
“The test of a man isn’t what you
think he’ll do. It’s what he actually
does.”

Frank Herbert, Dune

CMPUT 628
Deep RL
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● Assignment 3 is due on Friday (in 2 days)

● Assignment 4 will be released today, it is due on March 28

● Seminars start in 2 weeks-ish

Reminders & Notes
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Please, interrupt me at any time!

CMPUT 628 – Class 16/253
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● Pretty much everything we discussed so far estimates some version of the 
action-value function, Q(s,a), and selects actions based on it, e.g.; argmaxa Q(s,a)

● Taking the max over 20 actions is fine, how do we go about ∞?
○ Obviously, taking the max is tricky, but there’s also the neural network architecture; we can’t have 

an infinite number of heads to estimate Q(s,a) for all a ∈ 𝒜

● Discretizing actions also doesn’t solve anything
○ The observation space in half-cheetah consists of 9 links and 8 joints

○ Actions consist of applying torque over the thighs, shins, and feet (6)

○ Even if we discretize the actions to be only -1, 0, and 1; we would
still have 36 = 729 actions

Lots of problems can be seen as continuous RL problems
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Many problems have continuous action spaces
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● Again, taking the max is tricky, and even the neural network architecture itself 
would need to be adapted, since we can’t have independent heads per action

● The solution? What if instead we directly output the action to be taken?

Can we adapt DQN to tackle continuous actions spaces?
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tanh

● We are directly parameterizing the policy 
(so it is a policy gradient method), but we 
are doing so with a deterministic policy

● But how do we update the policy 
parameters?!



Actor-Critic Methods
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● Policy gradient theorem:

● … but how do we estimate qπ? REINFORCE: 

● Monte Carlo methods have high-variance, they are slow. What if we used TD?

… that’s an actor-critic method!
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● An actor-critic method (model-free) that learns a deterministic policy (actor) 
updated by the action-value function estimates from the critic

○ There have been concerns about whether one could get the policy gradient theorem for 
deterministic policies; this is beyond of the scope of this class, but see discussion by               
Silver et al. (2014) if you want to know more

○ This update is on-policy, it only works for didactic purposes; how are we going to explore?

Deterministic Policy Gradient [Silver et al., 2014]
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Deterministic Policy Gradient [Silver et al., 2014]
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● Off-policy actor-critic algorithm:

○ Notice that, in the stochastic case, the PG theorem is ∇θ J(θ)=Es∼ρπ,a∼πθ (⋅∣s) [∇θ logπθ (a∣s)qπ(s,a)], 
and in the deterministic case it is ∇θ J(θ)=Es∼ρπ [∇θ πθ (s)∇a Qπ(s,a) |  a=πθ (s) ]. The difference here is 
that in the stochastic case, we are conditioning the gradient on sampled actions, while in the 
deterministic case we are evaluating the actions directly produced by the deterministic policy. 
This means the deterministic policy gradient can be estimated much more efficiently than the 
usual stochastic policy gradient since we do not need to sample actions from the log probability.
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● “The deterministic policy gradient removes the integral over actions, we can 
avoid importance sampling in the actor; and by using Q-learning, we can avoid 
importance sampling in the critic.” [Silver et al., 2014]

Why no importance sampling? [Silver et al., 2014]
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● “Our contribution here is to provide modifications to DPG, inspired by the 
success of DQN, which allow it to use neural network function approximators  to 
learn in large state and action spaces online”

● They leverage the key insights of DQN: target network and experience replay 
buffers; plus batch normalization (Ioffe & Szegedy, 2015), which was new at the time

○ Batch normalization allows for varied input ranges when dealing with proprioception inputs

● “A key feature of the approach is its simplicity: it requires only a straightforward 
actor-critic architecture and learning algorithm with very few ‘moving parts’, 
making it easy to implement and scale to more difficult problems and larger 
networks.”

Deep Deterministic Policy Gradient [Lilicrap et al., 2016]
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● They use a Polyak averaging for the target network for both the actor and critic 
networks (yes, we have four networks now). “This means that the target values 
are constrained to change slowly, greatly improving the stability of learning”.

○ θ– ← τθ– + (1 −τ )θ   with   τ << 1
○ “We found that having both a target µ’ and Q’ was required to have stable targets (...) in order to 

consistently train the critic without divergence”

● For exploration, they add noise to the chosen action: µ’(st) = µ(st|θt
µ) + 𝒩

○ Lilicrap et al., 2016 proposed the use of “an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 
1930) to generate temporally correlated exploration for exploration”

○ “More recent results suggest that uncorrelated, mean-zero Gaussian noise works perfectly well” 
(OpenAI, https://spinningup.openai.com/en/latest/algorithms/ddpg.html)

Deep Deterministic Policy Gradient [Lilicrap et al., 2016]
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https://spinningup.openai.com/en/latest/algorithms/ddpg.html


DDPG
[Lilicrap et al., 2016]
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● They also used a frameskip (and framestacking) of 3

● They report evaluation results without exploration noise

● They report results with inputs as pixels and proprioception 
○ For proprioception, they used an MLP with two hidden layers

○ For pixel inputs, they used a 3-layer convolutional network followed by two hidden layers

DDPG results in MuJoCo tasks (and TORCS) [Lilicrap et al., 2016]

17 CMPUT 628 – Class 16/25

Marlos C. Machado



DDPG [Lilicrap et al., 2016]
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Ablations on DDPG [Lilicrap et al., 2016]
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In fact, we can also do distributed computing with DDPG 
[Horgan et al., 2018]
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● DDPG can be quite sensitive to hyperparameter choices

● Apparently, DDPG can greatly overestimate the action values
(remember double learning?)

● Fujimoto et al. (2018) show that overestimation impacts actor-critic methods too

A Better DDPG
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● Clipped Double-Q Learning: Learn two Q functions and it sets the minimum 
between the two to bootstrap from when defining the target to regress to  
↑ This is where “Twin” comes from

● “Delayed” Policy Updates: The actor (policy) and the target network are updated 
less frequently than the critic’s Q-function 
↑ This is where “Delayed” comes from

● Target Policy Smoothing: We add noise to the target action as a type of implicit 
regularization

TD3 is very focused on variance reduction, they show the target network also helps

The 3 New Components of Twin Delayed DDPG (TD3)
[Fujimoto et al., 2018]

24 CMPUT 628 – Class 16/25

Marlos C. Machado



Stabilizing Learning with Target Networks
[Fujimoto et al., 2018]
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● We regress to the target with some noise added to it, to smooth things out

○ Otherwise we can have some sharp peaks that are undesirable

○ “Similar actions should have similar values”

Target Policy Smoothing in TD3 [Fujimoto et al., 2018]
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● We use the minimum between the two action-value estimates we have

● “Double DQN (Van Hasselt et al., 2016), to be ineffective in an actor-critic setting 
(...) Unfortunately, due to the slow-changing policy in an actor-critic setting, the 
current and target value estimates remain too similar to avoid maximization bias.”

Reducing Overestimation: Clipped Double-Q Learning
[Fujimoto et al., 2018]
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● As in DDPG, we just directly maximize the actor network; but we do so less 
frequently than the critic network

○ “If target networks can be used to reduce the error over multiple updates, and policy updates on 
high-error states cause divergent behavior, then the policy network should be updated at a lower 
frequency than the value network, to first minimize error before introducing a policy update.”

● Update the policy and target networks after a fixed number of updates d to the 
critic—Yup, another hyperparameter

“Delayed” Policy Updates in TD3 [Fujimoto et al., 2018]
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Guess what? It works ¯\_(ツ)_/¯ [Fujimoto et al., 2018]
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And as usual, they have ablations [Fujimoto et al., 2018]
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A note on ablations…



31

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25



● We can always go back to good old actor-critic methods

● Getting actor-critic methods to work even without neural networks is hard

● If we want to use on-policy methods, we can’t use experience replay buffers

● As usual, simply implementing them with neural networks can be quite unstable
○ And if we want to use experience replay buffers, we need off-policy learning

What if we want a stochastic policy?
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● Instead of using the action value function, Q(s,a), for the critic, using only the 
advantage function, A(s,a) = Q(s,a) - V(s), stabilizes learning

○ The advantage is a relative metric, as we are subtracting the mean from the estimate

○ Is taking an action better or worse than the mean?

○ If A(s,a) > 0, we want to do more of that (thus, gradient goes in that direction)
If A(s,a) < 0, we want to do less of that (thus, gradient goes against that direction)

● Do we need two value functions, though? Q(s,a) and V(s)?

A(s,a) = Q(s,a) - V(s)                 but remember Q(s,a) = r + γV(s’)

Thus, A(s,a) = r + γV(s’) - V(s)

Advantage Actor-Critic (A2C)
[Mnih et al., 2016] 
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A2C is quite close to standard Actor-Critic Methods
[Mnih et al., 2016] 
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Can we be faster? Can we “cheat”?
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● Can we generate results faster in the problems people have been looking at?

● Can we avoid using GPUs?

● What if we wanted to parallelize learning using distributed computation?
○ Again, notice that this can be seen as a change in the problem formulation

Maybe it is just accelerating data generation, but it does rely on very strong assumptions
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● Key idea: Have many actors generating data in parallel while updating a shared 
model, the critic

● Implementation-wise, they use multiple CPU threads (no GPU!), removing 
communication costs as in approaches such as Gorila

● Some consequences of such an approach:
○ Exploration: Actors might end up exploring different parts of the state space
○ Getting rid of the experience replay buffer: The multiple actors already “decorrelate” the data

This makes on-policy learning possible

Asynchronous Advantage Actor-Critic [Mnih et al., 2016] 
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Additional details for A3C [Mnih et al., 2016] 
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● They accumulate gradients over multiple timesteps, reducing the chance 
different actor learners cancel  each other’s updates

● Different actors follow different exploration policies

○ ε-greedy with periodically sampled ε from some distribution by each actor

● More algorithmic details

○ n-step return

○ Recurrent agent with an additional 256 LSTM cells after the final hidden layer

○ Entropy regularization w.r.t. policy parameters

○ Shared network parameters between actor and critic (all non-output layers are shared)

○ Share statistics of the gradient across threads for RMSProp
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● Evaluated in Atari 2600 games, MuJoCo, TORCS, and Labyrinth 
○ In Atari 2600 games, the output layer of the policy network was a softmax

In MuJoCo, the policy network outputs two real numbers, the mean and variance of a 
multidimensional normal distribution

Empirical evaluation of A3C [Mnih et al., 2016] 
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A3C [Mnih et al., 2016] is faster
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Modern implementations still use GPUs for neural network 
computation because training with GPUs is still faster



● At first, you might expect that the 
number of steps to achieve the 
same performance would be the 
same. Thus, if you have two threads 
and are generating twice as much 
data, you’d learn 2x faster. However, 
it seems that multiple threads can 
lead to superlinear speedup

○ “We believe this is due to positive effect 
of multiple threads to reduce the bias in 
one-step methods.”

Some approaches [Mnih et al., 2016] even reach superlinear speedups
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It is said those methods are also more robust [Mnih et al., 2016]
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“Apples-to-apples” comparison in terms of # steps [Mnih et al., 2016] 
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● Number of “wins”:
○ DQN: 0
○ Gorila: 5
○ DDQN: 4
○ Dueling: 9
○ Prioritized: 12
○ A3C FF: 4
○ A3C LSTM: 19

● It seems you can train faster, but you 
can’t necessarily reach better 
performance (but maybe you can 
better use an LSTM)
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● What I plan to do:

○ Wrap up the discussion about policy gradient methods, covering TRPO, PPO (and GAE) & SAC

● What I recommend you to do for next class:

○ Assignments, as usual :-)

○ Read

■ J. Schulman et al.: Trust Region Policy Optimization.  ICML, 2015.

■ J. Schulman et al.: Proximal Policy Optimization Algorithms. CoRR abs/1707.06347, 2017.

■ J. Schulman et al.: High-Dimensional Continuous Control Using Generalized Advantage 

Estimation. ICLR, 2016

■ T. Haarnoja et al.: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement 

Learning with a Stochastic Actor. ICML, 2018.

Next class
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