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Reminders & Notes

o | will take a while to mark Assignment 3 this time
» Assignment 4 is due on March 28 — Later than what's in the syllabus

« A note on Assignment 4
o I'll adjust the performance criteria for each algorithm

o Midterm is next week, on Wednesday
e« Seminars will start after that

o A note on the Seminar and Paper Commentary

o Paper Commentary can be done alone or within your group — but both need to submit it
o Templates from NeurlPS, ICML, or ICLR are all acceptable

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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One of the most famous results in deep RL is “model-based”

Knowledge

Human  Domain Known
Go data  knowledge rules

:

AlphaGo becomes the first program to master Go using
neural networks and tree search
(Jan 2016, Nature)

AIPhaGo

Known
Go rules

AlphaGo Zero learns to play completely on its own,
without human knowledge
(Oct 2017, Nature)

Go Chess Shogi

AlphaZero masters three perfect information games
using a single algorithm for all games

AlphaGo: “China’s Sputnik Moment” e ——

MuZero

Go Chess Shogi Atari

MuZero learns the rules of the game, allowing it to also
master environments with unknown dynamics.
(Dec 2020, Nature)

https://deepmind.google/discover/blog/muzero-masterin
g-go-chess-shogi-and-atari-without-rules/
Marlos C. Machado
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And DeepMind sold AlphaGo amazingly well

o Uy, o priokoon %
gl T2 aiMresvaL £
22078 % —

Marlos C. Machado https://www.youtube.com/watch?v=WXuK6gekUlY
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Human  Domain  Known

AlphaGo [siver et al., 2016]

Policy network Value network

« MCTS. Value estimation (bootstrapping)
allows us to reduce depth, and a policy p,, @ls) v, (5
allows us to reduce the breadth of the e
search space

0
« \alue networks evaluate board positions L “"
and policy networks select moves : :
hd ®

« Combine policy and value network in
an MCTS algorithm

Marlos C. Machado
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Hum Domain
da t kn wI ledge ru
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AlphaGo [siver et al., 2016]

1. Train supervised learning policy network from expert data
2. Train a fast policy that can sample actions during rollouts

3. Train an RL policy network that improves 1 through self-play
a. Moves away from predicting experts moves toward winning games

Rollout policy SL policy network RL policy network Value network

4. Train value network to predict the
winner of games played by the RL
policy network against itself

MXX
5. Combine policy and value network %

P Po

p, ()
m Policy gradient m @
S
(7 Y S
&Sy @ 0?\
& S
o 7

<«

Marlos C. Machado Human expert positions Self-play positions

MIOMlau [eineN

in an MCTS algorithm

ereqg
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Known
Go rules

AlphaGo Zero siver et al, 2017

o AlphaGo but with no supervisor, no human data, just self-play
« No domain knowledge in the agent input

« Single neural network (ResNet with batch normalization) with two heads
o “the dual objective regularizes the network to a common representation that supports multiple

use cases”
Self-play s s, S5
o Simpler tree search a; ~ . a, ~ 7, ﬂ m %
- - OO.
//\\ \\‘ /\
// . 8 \\ b///‘/ \\\

Marlos C. Machado
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rules
b
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1 O AlphaGo Zerc; ‘ Known

AIphaGO ZerO [Silver et al., 2017]
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Marlos C. Machado
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AIphaZero [Silver et al., 2018]

o Pretty much AlphaGo Zero, but with some adjustments to include more games

o AlphaZero estimates/optimizes the expected outcome, not winning probability

o Updates neural network continually instead of doing it in iterations
(iterations were chosen to select the best player in AlphaGo Zero)

o Does not assume symmetry

8kT
But AlphaGo, AlphaGo Zero, : %
. P

and AlphaZero still rely on a <O 2 *
e 28, N e 2k

given model for the MCTS! e e
o 1k

ilphaZero

Training Steps
Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Model-Based Deep Reinforcement Learning

« Not much long after DQN was introduced, in 2013, we had neural networks
being used in PG methods (e.g., DDPG, TRPO) and model-based RL

o Ohetal. (2015), for example, already have impressive mode learning results
(but no planning results)

I I | 1
encoding / transformation decoding

optional

Marlos C. Machado


http://www.youtube.com/watch?v=4e-PqfpS8_4
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What we want to use a model for?

« We can use it to do exploration, as an auxiliary task, and so on
Here, let’s focus on planning; thus: to ultimately improve the policy

simulated backups
experience

model » values ——» policy

o There are different types of planning:

o Backward planning: We generate samples so that we can use additional samples to improve our
value estimates so we get a better policy

o Forward planning: We look ahead thinking about many of the decisions we can make, sort of
doing search with a learned model, so we have a better idea of which action to take next

Marlos C. Machado
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Backward Planning

o Given a state, S, imagine the consequence (i.e., next state and reward) of taking
a specific action, A

o Dyna-Q (Sutton, 1990), for example, does exactly that (in the tabular case)
Dyna-Q learns a model to generate additional samples so we can do Q-learning
(or Q-planning) updates

« Experience replay buffers already allow us to replay transitions, though, making
it harder for us to observe the benefits of model-based reinforcement learning

o Generalization beyond seen trajectories / Avoiding policy staleness: \We can go beyond seen
transitions (counterfactuals?)
- Leaming in Latent Space: Generalization across states

> More?
Marlos C. Machado
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Forward Planning

o Given a state S, simulate multiple possible action sequences from S to estimate
future outcomes and select the best action accordingly

e MCTS [Metropolis & Ulam, 1949] and MPC [Richalet et.al, 1976; Cutler & Ramaker, 1980] are
some of the technigues we can use on top of a learned model

« Forward planning is offering us something fundamentally different from
experience replay buffers

o  Efficient exploration: One can look at multiple futures and backtrack from choices

o More robust to model errors: Replans dynamically, which is quite useful with inaccurate models

o  Better value estimates. Bootstrapping has a smaller role to play when looking multiple steps
ahead

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Why many MBRL methods struggle?
« Many MBRL methods focus on learning a full transition model but suffer from
compounding errors and unnecessary complexity (e.g., SImPLe [Kaiser et al., 2020])

« Arguably, we should be using methods that explicitly consider decision-making
by having value-equivalent modeling, that is, learning only what’s useful for good
policies and value estimation

Marlos C. Machado
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ChatGPT: Why many MBRL methods struggle”

Traditional Madutile.
Model-Based Vodue-Equiated
« Many MBRL meth Reirefention Learning  Renefentioa Learning del but suffer from
compounding errd _rull— _Fute Policy: @ wzers  MPLE [Kaiser et al., 2020])
State transtion  Comuoicting
tnaden model ersors #
Arguably, we shol  transtion Vo oahe inaccrate ider decision-making
¢ g Y, model model Iongeterrors ’ §i"3|3|e '
over time &

by having value-e
policies and value

L what’s useful for good

funciole

Left Side (Traditional MBRL):
Learns full transitions but suffers

from compounding errors. il A t @‘
. ejuitating

errors

Right Side (Value-Equivalent
MBRL): Learns models optimized for
decision-making.

No compondmg No copcwatlng
Marlos C. Machado every dtaile over time errors ot time  stably learning
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The Value Equivalence Principle @Grimm et ar., 2020

« Models don’t have to be accurate, they have to be useful

o “two models are value equivalent with respect to a set of functions and a set of
policies if they yield the same updates under corresponding Bellman operators”

Definition 1 (Value equivalence). Let II C [1 be a set of policies and let V C V be a set of functions.
We say that models m and m are value equivalent with respect to 11 and V if and only if

Tov="Trvforallm € Mandallv €V,

where T, and T,. are the Bellman operators induced by m and m, respectively.

Marlos C. Machado
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The Value Equivalence Principle @Grimm et ar., 2020

Proposition 3. The maximum-likelihood estimate of p* in P may not belong to a P(I1, V) # (.

o “Proposition 3 states that (...) even when it is possible to perfectly handle the
policies in 'l and the values in V, the model that achieves the smallest MLE loss
will do so only approximately.”
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Marlos C. Machado
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MuZero [Schrittwieser et al., 2020]

o MuZero models three elements of the agent that are critical to planning,
avoiding full transition learning
o Value, policy, and reward e
« MuZero is defined for deterministic dynamics

o It uses a recurrent notion state to keep track of where it is,
but with no semantics about the state itself

o Similar to AlphaZero, it has a network with
many heads, represented by the function f

“MuZero uses the representation function, h, to map from the observation to an embedding
used by the neural net. Using the dynamics function, g, and the prediction function, f,
MucZero can then consider possible future sequences of actions and choose the best action.”

Marlos C. Machado https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/



25

CMPUT 628 — Class 18/25

MuZero [Schrittwieser et al., 2020]

o Similar to AlphaZero, MuZero uses MCTS; but here it does the search within its

internal dynamics

« But it allows for discounting and it uses n-step returns

“MuZzero uses the experience it
collects when interacting with the
environment to ftrain its neural
network. This experience includes
both observations and rewards
from the environment, as well as
the results of searches performed
when deciding on the best action.”

Marlos C. Machado

R

https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
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MuZero [Schrittwieser et al., 2020]

o ltistrained to minimize the three obj. at the same time, with ¢, regularization

K K K
lt(e) = Z lp(”t+kl pf) + z lv(zt+kl Uf) + z lr(ut+kl rf) I C”B”Z
k=0 k=0 k=1

“During training, the model is unrolled
alongside the collected experience, at
each step predicting the previously
saved information: the value function v
predicts the sum of observed rewards,
u, the policy estimate, p, predicts the
previous search outcome, 11, the

reward estimate r predicts the last m a1 O+ Q. C I
observed reward, u.” ﬁ 7 %

Marlos C. Machado https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
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MuZero works really, really well sehrittwieser et al., 2020]

o “We trained MuZero for K = 5 hypothetical steps. Training proceeded for one
million mini-batches of size 2,048 in board games and of size 1,024 in Atari.
During both training and evaluation, MuZero used 800 simulations for each
search in board games and 50 simulations for each search in Atari.”

Table 1| Comparison of MuZero against previous agents in Atari

Agent Median (%) Mean (%) Environment frames Training time Training steps
Ape-X® 4341 1,695.6 22.8 billion 5days 8.64 million
R2D2" 1,920.6 4,024.9 37.5 billion 5 days 2.16 million
MuZero 2,0411 4,999.2 20.0 billion 12 hours 1million
IMPALA™ 191.8 957.6 200 million - -

Rainbow?® 2311 - 200 million 10 days -

UNREAL® 2 250° 880° 250 million - -

LASER¥ 431 - 200 million - -

MuZero Reanalyze 7311 2168.9 200 million 12 hours 1 million

We compare separatefy against agents trained in large (top) and small (bottom) data settings; all agents other than MuZero used model-free RL techniques. Mean and median scores are given,
compared with humar] testers. The best results are highlighted in bold. MuZero shows state-of-the-art performance in both settings. °Hyperparameters were tuned per game.

Marlos C. Machado “reanalyses old trajectories by re-running the MCTS using the latest network parameters to provide fresh targets”
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MuZero works really, really well sehrittwieser et al., 2020]

Shogi Go
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Marlos C. Machado
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But it can have quite a ot of variance (schritwieser et al., 2020

breakout

gravitar ms_pacman gbert seaquest
20k 00K 1000k
=~ 700k
200k
600k 800k
g 500k ‘
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F 400k A
o
- 8k 100k 300k 400k
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2k 100k
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00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
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Millions of Training Steps
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Marlos C. Machado
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The impact of MuZero’s search in Atari games (schrittwieser et al., 2020

“We compared MCTS with different numbers of e | e smiior =
simulations, using the fully trained MuZero. The B

improvements due to planning are much less * o0

marked than in Go, perhaps because of greater ol

model inaccuracy; performance improved slightly -y
with search time, but plateaued at around 100 Searen e
simulations. Even with a single simulation—that s, B 5501 _ wuzero

when selecting moves solely according to the policy -
network—MuZero performed well, suggesting that,
by the end of training, the raw policy has learned to
internalize the benefits of search .”

4,500

Mean reward

4,000 { """t

3,500
1 10 25 50 100 200 500
Number of simulations per move

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Stochastic MuZero [Antonoglou et al., 2022]

« "An afterstate as, is the hypothetical state of the environment after an action is
applied but before the environment has transitioned to a true state”

o “By using afterstates we can separate the effect of
applying an action to the environment and of the /
chance transition given an action”

at

St — = QSt — > St41
« By defining afterstates, as, and chance outcomes, \
C,, We can model a chance transition using a
deterministic model s,_,, r, .= M(as,, ¢,) and a distribution Pr(s | as,) = Pr(c,
|ast). The task of Ieamlng a stochastic model is then reduced to the problem of
learning afterstates, as, and chance outcomes, c.

Marlos C. Machado
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Stochastic MuZero [Antonoglou et al., 2022]

. 0 _
Representation s; = h(o<t)
Prediction pr uF = f(sF)
Afterstate Dynamics as® = ¢(sF, asyr) _
Afterstate Prediction o, QF = y(ask)
s sFtL phHl
Dynamics i = g(asg, corrn)
B m,z Ct+1, 2t W41, Zt4+1 Cr425 Zt+1 425 2142
2 2 2 2 2
pO’ VO 0-0' QO pl. Vl 0'1' Ql pZ’ VZ
A Uty A U2
i v Q i L R i
¢—>9—>@7<p—> g—>
! : ! :
T Ct+1 Ct+2
at at+1
h KIIEN KIES KN
Le e’j]
"""" oo oo e

Marlos C. Machado

A 2
______ el a
h
v
e ‘f
/ a
09, Q0 w1y
0
g9
!
pl, V! «f
a2
[0

\J



34 CMPUT 628 — Class 18/25

Stochastic MuZero [Antonoglou et al., 2022]

R
( e e ekj
Afterst i . Errébpeadgng
Afterstt

Encoding

Decoding

Quantization

Marlos C. Machado
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Stochastic MuZero [Antonoglou et al., 2022]
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Stochastic MuZero [Antonoglou et al., 2022]
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Marlos C. Machado
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Sam pled MuZero [Hubert et al., 2021]

o There have also been MuZero extensions for continuous action spaces

o The underlying idea is to sample actions instead of enumerating all possible
actions (and many other details that come with it)

acrobot swingup - 1D acrobot swingup sparse - 1D hopper.hop - 4D . humanoid.stand - 21D
100
St el
600 —~— e 800
600 WNN* w ‘//f_’-__———?w—
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R i 600 “/
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2 / 100 100
3.9 200
&0 4 200 200
0 0 0 0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20
humanoid.walk - 21D manipulator.bring.ball - 5D manipulator.bring.peg - 5D manipulator.insert.ball - 5D manipulator.insert.peg - 5D

200

100 A 1 100
. d A
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Figure 4. Results in DM Control Suite Hard and Manipulator tasks. Performance of Sampled MuZero (3 seeds per experiment)
throughout training compared to DMPO (Hoffman et al., 2020) and D4PG (Barth-Maron et al., 2018). The x-axis shows millions of
environment frames, the y-axis mean episode return. Hard tasks as proposed by (Hoffman et al., 2020). Plot titles include the task name
and the dimensionality of the action space.

Marlos C. Machado
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Next class (my last actual lecture)

e« What | plan to do:
o Wrap up talking about MBRL, finishing these slides and talking about Dreamer

o What | recommend you to do for next class:

o Aside from preparing for the midterm, seminar, paper commentary, and assignment 4
- Read
« D. Hafner et al.: Mastering Atari with Discrete World Models. ICLR 2021
« D. Hafner et al.: Mastering Diverse Domains through World Models. CoRR abs/2301.04104
(2023)

Marlos C. Machado



