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Reminders & Notes

« Assignment 3 was due on Friday (3 days ago)
« Assignment 4 is due on March 28 — Later than what'’s in the syllabus
o Midterm is next week, on Wednesday

e« Seminars will start after that

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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L ast Class — DDPG, TD3, A2C, and A3C

. DDPG extends DQN to an actor-critic setting to allow for continuous actions

. DDPG is quite unstable though, so TD3 tries to stabilize DDPG by controlling
overestimation bias, delaying policy updates, and regularizing the policy

. If we want to stochastic policies, we can in fact sort of use traditional actor-critic
methods; but using the advantage function is much more stable, allowing even for
on-policy updates; thus A2C and A3C

Marlos C. Machado
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Max-Entropy Reinforcement Learning

« As | mentioned when discussing TD3, DDPG can be quite unstable
. What if we want to optimize stochastic policy in an off-policy way?

. Instead of everything TD3 did, we can use the max-entropy framework, which

reformulates the problem by adding entropy to the policy
More stable
Better exploration

Less overfitting max [E.
T

i v (Rt+1 + BH (7T(|St)))]

H(X)=-) p(z)logp(z)

reX
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Entropy-Regularized Reinforcement Learning

o Entropy: a measure of disorder or randomness in a system

« Inreinforcement learning, one is expected between balancing the actual return
and the entropy of the policy

Ul iS) = By

i’)’t (R(St, at, St+1) + aH(-|st)) ISO = s]

t=0

qﬂ'(s) a’) = ETN?T [Z’th(Sta ag, 8t+1) + az7tH('|3t)’30 = 5,00 = a]
t=0

=1

n(a) = o exp (%ms,a)) Z=Y exp (%cxs,a))
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SAC [Haamoja et al, 201g) IS the maximum entropy version of DDPG

o Ciritic:

Ysac = Rt+1+’Y(
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Reparameterization trick

A(Si; ¢,€) = tanh (u(S; @) + o(Si; 0 © €)
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SAC: Soft Actor-Critic [Haarnoja et al., 2018]
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Figure 1 shows the total average return of evaluation rollouts

8 during training for DDPG, PPO, and TD3. We train five
different instances of each algorithm with different random
seeds, with each performing one evaluation rollout every
1000 environment steps. The solid curves corresponds to the
mean and the shaded region to the minimum and maximum
returns over the five trials.
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The benefits of stochastic policies for training and of
deterministic policies for evaluation [Haamoja et al., 2018]

Humanoid (rllab)

—— stochastic policy

6000 e deterministic policy 6000
£
= | i’ j
‘© 4000 F vy hg 41 c
b ¥ ! 2 4000
& 2
5 %
o
g 2000
@

—— deterministic evaluation

4 6 - -
million steps — stochastic evaluation

. ) L 00 05 1.0 15 20 25 30
Figure 2. Comparison of SAC (blue) and a deterministic variant of million steps

SAC (red) in terms of the stability of individual random seeds on
the Humanoid (rllab) benchmark. The comparison indicates that
stochasticity can stabilize training as the variability between the
seeds becomes much higher with a deterministic policy.
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Some choices do matter in SAC Haarnoja et al., 2018]
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PG methods can be unstable, and the stable ones are slow

. Policy gradient methods take a gradient ascent step in the direction of maximum
expected return; but that is estimated through samples

« Because these are sample-based methods, we might end up being misled and
take steps in the wrong direction, increasing the likelihood of taking suboptimal
actions

. By taking suboptimal actions, we change the data distribution by spending more
time in states we wouldn’t otherwise spend time on

« The poor data distribution can lead to even poorer updates, eventually leading to a
complete collapse in performance

Marlos C. Machado
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TRPO: Trust Region Policy Optimization (sehuiman et al., 2015)

« The general idea behind TRPO is to take the biggest possible step to improve
policy performance while ensuring that the new policy is not going to be too
different from the old policy

« [0 have a better behaved optimization, and decide on the size of the step we will
take, we can look at the curvature of the space (not only the gradient at a point)

Gradient descent: Line search,
decide on direction and then take
a step on that direction.

Trust region: \We decide on the
maximum step we want to take
and then we find the optimal point
within these constraints.

Marlos C. Machado
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Re-deriving the PG theorem using importance sampling

. Based on Pieter Abbeel’s L4 TRPO and PPO (Foundations of Deep RL Series

https://www.voutube.com/watch?v=KiWE8VIMGiY
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TRPO: Trust Region Policy Optimization [schuiman et al., 2015)

. \We want to make sure the new policy is not too different from the old policy

_ m(als)
m3X£(7T) - IE7"'old Told (a S) Aﬂ'old (87 a’)]
s.t. K o |KL(7||To1d | < € .
[ |l )- KL(P||Q) =) P(x)log géx;

How do we solve this
optimization problem,
which has constraints?
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TRPO: Trust Region Policy Optimization [schuiman et al., 2015)
« We can leverage some aspects of natural policy gradient to solve this objective
Tk+1 = argmax L, () s.t. KL(wl||mg) <6
T
L0,(8) ~ Loz (0) +97(6—01) + ...
1
KL(6]|6x) ~ KLWT116k) + VoK L(6]|8, (6 — k) + - (6 — 6) TH (6 — 05)
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TRPO: Trust Region Policy Optimization [schuiman et at., 2015]
« We can leverage some aspects of natural policy gradient to solve this objective
Tk+1 = arg max L, () s.t. KL(wl||mg) <6

Lo, (6) ~g" (6 6))

KL(6|6x) ~ (0 — 6) ' H(6 — ;)

N | =
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TRPO: Trust Region Policy Optimization [schuiman et at., 2015]

« We can leverage some aspects of natural policy gradient to solve this objective

1
Or+1 = arg moang(O — 0y) s.t. 5(9 —6,) H(0—0,) <e

2€
0k+1 — Ok + = I‘I_lg
g"H 'g

We can use the conjugate gradient
to directly compute these. See
Schulman et al. (2015)

Or Jonathan Hui’s blog post [link]

Marlos C. Machado
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TRPO: Trust Region Policy Optimization [schuiman et al., 2015)

1. Gollect trajectories D, by running policy 11, = ri( 8, ) in the environment
2. Estimate Advantages A, based on the current value function, V ok
T
3. Estimate policy gradient as g = Dik Y > Vologme(AS:)|, A
T€|Dg| t=0 )

4. Use the conjugate gradient algorithm to compute & ~ H g,

5. Update policy by backtracking line search with exponential decay

0.1 = 0x + ol \/ = ?E_l %, , where we sweep j until it satisfies the KL constraint
@, Hy, o

6. Update weights for the current va/ue function

buos = wmemin sl 5 3 () - 1)

€Dy, t=0
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TRPO: Trust Region Policy Optimization (sehuiman et al., 2015)
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TRPO: Trust Region Policy Optimization (sehuiman et al., 2015)

Input Conv.
layer layer

Screen input

16 filters

Conv.
layer

16 filters

Hidden Action
layer  probabilities

20 units

Sampling

“ Control

B. Rider Breakout Enduro Pong QO*bert Seaquest S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Human (Mnih et al., 2013) 7456 31.0 368 —-3.0 18900 28010 3690
Deep Q Learning (Mnih et al., 2013) 4092 168.0 470 20.0 1952 1705 581
UCC-I (Guo et al., 2014) 5702 380 741 21 20025 2995 692
TRPO - single path 1425.2 10.8 534.6 20.9 1973.5 1908.6 568.4
TRPO - vine 859.5 342 430.8 20.9 7732.5 788.4 450.2
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PPO: Proximal Policy Optimization schuman et al., 2017]

« For better scalability and simplicity, TRPO as a first order method?

It would also allow for shared parameters, aux. tasks, leveraging modern optimizers, and more...

TRPO: PPO v1:
m(als) m(A¢|St)
L =E, 1d ——— < Ax 1d \ 29
m’,?X (77) o lﬂ-old (a|3) o (S a)] Eﬂ-old — (At |St) Aﬂ—old (8, (l)

st. Er, |:KL(7T('|St)||7Told('|St))} <e ﬁl(Eﬂold [KL(T('('|St)||7Told('|St))] — 6)

We should dynamically adjust 3 so
Marlos C. Machado |t |S blggel’ Wheﬂ the KI_ |S |arge
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PPO: Proximal Policy Optimization schuman et al., 2017]

« We can further simplify PPO v1

(A¢|St) , 14 e
A PR (L a>] Ero [mm (20) Arass(5,0), [200)] ~ Ar(s, a))]

Pessimistic bound: The farther you
i [KL(W('|St)”W"ld('wt))] — ¢ can go in terms of the ratio is 1 + ¢
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PPO (and the others) have many implementation details

The ICLR Blog Track | Blog Posts

The 37 Implementation Details of Proximal Policy Optimization

tutorial

Huang, Shengyi; Dossa, Rousslan Fernand Julien; Raffin, Antonin; Kanervisto, Anssi; Wang, Weixun

Jon is a first-year master’s student who is interested in reinforcement learning (RL). In his eyes, RL seemed fascinating
because he could use RL libraries such as Stable-Baselines3 (SB3) to train agents to play all kinds of games. He quickly
recognized Proximal Policy Optimization (PPO) as a fast and versatile algorithm and wanted to implement PPO himself
as a learning experience. Upon reading the paper, Jon thought to himself, “huh, this is pretty straightforward.” He then
opened a code editor and started writing PPO. CartPole-vl from Gym was his chosen simulation environment, and
before long, Jon made PPO work with CartPole-v1 . He had a great time and felt motivated to make his PPO work with
more interesting environments, such as the Atari games and MuJoCo robotics tasks. “How cool would that be?” he
thought.
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A big picture view

« Methods like DDPG and SAC are sample efficient because they are off-policy
. Off-policy methods are unstable, though
« TRPO is on-policy, and quite stable, but complicated and it is hard to scale

« PPO scales amazingly well, and it is on-policy (thus, stable)
o Successes include OpenAl Five, OpenAl solving a Rubik’s Cube with a robot hand, and ChatGPT

« We just need to have some clarity over computation vs sample efficiency

o Sometimes, interacting with the world is “expensive”, and we want to squeeze as much as we can
from samples, even if that is computationally demanding (e.g., SAC, DDPG)

o Sometimes interacting with the world is “cheap”, so we can afford to be sample inefficient and make
the algorithm the bottleneck —oftentimes we can get stability out of this setting (e.g., PPO)

Marlos C. Machado
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PPO is probably the most used RL algorithm, so it works
\_(‘y )_/_ [Schulman et al., 2017]
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Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.
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PPO is probably the most used RL algorithm, so it works
_\_(\\J)_/_ [Schulman et al., 2017]

| A2C ACER PPO Tie

(1) avg. episode reward over all of training 1 18 30 0
(2) avg. episode reward over last 100 episodes 1 28 19 1

Table 2: Number of games “won” by each algorithm, where the scoring metric is averaged across three trials.
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GAE: Generalized Advantage Estimation schuman et al., 2016]

« A-returns were originally defined as the exponential average of all n-step returns

« GAE was defined by Schulman et al. (2016) as the exponential average of the

advantage functions
- Notice “that is analogous to TD(A\)” and “the formula has been proposed in prior work (Kimura &
Kobayashi, 1998; Wawrzynski, 2009)”

AGAEON .= (1 - 3) ([1“) + AP + 2248 4 )
= (L= N)(8 + M0 +0¢01) + A28 + 101 +7280) +..)
=1=NEQT+A+A 4+ )+ A+ X2+ X +.00)
25,Y+2(A2+A3+A4 +...)4+...)

—(1-) (&‘(ﬁ) +76Xf-1(%) 25212(%) +)

= (V'8 (16)
=0
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GAE: Generalized Advantage Estimation helps (schuman etat., 2016)
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Next class

o What | plan to do:

o Talk about model-based reinforcement learning, covering MuZero

o What | recommend you to do for next class:

o Start Assignment 4, it is about the last two classes :-)
- Read
= J. Schrittwieser et al.: Mastering Atari, Go, chess and shogi by planning with a learned
model. Nature 588(7839): 604-609 (2020)
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