now much harder to justify ignoring IS ratios

$$\beta(A_k|S_k) = \frac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

$$Y(R_{t+1}, O_{t+1}; \boldsymbol{\theta}^-) = R_{t+1} + \gamma \max_{a' \in \mathcal{A}} Q(O_{t+1}, a'; \boldsymbol{\theta}^-)$$

$$\delta_t^{\pi} = Y(R_{t+1}, O_{t+1}; \boldsymbol{\theta}^-) - Q(O_t, A_t; \boldsymbol{\theta}_t)$$

$$\mathcal{L}_{\lambda,\rho}^{\text{DQN}} = \mathbb{E}_{\tau \sim U(\mathcal{D})} \left[\left(\sum_{t=0}^{\infty} (\gamma \lambda)^t \left(\prod_{k=1}^t \beta(A_k|S_k) \right) \delta_t^{\pi} \right)^2 \right]$$

$$(4.22)$$

$$(4.23)$$

$$(4.24)$$

Retrace [Munos et al., 2016]

• Decaying and Clipping traces and importance sampling ratios

$$\beta(A_k|S_k) = \lambda \min(1, \pi(A_k|S_k)/b(A_k|S_k))$$

 Retrace is not an algorithm *per se* ACER (Wang et al. 2017) is an algorithm that implements Retrace (and many many other things) Trajectory-aware λ -returns [Daley et al., 2023]

$$egin{aligned} &\mathcal{(M}Q)(s,a)\coloneqq Q(s,a)+\ &\mathbb{E}_{\mu}\!\left[\left.\sum_{t=0}^{\infty}\gamma^{t}eta_{t}\delta_{t}^{\pi}\;\middle|\;(S_{0},A_{0})=(s,a)
ight] \end{aligned}$$

Importance Sampling: $\beta_t = \lambda^t \Pi_t$ (Kahn & Harris, 1951). Truncated Importance Sampling: $\beta_t = \lambda^t \min(1, \Pi_t)$ Tree Backup: $\beta_t = \prod_{k=1}^t \lambda \pi(A_k | S_k)$ (Precup et al., 2000) $\mathbf{Q}^{\pi}(\lambda)$: $\beta_t = \lambda^t$ (Harutyunyan et al., 2016). Retrace: $\beta_t = \prod_{k=1}^t \lambda \min(1, \rho_k)$ (Munos et al., 2016). Recursive Retrace: $\beta_t = \lambda \min(1, \beta_{t-1}\rho_t)$ (Munos et al., 2016). Why use λ-returns (instead of simpler n-step returns)? [Daley et al., 2024]

> **Theorem 3.7** (Variance-reduction property of compound returns). Let $G_t^{(n)}$ be any n-step return and let G_t^c be any compound return with the same effective nstep: i.e., c satisfies Proposition 3.6. The inequality $\operatorname{Var}[G_t^c \mid S_t] \leq \operatorname{Var}[G_t^{(n)} \mid S_t]$ always holds, and is strict whenever TD errors are not perfectly correlated ($\rho < 1$).

> **Corollary 3.8** (Variance reduction of λ -return). The magnitude of variance reduction for a λ -return is bounded by

$$0 \leq \operatorname{Var}[G_t^n \mid S_t] - \operatorname{Var}[G_t^\lambda \mid S_t] \leq (1-\rho) \frac{\lambda}{1-\lambda^2} \kappa \,.$$

This magnitude is monotonic in γ and maximized at $\gamma = 1$.

What about eligibility traces?

The Forward View

Figure 12.4: The forward view. We decide how to update each state by looking forward to future rewards and states.

Marlos C. Machado

The Backward View

Figure 12.5: The backward or mechanistic view of $TD(\lambda)$. Each update depends on the current TD error combined with the current eligibility traces of past events.

Eligibility Traces

- Many of the computational benefits of eligibility traces cannot be observed in deep RL algorithms (note I'm talking about eligibility traces, and not λ -returns)
 - The experience replay buffer requires experience to be saved anyway
 - Performing inference in a neural network can be quite expensive (vs simple dot products)
 - Existing algorithms do not perform sequential online updates
 - Eligibility traces are hard to implement when using neural networks
- We will revisit λ -returns when talking about PPO, though GAE (Generalized Advantage Estimation) is pretty much a λ -return

Next class

- What I plan to do:
 - Continue discussing different instantiations of deep RL algorithms through the objective function, more specifically, *distributional reinforcement learning*.
- What I recommend YOU to do for next class:
 - Read

- Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on Reinforcement Learning. In Proceedings of the International Conference on Machine Learning. Preprint made available on July 21, 2017.

- Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2018). Distributional Reinforcement Learning with Quantile Regression. In Proceedings of the AAAI Conference on Artificial Intelligence. Preprint made available on October 27, 2017.

- Farebrother, J., et al. (2024). Stop Regressing: Training Value Functions via Classification for Scalable Deep RL. In Proceedings of the International Conference on Machine Learning. Preprint made available on March 6, 2024.

• Work on Assignment 2!