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Plan

Assignment 1

Overview / Refresher of (everything?) Reinforcement Learning

Warning! This will be quick. It is meant to start establishing a common language
between us, but it is too fast for you if you are seeing this for the first time.

Marlos C. Machado
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Reminder: You can still leave

o | know, | know, Deep Reinforcement Learning sounds fun, modern, and hyp-ey
But...

« But this course won’t be so well-structured as you (or ) would hope
o |'won’t teach you how to code fancy deep RL algorithms
e I’m not as much fun as you might think

« | don’t care about grades — | might have a reputation :-)
o There won’t be a practice midterm

o | don’t care if this course ends up being difficult

Marlos C. Machado
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Please, interrupt me at any time!
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Assignment 1



Reinforcement learning
problem formulation
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Artificial intelligence

RelnfOrcement |earn|ng Machine learning

[ Reinforcement learning ]
\S =
Reinforcement learning is a computational approach to learning from interaction to

maximize a numerical reward signal (sution & Barto; 2018)

« Theidea of learning by interacting with our environment
is very natural

» Itis based on the idea of a learning system that wants
something, and that adapts its behavior to get that

Some features are unique to reinforcement learning:

e [rial-and-error

« The trade-off between exploration and exploitation
o The delayed credit assignment / delayed reward problem

Marlos C. Machado
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Reinforcement learning (RL)

e RL is about learning from evaluative feedback (an evaluation of the taken

actions) rather than instructive feedback (being given the correct actions).
o  Exploration is essential in reinforcement learning.

e [tis not necessarily about online learning, as it is sometimes said, but more
generally about sequential decision-making.

e Reinforcement learning potentially allows for continual learning but in practice,

quite often we deploy our systems.
o Continual learning is important, but this course is not about this.

Marlos C. Machado
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The Agent-Environment Interface

Basis on which the
choices are made

state
S

Figure 3.1: The agent—envir¢
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The ultimate goal: Maximize Returns

End of an episode

Gi = Riy1+ Riyo+ Riyz +-++ Rp*

Continuing task

G¢ = Rip1+7Riy2 + 7V Rz +-- = Z'YthHc-l—L

Gt = Riy1 + YRiv2 + V?Rivs + V2 Reya + -
= Ri11+7v(Riv2 + YRiq3 + 7V’ Reqa + - )
= Ri11 +7Giq1

Marlos C. Machado
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Tabular value-based model-free
reinforcement learning
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Value Functions and Policies

o \Value functions are “functions of states (or state-action pairs) that estimate how
good it is for the agent to be in a given state”.

« “How good” means expected return.

o EXxpected returns depend on how the agent behaves, that is, its policy.

Marlos C. Machado
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Policy

o A policy is a mapping from states to probabilities of selecting each possible action:
T:S — A(A)

in other words, 1i(als) is the probability that A =aif§ =s.

Marlos C. Machado
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Value Function

« The value function of a state s under a policy i, denoted v _(s) or g (s, a), is the
expected return when starting in s, taking a (for g ), and following 1t thereafter.

state-value

function for 56

policy T —___ .

Ur(s) = Eq|Gy | St=s] = Eq Z’)’th+k+1 St=8]
k=0
- _ _ _ - k _ _
g=(s,a) = E Gy | St=s,A:=a] = E; ny Riiki1 | Si=s,As=a
k=0

action-value
function for
policy t

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Value functions define a partial ordering over policies.
o mxT1iffv(s)=v_(s)forals € .
o There is always at least one policy that is better than or equal to all other policies. The optimal policy.

Vi (8) = max v (8)

q+(s,a) = E[Ri11 + 0« (Si41) | Se=s5, A¢=aq]

g« (s,a) = maxq.(s,a)

Marlos C. Machado



CMPUT 628 — Class 2/25

Generalized Policy Iteration

evaluation
m
T V

7~ greedy(V)

improvement

7-‘-* < >rU>|<
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1D Prediction

A simple every-visit Monte Carlo method is:
V(St) g V(St) + o [Gt _ V(St)] What if we don’t want to wait until we

have a full return (end of episode)!

NewEstimate < OldEstimate + StepSize [Target - OIdEstimate]

Marlos C. Machado



20 CMPUT 628 — Class 2/25

1D Prediction

A simple every-visit Monte Carlo method is:

VI(S,) « V(S:) + a[Ci = V(St)]

Target

Temporal-Difference Learning:

V(S1)  V(S0) + o Russ + 9V (Sis1) — V(S
Target

Marlos C. Machado
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Sarsa: On-policy Control

« We again use generalized policy iteration (GPI), but now using TD for evaluation.

o \We need to learn an action-value function instead of a state-value function.

. Rt+1/\ Rt+2m Rt+3©_._ & s
RO e Oy Brr s (s

Q(St, At) < Q(St, Ar) + [Rt—l—l + YQ(St+1, At+1) — Q(St, At)]

Marlos C. Machado
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Sarsa: On-policy Control

Sarsa (on-policy TD control) for estimating Q ~ q.

Algorithm parameters: step size a € (0,1], small € > 0

Loop for each episode:
Initialize S

Loop for each step of episode:
Take action A, observe R, S’

Q(S, 4) + Q(S, A) + a[R +Q(S", A') — Q(S, A)]
S S Ae A

until S is terminal

Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Choose A from S using policy derived from @ (e.g., e-greedy)

We need to explore!

Choose A’ from S’ using policy derived from @ (e.g., e-greedy)

Marlos C. Machado
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Q-Learning: Off-Policy Control

Q(St, At) + Q(St, At) + [Rt+1 + ’YmC?X Q(St+1,a) — Q(S:, At)]

o Q directly approximates q., regardless of the policy being followed.

« Notice we do not need importance sampling. We are updating a state—action
pair. We do not have to care how likely we were to select the action; now that
we have selected it we want to learn fully from what happens.

Marlos C. Machado
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Q-Learning: Off-Policy Control

Q-learning (off-policy TD control) for estimating 7 =~ m,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, A) + a[R + ymax, Q(S',a) — Q(S, 4)]
S+ S

until S is terminal

Marlos C. Machado
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Example — Q-Learning vs Sarsa

Sarsa
-25 4
R=-1
Safer path
Sum of _5
rewards Q-learning
Optimal path ! % edliJ:c?ge
S The Cliff G P 754
-100 . T T . 1
0 100 200 300 400 500
Episodes
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Tabular model-based
reinforcement learning
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Dyna: Integrated Planning, Acting, and Learning

o Online planning, in small, incremental steps.

value/polic .
policy e Indirect methods often make
— fuller use of a limited amount of
. experience and thus achieve a
planning direct

RL better policy with fewer
environmental interactions.

model experience « Direct methods are much
simpler and are not affected by
\/ biases in the design of the
model model.

learning

Marlos C. Machado
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Dyna-Q

« Dyna-Q includes all of the processes shown in the diagram—planning, acting,
model-learning, and direct RL—all occurring continually (and simultaneously).

o Planning method: random-sample / \
one-step tabular Q-planning. Policy/value functions

« Direct RL method: one-step tabular planning update

Q-learning. direct RL
update

simulated
experience

. real
« Model-learning method: table-based search
and assumes the environment is learning |control

deterministic.

Model

[Environmentj

Marlos C. Machado
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Model-free value-based reinforcement
learning with function approximation
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The Prediction Objective (A Notion of Accuracy)

« Inthe tabular case we can have equality, but with FA, not anymore.
o Making one state’s estimate more accurate invariably means making others’ less accurate.

How much do we care about

- Mean Squared Error: the error in each state s.
—— 2
VE(w) = 3 u(s) [on(s) — 9(s,w)|

SES

Usually, the fraction of time spent in s.
On-policy distribution.

Marlos C. Machado
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Recipe for Deriving a Concrete Algorithm for SGD

1. Specify a function approximation architecture (parametric form of v ).

2. Write down your objective function.

3. Take the derivative of the objective function with respect to the weights.
4. Simplify the general gradient expression for your parametric form,

5. Make a weight update rule:
W = W - O GRAD

Marlos C. Machado
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1. Specify a FA architecture (parametric form of v )

o We will use state aggregation with linear function approximation

Marlos C. Machado
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1. Specify a FA architecture (parametric form of v )

o We will use state aggregation with linear function approximation

« State aggregation
o The features are always binary with only a single active feature that is not zero

Marlos C. Machado
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1. Specify a FA architecture (parametric form of v )

o We will use state aggregation with linear function approximation

« State aggregation
o The features are always binary with only a single active feature that is not zero

o \Value function

o Linear function

vr(8) = (s, W) = w'x(s) = Zle w; - ()

Marlos C. Machado
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2. Write down your objective function

o We will use the value error

V_E(W) = Z u(s) :'Uw(s) — (s, W)] 2

|
=
S¥
I @ 1
3
O
I
s
_|
Jay
B,
N

Marlos C. Machado
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3. Take the derivative of the obj. function w.r.t. the weights

VVE(w) = V Z u(s) ['vw(s) — wa(S)] 2

Marlos C. Machado
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4. Simplify the general gradient expression

VVE(w) Vw ' x(s)

— Z 1(s)2 [vw(s) — WTX(S)]

I
|
—
B,
(\)
S
3
O
I
s
_|
8
-
j-4
e

Vw ' x(s) = x(s)
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5. Make a weight update rule

VVE(w) = - Z p(s)2 [vﬂ(s) — wa(s)] x($)

SES

Wit wi + a2 [vﬁ(s) — WTX(S)} x(s)

Wi + [fvw(s) — WTX(S)] x(s)

Marlos C. Machado
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A More Realistic Update

« LetU, denote the t-th training example, S, = v_(S)), of some (possibly random),
approximation to the true value.

Wil = Wi + « [Ut - f)(St,wt)] V’f)(St,Wt)

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : § x R* — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51,A1,..., Ry, St using 7
Loop for each step of episode, t =0,1,...,T — 1:
W W+ a[Gt - 13(St,w)] Vo (S;,w)

Marlos C. Machado
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Semi-gradient TD

o WhatifU =R _,+VyV(S, ,wW)7?

t+1°

« We |lose several guarantees when we use a bootstrapping estimate as target.
o The target now also depends on the value of w,, so the target is not independent of w,.

» Bootstrapping are not instances of true gradient descent. They take into account
the effect of changing the weight vector w, on the estimate, but ignore its effect on
the target. Thus, they are a semi-gradient method.

« Regardless of the theoretical guarantees, we use them all the time \_(*J)_/

Marlos C. Machado
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Semi-gradient TD

Semi-gradient TD(0) for estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : 87 x R — R such that ¥(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|S)
Take action A, observe R, S’
W W+ a[R+v5(S",w) — 9(S,w)| Vi(S,w)
S+ 5

until S is terminal

Marlos C. Machado
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Episodic Semi-gradient Control

« We need to approximate the action-value function now, ¢ = g, , thatis
represented as a parameterized function form with weight vector w.

« Before (until last class): S, = U..
Now: St, A~ U

« Action-value prediction:
Wil = Wi+ [Ut — §(Ss, A, Wt)] V§(Ss, A¢, wy)
« Episodic semi-gradient one-step Sarsa:

Wirl = Wi+ [Rt+1 =+ ’YQ(StH, Att1, Wt) = Q(St, A, Wt)] V@(Sty Ay, Wt)

Marlos C. Machado
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Episodic Semi-gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating § =~ g,

Input: a differentiable action-value function parameterization §: 8 x A x R4 — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <+ w+a|R—§(S, A, w)] V§(S, A, w)
Go to next episode
Choose A’ as a function of §(5’,-, w) (e.g., e-greedy)
w < W+ a[R+74(S, A, w) — 4(S, A, w)| V4(S, A, w)
S« S
A+ A

Marlos C. Machado
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This works!

State of the Art Control of Atari Games
Using Shallow Reinforcement Learning

Yitao Liang', Marlos C. Machado?, Erik Talvitiet, and Michael Bowling*
tFranklin & Marshall College *University of Alberta
Lancaster, PA, USA Edmonton, AB, Canada
{yliang, erik.talvitie}@fandm.edu {machado, mbowling}@ualberta.ca

Marlos C. Machado
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There are many trade-offs, we need to understand them
[Liang et al., 2016; Machado et al. 2018]

‘\ ©O DQN ©O Sarsa()) + LFA
60

% games it is better
AN
o

10M 50M 100M 200M

Total number of frames
Marlos C. Machado
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Policy gradient methods
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The Policy Gradient Theorem

« \We have stronger convergence guarantees for policy gradient methods, in part
because the policy changes more smoothly than, say, e-greedy policies.

o Let’s do gradient ascent, in the full RL problem. To do that we need to define J(0):

J(0) = vrg(50)
o It seems tricky though. “The problem is that performance depends on both the
action selections and the distribution of states in which those selections are
made, and that both of these are affected by the policy parameter.”

o The effect of a change in the policy on the state distribution is typically unknown.

How can we estimate the performance gradient w.r.t the policy parameter when the
gradient depends on the unknown effect of policy changes on the state distribution?

Marlos C. Machado
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The Policy Gradient Theorem

e Ihe Policy Gradient Theorem [Marbach and Tsitsiklis, 1998, 2001; Sutton et al. 2000] pI’OVidGS an
analytic expression for the gradient of performance w.r.t. the policy parameter that
does not involve the derivative of the state distribution.

VJ(0) x Z 1(s) Z q-(s,a)Vm(als,8)

Proportional to On-policy distribution

Marlos C. Machado
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A First Policy Gradient Method

VJ(0) x Z w(s) Z q-(s,a)Vr(als,8)

It weighs the sum by how
often the states occur under
the target policy 1

Any constant of proportionality can = ]E,r[ E qW(St, CL)Vﬂ'(CLl ts
a

be absorbed into the step size a

0t+1 = Ot + Z qA(Sta a, W)Vﬂ-(a’lsta 0)

Marlos C. Machado
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REINFORCE: Monte Carlo Policy Gradient witiams, 1992]

Bt—l-l = Bt + Z qA(Sta CL,W)VT((CLLS%, 0)

We want an update that at time t involves just A,. We need to replace a sum over the
RV’s possible values by an expectation under 11, and then sampling the expectation.

VJ(O) x E, Z ¢ (S, a)Vm(al|St, 0)]

(alS;, 0)

| Vw(AtISt,O)} Vr(As|S, 0)
_]Eﬂ- m S ,A —_ ?
0 (5 402418, 0) = [Gt 7(A¢| Sy, 0) ]

_E. | 7(alS1, 0)¢x(Si, a) V”(‘L'St’a)]

Marlos C. Machado



61 CMPUT 628 — Class 2/25

REINFORCE: Monte Carlo Policy Gradient wiliams, 1992]

VJ(0) x E, [Gt Vr(A4S;, 9)]

7r(At|St,0)

V7T(At|St,9t)
7 W(Atlst, Bt)

0t+1 — Ht -+ aG

REINFORCE uses the full return,
thus it is a Monte Carlo method.

Marlos C. Machado
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REINFORCE: Monte Carlo Policy Gradient wiliams, 1992]

Marlos C. Machado

VW(At|St, Ot)

0t+1 = Ot -I-OéGt 7T(At|St,9t)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ,

Input: a differentiable policy parameterization 7(als, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode So, A(), Rl, 000 p ST—l, AT—I, RT,
Loop for each step of the episode t =0,1,...,T — 1:

G + Zf:m o=t IR
0 + 0 + av' GV|In(A|Sy, 0)

following 7(+|-, 0)

(Gt)

Recall:

Ving = ¥&
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Actor-Critic Methods

o In BREINFORCE with baseling, the learned state-value function estimates the
value of the first state of each state transition.

o In actor-critic methods, the state-value function is applied also to the second
state of the transition.

o When the state-value function is used to assess actions in this way it is called a
critic, and the overall policy-gradient method is termed an actor—critic method.

Marlos C. Machado
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One-Step Actor-Ciritic

V’iT(Atlst, Ot)
7T(At|St, Bt)

0:11 =0+ Oé(Gt:t+1 = @(Staw))
Vﬂ'(At|St, Ht)

= 0; + a(Rt+1 +70(Sp41,W) — U(St’w)) m(A¢|St, 0¢)

Vﬂ'(At|St, Ot)

=0t et S, 6

Marlos C. Machado
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One-Step Actor-Ciritic

One-step Actor—Critic (episodic), for estimating 7y ~ m,

Input: a differentiable policy parameterization 7(als, 6)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes >0, a¥ > 0
Initialize policy parameter 8 € R% and state-value weights w € R4 (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(:|S,0)
Take action A, observe S’, R
d <+ R+~0(S",w) — 0(S,w) (if S’ is terminal, then 9(S’,w) = 0)

W w+ aVIVo(S,w)
0+ 0+a°15VIinn(AlS,0)
I ~I

S =15

Marlos C. Machado
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Next class

o What | plan to do:

o  Finish this overview on reinforcement learning.

o Start an overview of neural networks / deep learning.

« What | recommend YOU to do for next class:

o Brush-up on the basics of deep learning if you don’t remember.
Specifically, Goodfellow, Bengio & Courville (2016)’s chapters 6-10.

o Start looking at Assignment 1.

Marlos C. Machado



