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CMPUT 628 — Class 16/25

Reminders & Notes

o Assignment 3 is due on Friday (in 2 days)
« Assignment 4 will be released today, it is due on March 28

e Seminars start in 2 weeks-ish

Marlos C. Machado
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Please, interrupt me at any time!
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Lots of problems can be seen as continuous RL problems

Pretty much everything we discussed so far estimates some version of the
action-value function, Q(s,a), and selects actions based on it, e.g.; argmax_ Q(s,a)

Taking the max over 20 actions is fine, how do we go about oo?
Obviously, taking the max is tricky, but there’s also the neural network architecture; we can’t have

an infinite number of heads to estimate Q(s,a) for all a € .«

e}

« Discretizing actions also doesn’t solve anything
The observation space in half-cheetah consists of 9 links and 8 joints

e}

Actions consist of applying torque over the thighs, shins, and feet (6)

o

Even if we discretize the actions to be only -1, 0, and 1; we would
still have 3° = 729 actions

e}

Marlos C. Machado
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Many problems have continuous action spaces
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Can we adapt DQN to tackle continuous actions spaces”

« Again, taking the max is tricky, and even the neural network architecture itself
would need to be adapted, since we can’t have independent heads per action

o The solution? What if instead we directly output the action to be taken?

o We are directly parameterizing the policy
(so it is a policy gradient method), but we
are doing so with a deterministic policy

tanh « But how do we update the policy

parameters?!

Marlos C. Machado
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Actor-Critic Methods
« Policy gradient theorem: VJ(0) < > " u(s) ) ax(s,a)Vr(als,0)

V7T(At|st,9t)
7r(At|St, Ot)

e ... but how do we estimate q_? REINFORCE: 611 =0 + aG,
o Monte Carlo methods have high-variance, they are slow. What if we used TD?

VW(At|St, Ot)
7T(At|St,0t) .

0:1r1 = 0: 4+ ads

... that’s an actor-critic method!

Marlos C. Machado
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Deterministic Policy Gradient [siveretal., 2014

« An actor-critic method (model-free) that learns a deterministic policy (actor)
updated by the action-value function estimates from the critic

o There have been concerns about whether one could get the policy gradient theorem for
deterministic policies; this is beyond of the scope of this class, but see discussion by
Silver et al. (2014) if you want to know more

0 =1t +7Q" (St+1, ar4+1) — Q% (8¢, at)
Wit1 = Wi + 00y0: Vo Q™ (8¢, at)
Orr1 =0 + C¥0V0M0(3t) VaQw(St, at)|a=“6(s)
o This update is on-policy, it only works for didactic purposes; how are we going to explore?

Marlos C. Machado
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Deterministic Policy Gradient [siveretal., 2014

« Off-policy actor-critic algorithm:

Marlos C. Machado

0t =71t + 'YQw(St+17 N0(3t+1)) - Qw(sta at)
Wit1 = Wt + 0y 0t Vo, Q" (¢, at)
0111 =01 + o Vopo(st) VaQ™(5t,at) 4y (s)

Notice that, in the stochastic case, the PG theorem is V J(B)=E_. — [V 609, (als)qg (s,a)],
and in the deterministic case it is V J(6)=E [V o8V Q (s,a) | - S] The difference here is
that in the stochastic case, we are conohhonmg the gradient on sampled actions, while in the
deterministic case we are evaluating the actions directly produced by the deterministic policy.
This means the deterministic policy gradient can be estimated much more efficiently than the
usual stochastic policy gradient since we do not need to sample actions from the log probability.



11 CMPUT 628 — Class 16/25

Why no importance sampling? isiver et al., 2014

o “The deterministic policy gradient removes the integral over actions, we can
avoid importance sampling in the actor; and by using Q-learning, we can avoid
importance sampling in the critic.” [Silver et al., 2014]

0p = 1¢ +¥QY (8t41, Ho(5t+1)) — Q™ (8¢, at)
Wir1 = Wi + 0y 0t Vo, QY (8¢, at)
041 =0 + C¥9V0,U0(3t) VaQ" (5t, at)la:ug(s)
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Deep Deterministic Policy Gradient (iicrap et al., 2016)

o “Our contribution here is to provide modifications to DPG, inspired by the
success of DQN, which allow it to use neural network function approximators to
learn in large state and action spaces online”

o They leverage the key insights of DQN: target network and experience replay
buffers; plus batch normalization (loffe & Szegedy, 2015), which was new at the time

o Batch normalization allows for varied input ranges when dealing with proprioception inputs

o “Akey feature of the approach is its simplicity: it requires only a straightforward
actor-critic architecture and learning algorithm with very few ‘moving parts’,
making it easy to implement and scale to more difficult problems and larger
networks.”

Marlos C. Machado
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Deep Deterministic Policy Gradient (iicrap et al., 2016)

o They use a Polyak averaging for the target network for both the actor and critic
networks (yes, we have four networks now). “This means that the target values
are constrained to change slowly, greatly improving the stability of learning”.

10 +(1-1)0 with T<<1
“We found that having both a target y’ and Q' was required to have stable targets (...) in order to
consistently train the critic without divergence”

« For exploration, they add noise to the chosen action: p'(s,) = u(st|9t“) + N

o Lilicrap et al., 2016 proposed the use of “an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein,
1930) to generate temporally correlated exploration for exploration”

o “More recent results suggest that uncorrelated, mean-zero Gaussian noise works perfectly well”
(OpenAl, https://spinningup.openai.com/en/latest/algorithms/ddpg.html)

Marlos C. Machado
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DDPG

[Lilicrap et al., 2016]

Marlos C. Machado
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Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor p(s|0*) with weights 6% and 9+.
Initialize target network Q' and p/ with weights 09 « 69, 94" + o#
Initialize replay buffer R
for episode =1, M do
Initialize a random process A for action exploration
Receive initial observation state s;
fort=1,Tdo

Select action a; = u(s¢|6*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1

Store transition (s¢, at, ¢, St+1) in R

Sample a random minibatch of N transitions (s;, a;, 7, S;+1) from R

Sety; =i +¥Q'(six1, 1/ (5i41]6%)|69")

Update critic by minimizing the loss: L = & >°. (y; — Q(s,a;]0%))?

Update the actor policy using the sampled policy gradient:

S3

1
Voul ~ Z VaQ(3,0|0%9)|smss.amp(ss) Vor 11(5]6%)

Update the target networks:
09" « 709 + (1 —7)8%

0" 10" + (1 - 7)0"

end for
end for
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DDPG results in MudoCo tasks (and TORCS) (uiicrap et al., 2016]

‘- T —
. Loo

o They also used a frameskip (and framestacking) of 3
o They report evaluation results without exploration noise

o They report results with inputs as pixels and proprioception
For proprioception, they used an MLP with two hidden layers

For pixel inputs, they used a 3-layer convolutional network followed by two hidden layers

Marlos C. Machado
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DDPG (Liicrap et a., 2016]

Marlos C. Machado
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Table 1: Performance after training across all environments for at most 2.5 million steps. We report
both the average and best observed (across 5 runs). All scores, except Torcs, are normalized so

that a random agent receives 0 and a planning algorithm 1; for Torcs we present the raw reward
score. We include results from the DDPG algorithn in the low-dimensional (lowd) version of the

environment and high-dimensional (pix). For comparision we also include results from the original
DPG algorithm with a replay buffer and batch normalization (cntrl).

environment Ra'u,luwd Rbest,lowd Rav,piz Rbest,pz':t Rav,cntrl Rbest,cnt'rl
blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658
canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216
cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528
cartpoleParalle]Double 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerialTriple 0.736 0.946 0.412 0.427 0.583 0.942
cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927
fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999
gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618
movingGripper 0.474 0.936 0.480 0.644 0416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953
reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158
reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
walker2d 0.705 1.573 0.944 1.476 0.393 1.397

torcs -393.385 | 1840.036 | -401.911 | 1876.284 | -911.034 | 1961.600
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Ablations on DDPQG fiicrap et al., 2016]

Marlos C. Machado
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Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.
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In fact, we can also do distributed computing with DDPG
[Horgan et al., 2018]
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Figure 3: Performance of Ape-X DPG on four continuous control tasks, as a function of wall clock time.
Performance improves as we increase the numbers of actors. The black dashed line indicates the maximum

performance reached by a standard DDPG baseline over 5 days of training.
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A Better DDPG

o DDPG can be quite sensitive to hyperparameter choices

« Apparently, DDPG can greatly overestimate the action values
(remember double learning?)

o Fujimoto et al. (2018) show that overestimation impacts actor-critic methods too
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The 3 New Components of Twin Delayed DDPG (TD3)

[Fujimoto et al., 2018]

o Clipped Double-Q Leaming: Learn two Q functions and it sets the minimum
between the two to bootstrap from when defining the target to regress to
T This is where “Twin” comes from

o “Delayed” Policy Updates: The actor (policy) and the target network are updated
less frequently than the critic’s Q-function
T This is where “Delayed” comes from

o Target Policy Smoothing: We add noise to the target action as a type of implicit
regularization

TD3 is very focused on variance reduction, they show the target network also helps

Marlos C. Machado
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Stabilizing Learning with Target Networks

[Fujimoto et al., 2018]

Marlos C. Machado

104
350
(0]
3
< 300
"g’, 108
E’ 250
< - .=
200 =1 7 =0.01
7 =0.1 ™ True Value 102

15065602 04 06 08 10 00 02 04 06 08 10
Time steps (1e5) Time steps (1e5)

(a) Fixed Policy (b) Learned Policy

Figure 3. Average estimated value of a randomly selected state
on Hopper-v1l without target networks, (7 = 1), and with slow-
updating target networks, (r = 0.1,0.01), with a fixed and a

learned policy.
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Target Policy Smoothing in TD3 [ruimoto et al., 2018

o We regress to the target with some noise added to it, to smooth things out

Otherwise we can have some sharp peaks that are undesirable

“Similar actions should have similar values”

Yrp3(Ot41, Riy1;07,07) = Ry +7Q (Ot+1, (04150 ) + € 9_)

e ~ clip [N(O, a)] e

—C

Marlos C. Machado
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Reducing Overestimation: Clipped Double-Q Learning
[Fujimoto et al., 2018]

o \We use the minimum between the two action-value estimates we have

o “Double DQN (Van Hasselt et al., 2016), to be ineffective in an actor-critic setting
(...) Unfortunately, due to the slow-changing policy in an actor-critic setting, the
current and target value estimates remain too similar to avoid maximization bias.”

Yips = Yrp3(Ott1, Rev1; ¢7,07) = Rev1 +7Q (Ot+1,7f(0t+1; 1) + € 91_)
Yrp3 = min(Y%m, Yq%m)

£’1I‘D3 = IE(o,a,'r',o’)NU(’D) [(YTD?’ — Q(Or, Ay; Ot’l))2]

Marlos C. Machado
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“Delayed” Policy Updates in TD3 [rujmoto et al., 2018]

« Asin DDPG, we just directly maximize the actor network; but we do so less
frequently than the critic network

o “If target networks can be used to reduce the error over multiple updates, and policy updates on
high-error states cause divergent behavior, then the policy network should be updated at a lower
frequency than the value network, to first minimize error before introducing a policy update.”

« Update the policy and target networks after a fixed number of updates d to the
critic—Yup, another hyperparameter

m(?X]E(o,a,r,o’)NU(’D) [Q (Ot7 7T(Ot; ¢)a 0)]

Marlos C. Machado
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Guess what? It works d\_(‘y)_/_ [Fujimoto et al., 2018]

Marlos C. Machado
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Figure 5. Learning curves for the OpenAl gym continuous control tasks. The shaded region represents half a standard deviation of the

average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.
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And as usual, they have ablations rumoto et al., 2018]

Method HCheetah Hopper Walker2d Ant Table 2. Average return over the last 10 evaluations over 10 trials
TD3 9532.99 3304.75 4565.24 4185.06 of 1 million time steps, comparing ablation over delayed policy
DDPG 3162.50 1731.94 1520.90 816.35 updates (DP), target policy smoothing (TPS), Clipped Double
AHE 8401.02 1061.77 2362.13 564.07 Q-learning (CDQ) and our architecture, hyper-parameters and

exploration (AHE). Maximum value for each task is bolded.
AHE + DP 7588.64 1465.11 2459.53 896.13

AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14  3979.21 3818.71

TD3 - DP 9590.65 2407.42  4695.50  3754.26
TD3 - TPS 8987.69 2392.59  4033.67  4155.24
TD3 - CDQ 9792.80 1837.32  2579.39 849.75

DQ-AC 9433.87 1773771 310045 244597 A note on ablations...
DDQN-AC 10306.90 215575 3116.81  1092.18

Marlos C. Machado
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What if we want a stochastic policy?

« We can always go back to good old actor-critic methods
« Getting actor-critic methods to work even without neural networks is hard
o If we want to use on-policy methods, we can’t use experience replay buffers

o As usual, simply implementing them with neural networks can be quite unstable
o And if we want to use experience replay buffers, we need off-policy learning

Marlos C. Machado
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o VJ(0) x Zu(s) Z g (s,a)Vm(als,8)
Advantage Actor-Ciritic (A2C) : a

[Mnih et al., 2016]

« Instead of using the action value function, Q(s,a), for the critic, using only the
advantage function, A(s,a) = Q(s,a) - V(s), stabilizes learning

o The advantage is a relative metric, as we are subtracting the mean from the estimate
o Is taking an action better or worse than the mean”?

o IfA(s,a) > 0, we want to do more of that (thus, gradient goes in that direction)
If A(s,a) < O, we want to do less of that (thus, gradient goes against that direction)

« Do we need two value functions, though? Q(s,a) and V(s)?

A(s,a) = Q(s,a) - V(s) but remember Q(s,a) =r + yV(s’)
Thus, A(s,a) =r + yV(s’) - V(s)

Marlos C. Machado
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A2C is quite close to standard Actor-Critic Methods

[Mnih et al., 2016] VJ(6) o< Y u(s) Y ax(s,a)Vn(als,0)

575 = Rt+1 + ’YV(St—}—l; 0) — V(St; 0)
0 0 — ab; VeV (S;0)
@ < ¢+ aVglogm(As|St; d)A(St, Ar)

Marlos C. Machado
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Can we be faster? Can we “cheat”?

« (Can we generate results faster in the problems people have been looking at?
« Can we avoid using GPUs?

« What if we wanted to parallelize learning using distributed computation?

o Again, notice that this can be seen as a change in the problem formulation
Maybe it is just accelerating data generation, but it does rely on very strong assumptions

Marlos C. Machado
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Asynchronous Advantage Actor-CritiC nin etal., 2016]

« Key idea: Have many actors generating data in parallel while updating a shared
model, the critic

« Implementation-wise, they use multiple CPU threads (no GPU!), removing
communication costs as in approaches such as Gorila

e Some consequences of such an approach:

o Exploration: Actors might end up exploring different parts of the state space
o  Getting rid of the experience replay buffer: The multiple actors already “decorrelate” the data
This makes on-policy learning possible

Marlos C. Machado
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Additional details for ASC nin et al., 2016]

« They accumulate gradients over multiple timesteps, reducing the chance
different actor learners cancel each other’s updates

« Different actors follow different exploration policies

o g-greedy with periodically sampled € from some distribution by each actor

« More algorithmic details

o N-step return

- Recurrent agent with an additional 256 LSTM cells after the final hidden layer

o Entropy regularization w.r.t. policy parameters

o Shared network parameters between actor and critic (all non-output layers are shared)

o Share statistics of the gradient across threads for RMSProp

Marlos C. Machado
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Empirical evaluation of A3C mnin et al., 2016]

o Evaluated in Atari 2600 games, MuJoCo, TORCS, and Labyrinth

o In Atari 2600 games, the output layer of the policy network was a softmax
In MudoCo, the policy network outputs two real numbers, the mean and variance of a
multidimensional normal distribution

| Method | Training Time | Mean | Median |
DQN 8 days on GPU 121.9% | 47.5% Ay Py
Gorila 4 days, 100 machines | 215.2% | 71.3% ARAEE g ‘H“‘ !
D-DQN 8 days on GPU 332.9% | 110.9% -l : \

Dueling D-DQN 8 days on GPU 343.8% | 117.1% anl
Prioritized DQN | ~ 8dayson GPU | 463.6% | 127.6% i

A3C, FF 1 day on CPU 344.1% | 68.2% ]
A3C, FF 4 days on CPU 496.8% | 116.6% [
A3C,LSTM 4 days on CPU 623.0% | 112.6% f

Marlos C. Machado
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A3C nihetal, 2016] IS faster
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Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atari 2600 games. DON was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUni form(10~%,1072) and all other hyperparameters fixed.
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Modern implementations still use GPUs for neural network
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Some approaches mnnetal, 20160 €VEN reach superlinear speedups

o At first, you might expect that the

' Number of threads
number of steps to achieve the N e oAl
same performance would be the 1-step Q 10 [3.0 [ 63 [ 133 | 241
, 1-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 221
same. Thus, if you have two threads n-step Q 10 | 27 | 5.9 | 10.7 | 17.2
, : A3C 10 21|37 ] 69 | 125
and are generating twice as much
data. vou’d learn 2x faster. However Table 2. The average training speedup for each method and num-
Y ) ! ber of threads averaged over seven Atari games. To compute the
it seems that mu|t|p|e threads can training speed-up on a single game we measured the time to re-
_ quired reach a fixed reference score using each method and num-
lead to Superllnear Speedup ber of threads. The speedup from using n threads on a game was

. . o o defined as the time required to reach a fixed reference score using
o “We believe this is due to positive effect one thread divided the time required to reach the reference score
of multiple threads to reduce the bias in using n threads. The table shows the speedups averaged over
: : .
one-step m ethods.” seven Atari games (Beamrider, Breakout, Enduro, Pong, Q*bert,
Seaquest, and Space Invaders).

Marlos C. Machado
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It IS sald those methods are also more robust ninetal., 2016)

D s 3 "
16000 - A3C, Beameider . 1000 A3C, Broakout . A3C, Porg

30 . 12000 A3C, O*bart . 1400- A3C, Space Mvaders
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Figure 2. Scatter plots of scores obtained by asynchronous advantage actor-critic on five games (Beamrider, Breakout, Pong, Q*bert,
Space Invaders) for 50 different learning rates and random initializations. On each game, there is a wide range of learning rates for
which all random initializations acheive good scores. This shows that A3C is quite robust to learning rates and initial random weights.

Marlos C. Machado
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11 )

pples-to-apples” comparison in terms of # Steps wnin etal., 2016)

Game DON  Gorila  Double Dueling Prioritized A3CFF,1day A3CFF  A3CLSTM
Alien 5702 8135 10334 14865 9005 182.1 5184 9453 .

Amidar 1334 1892 169.1 1127 2184 2839 2639 1730 1 ”.,

Assault 33323 11958 60608 399438 7748.5 37461 54749 144979 ° u I I I e r O W I n S

Asterix 1245 33247 168370 158400 319075 6230 221405 172445 .

Asteroids 697.1 9336 11932 20354 16540 30094 44745 5093.1

Alantis 761080 6291665 3196880 4453600 5936420 7723920 9110910 8758220

Bank Heist 1763 399.4 8360 11293 8168 9460 970.1 9328

Battle Zone 175600 199380 247400 313200 291000 113400 129500 20760.0 .

Beam Rider 86724 3820 174172 145913 261727 132359 227079 246222 o DQ N . O

Berzerk 10111 9106 11656 14334 817.9 8622

Bowling 412 540 9.6 651 658 362 3511 418

Boxing 2538 742 735 73 68.6 37 598 373 H .

Breakout 3039 3130 3689 4116 3716 5516 6819 7663 o orla.: 5

Centipede AT 62969 38535 48810 30219 33065 37558 1997.0

Chopper Comman 30460 31918 34950 37840 6604.0 16690 10210 10150.0

Crazy Climber 509920 654510 1137820 1245660 1310860 1016240 1126460 138518.0 .

Defender 275100 339960 210935 36425 565330 2330215 o D D N 4

Demon Attack 128352 14880.1 698034 563228 731858 849975  113308.4 1152019 '

Double Dunk 216 113 03 -038 27 0.1 -0.1 0.1

Enduro 4756 70 12166 20774 18844 822 825 825 .

Fishing Derby 23 46 32 41 92 136 188 26 D | ' 9

Freeway 2538 102 2838 02 279 0.1 01 0.1 © ueling:

Frostbite 1574 4266 14481 23324 29302 180.1 1905 197.6

Gopher 27318 43730 152530 200514 577838 8428 10028 171068 . iy

Gravitar 2165 5384 2005 2970 2180 2695 3035 3200 ° Prl 0] rl't I Zed ' 1 2

HERO. 129525 89634 148925 152079 205064 287658 324641 28889.5 .

Ice Hockey 38 17 25 13 10 47 238 17

James Bond 3485 4440 57130 8355 35115 3515 5410 6130

Kangaroo 26960 14310 112040 103340 102410 1060 940 1250 A3 C F F . 4

Krull 38640 63631  679.1 80516 74065 80666 55600 5911.4 o .

Kung-Fu Master 118750 206200 302070 242880 312440 30460 288190 408350

Montezuma’s Revenge 500 840 420 20 130 530 670 410

Ms. Pacman 7635 12630 12413 22506 18246 5944 6537 8507 A3 C LSTM . ‘I 9

Name This Game 54399 92385 89603  11185.1 11836.1 56140 104761 120037 o .

Phoenix 123665 204105 274301 2BI8L8 528941 747867

Pit Fall 1867 469 1438 1230 785 1357

Pong 162 167 191 188 189 114 56 107

Private Eye 2982 25986 5755 2926 179.0 1944 2069 211

Q*Bert 45898 70898 110208 141758 112770 137523 151488 213075

River Raid 40653 53103 108384 165694 181844 100012 122018 65919

Road Runner 92640 430798 431560 585490 569900 317690 342160 73949.0

Robotank 585 618 59.1 620 554 23 3238 26 '

Seaquest 21939 101459 144980 373616 390967 23002 23554 1326.1

o om o w d o |t seems you can train faster, but you
Solaris 8100 17684 2382 18848 19560 19364 )
Space Invaders 14497 11833 26287 59931 9063.0 2147 157305 23846.0

Star Gunner 340810 149192 583650 908040  51959.0 643930 1382180 164766.0 .

Surround L9 40 09 96 9.7 83 )

e g E TR OTETEOTE can’t necessarily reach better
Time Pilot 56400 82678 66080 66010 74480 58250 126790 272020

Tutankham 324 1185 922 480 336 2.1 1563 1442

Up and Down B3 87477 190869 247592 204437 545254 747057 105728.7

Venture 540 5234 210 2000 2440 190 230 250 b b
Video Pinball 202281 1120934 3678237 1109762 3748869 1858526 331628.1 4703105 r | r r ] r ' I

Wizard of Wor 2460 104310 62010 70540 7451.0 52780 172440 18082.0 p e O r a n C e u t ay e yo u C a n
Yars Revenge 627106 259765 5965.1 208 71515 56155

Zaxxon 8310 61594 85930 101640 9501.0 26590 246220 235190

better use an LSTM

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Next class

o What | plan to do:

o Wrap up the discussion about policy gradient methods, covering TRPO, PPO (and GAE) & SAC

o What | recommend you to do for next class:

o Assignments, as usual :-)
- Read
= J. Schulman et al.: Trust Region Policy Optimization. ICML, 2015.
= J. Schulman et al.: Proximal Policy Optimization Algorithms. CoRR abs/1707.06347, 2017.
= J. Schulman et al.: High-Dimensional Continuous Control Using Generalized Advantage
Estimation. ICLR, 2016
= [. Haarnoja et al.: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor. ICML, 2018.

Marlos C. Machado



