
“The test of a man isn’t what you
think he’ll do. It’s what he actually
does.”

Frank Herbert, Dune

CMPUT 628
Deep RL

Marlos C. Machado Class 16/ 25Marlos C. Machado https://pbs.twimg.com/media/FGHKuYcXwAA31Zx.jpg

● Assignment 3 is due on Friday (in 2 days)

● Assignment 4 will be released today, it is due on March 28

● Seminars start in 2 weeks-ish

Reminders & Notes

2 CMPUT 628 – Class 16/25

Marlos C. Machado

Please, interrupt me at any time!

CMPUT 628 – Class 16/253

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

● Pretty much everything we discussed so far estimates some version of the
action-value function, Q(s,a), and selects actions based on it, e.g.; argmaxa Q(s,a)

● Taking the max over 20 actions is fine, how do we go about ∞?
○ Obviously, taking the max is tricky, but there’s also the neural network architecture; we can’t have

an infinite number of heads to estimate Q(s,a) for all a ∈ 𝒜

● Discretizing actions also doesn’t solve anything
○ The observation space in half-cheetah consists of 9 links and 8 joints

○ Actions consist of applying torque over the thighs, shins, and feet (6)

○ Even if we discretize the actions to be only -1, 0, and 1; we would
still have 36 = 729 actions

Lots of problems can be seen as continuous RL problems

4 CMPUT 628 – Class 16/25

Marlos C. Machado

Many problems have continuous action spaces

5 CMPUT 628 – Class 16/25

Marlos C. Machado

● Again, taking the max is tricky, and even the neural network architecture itself
would need to be adapted, since we can’t have independent heads per action

● The solution? What if instead we directly output the action to be taken?

Can we adapt DQN to tackle continuous actions spaces?

6 CMPUT 628 – Class 16/25

Marlos C. Machado

tanh

● We are directly parameterizing the policy
(so it is a policy gradient method), but we
are doing so with a deterministic policy

● But how do we update the policy
parameters?!

Actor-Critic Methods

7

● Policy gradient theorem:

● … but how do we estimate qπ? REINFORCE:

● Monte Carlo methods have high-variance, they are slow. What if we used TD?

… that’s an actor-critic method!

CMPUT 628 – Class 16/25

Marlos C. Machado

8

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● An actor-critic method (model-free) that learns a deterministic policy (actor)
updated by the action-value function estimates from the critic

○ There have been concerns about whether one could get the policy gradient theorem for
deterministic policies; this is beyond of the scope of this class, but see discussion by
Silver et al. (2014) if you want to know more

○ This update is on-policy, it only works for didactic purposes; how are we going to explore?

Deterministic Policy Gradient [Silver et al., 2014]

9 CMPUT 628 – Class 16/25

Marlos C. Machado

Deterministic Policy Gradient [Silver et al., 2014]

10 CMPUT 628 – Class 16/25

● Off-policy actor-critic algorithm:

○ Notice that, in the stochastic case, the PG theorem is ∇θ J(θ)=Es∼ρπ,a∼πθ (⋅∣s) [∇θ logπθ (a∣s)qπ(s,a)],
and in the deterministic case it is ∇θ J(θ)=Es∼ρπ [∇θ πθ (s)∇a Qπ(s,a) | a=πθ (s)]. The difference here is
that in the stochastic case, we are conditioning the gradient on sampled actions, while in the
deterministic case we are evaluating the actions directly produced by the deterministic policy.
This means the deterministic policy gradient can be estimated much more efficiently than the
usual stochastic policy gradient since we do not need to sample actions from the log probability.

Marlos C. Machado

● “The deterministic policy gradient removes the integral over actions, we can
avoid importance sampling in the actor; and by using Q-learning, we can avoid
importance sampling in the critic.” [Silver et al., 2014]

Why no importance sampling? [Silver et al., 2014]

11 CMPUT 628 – Class 16/25

Marlos C. Machado

12

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● “Our contribution here is to provide modifications to DPG, inspired by the
success of DQN, which allow it to use neural network function approximators to
learn in large state and action spaces online”

● They leverage the key insights of DQN: target network and experience replay
buffers; plus batch normalization (Ioffe & Szegedy, 2015), which was new at the time

○ Batch normalization allows for varied input ranges when dealing with proprioception inputs

● “A key feature of the approach is its simplicity: it requires only a straightforward
actor-critic architecture and learning algorithm with very few ‘moving parts’,
making it easy to implement and scale to more difficult problems and larger
networks.”

Deep Deterministic Policy Gradient [Lilicrap et al., 2016]

13 CMPUT 628 – Class 16/25

Marlos C. Machado

● They use a Polyak averaging for the target network for both the actor and critic
networks (yes, we have four networks now). “This means that the target values
are constrained to change slowly, greatly improving the stability of learning”.

○ θ– ← τθ– + (1 −τ)θ with τ << 1
○ “We found that having both a target µ’ and Q’ was required to have stable targets (...) in order to

consistently train the critic without divergence”

● For exploration, they add noise to the chosen action: µ’(st) = µ(st|θt
µ) + 𝒩

○ Lilicrap et al., 2016 proposed the use of “an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein,
1930) to generate temporally correlated exploration for exploration”

○ “More recent results suggest that uncorrelated, mean-zero Gaussian noise works perfectly well”
(OpenAI, https://spinningup.openai.com/en/latest/algorithms/ddpg.html)

Deep Deterministic Policy Gradient [Lilicrap et al., 2016]

14 CMPUT 628 – Class 16/25

Marlos C. Machado

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

DDPG
[Lilicrap et al., 2016]

15 CMPUT 628 – Class 16/25

Marlos C. Machado

16

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● They also used a frameskip (and framestacking) of 3

● They report evaluation results without exploration noise

● They report results with inputs as pixels and proprioception
○ For proprioception, they used an MLP with two hidden layers

○ For pixel inputs, they used a 3-layer convolutional network followed by two hidden layers

DDPG results in MuJoCo tasks (and TORCS) [Lilicrap et al., 2016]

17 CMPUT 628 – Class 16/25

Marlos C. Machado

DDPG [Lilicrap et al., 2016]

18 CMPUT 628 – Class 16/25

Marlos C. Machado

Ablations on DDPG [Lilicrap et al., 2016]

19 CMPUT 628 – Class 16/25

Marlos C. Machado

20

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

In fact, we can also do distributed computing with DDPG
[Horgan et al., 2018]

21 CMPUT 628 – Class 16/25

Marlos C. Machado

22

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● DDPG can be quite sensitive to hyperparameter choices

● Apparently, DDPG can greatly overestimate the action values
(remember double learning?)

● Fujimoto et al. (2018) show that overestimation impacts actor-critic methods too

A Better DDPG

23 CMPUT 628 – Class 16/25

Marlos C. Machado

● Clipped Double-Q Learning: Learn two Q functions and it sets the minimum
between the two to bootstrap from when defining the target to regress to
↑ This is where “Twin” comes from

● “Delayed” Policy Updates: The actor (policy) and the target network are updated
less frequently than the critic’s Q-function
↑ This is where “Delayed” comes from

● Target Policy Smoothing: We add noise to the target action as a type of implicit
regularization

TD3 is very focused on variance reduction, they show the target network also helps

The 3 New Components of Twin Delayed DDPG (TD3)
[Fujimoto et al., 2018]

24 CMPUT 628 – Class 16/25

Marlos C. Machado

Stabilizing Learning with Target Networks
[Fujimoto et al., 2018]

25 CMPUT 628 – Class 16/25

Marlos C. Machado

● We regress to the target with some noise added to it, to smooth things out

○ Otherwise we can have some sharp peaks that are undesirable

○ “Similar actions should have similar values”

Target Policy Smoothing in TD3 [Fujimoto et al., 2018]

26 CMPUT 628 – Class 16/25

Marlos C. Machado

● We use the minimum between the two action-value estimates we have

● “Double DQN (Van Hasselt et al., 2016), to be ineffective in an actor-critic setting
(...) Unfortunately, due to the slow-changing policy in an actor-critic setting, the
current and target value estimates remain too similar to avoid maximization bias.”

Reducing Overestimation: Clipped Double-Q Learning
[Fujimoto et al., 2018]

27 CMPUT 628 – Class 16/25

Marlos C. Machado

W
e d

o i
t fo

r

bo
th

ne
tw

or
ks

● As in DDPG, we just directly maximize the actor network; but we do so less
frequently than the critic network

○ “If target networks can be used to reduce the error over multiple updates, and policy updates on
high-error states cause divergent behavior, then the policy network should be updated at a lower
frequency than the value network, to first minimize error before introducing a policy update.”

● Update the policy and target networks after a fixed number of updates d to the
critic—Yup, another hyperparameter

“Delayed” Policy Updates in TD3 [Fujimoto et al., 2018]

28 CMPUT 628 – Class 16/25

Marlos C. Machado

Guess what? It works ¯_(ツ)_/¯ [Fujimoto et al., 2018]

29 CMPUT 628 – Class 16/25

Marlos C. Machado

W
ha

t a
bo

ut

wall
-c

loc
k-

tim
e?

And as usual, they have ablations [Fujimoto et al., 2018]

30 CMPUT 628 – Class 16/25

Marlos C. Machado

A note on ablations…

31

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● We can always go back to good old actor-critic methods

● Getting actor-critic methods to work even without neural networks is hard

● If we want to use on-policy methods, we can’t use experience replay buffers

● As usual, simply implementing them with neural networks can be quite unstable
○ And if we want to use experience replay buffers, we need off-policy learning

What if we want a stochastic policy?

32 CMPUT 628 – Class 16/25

Marlos C. Machado

● Instead of using the action value function, Q(s,a), for the critic, using only the
advantage function, A(s,a) = Q(s,a) - V(s), stabilizes learning

○ The advantage is a relative metric, as we are subtracting the mean from the estimate

○ Is taking an action better or worse than the mean?

○ If A(s,a) > 0, we want to do more of that (thus, gradient goes in that direction)
If A(s,a) < 0, we want to do less of that (thus, gradient goes against that direction)

● Do we need two value functions, though? Q(s,a) and V(s)?

A(s,a) = Q(s,a) - V(s) but remember Q(s,a) = r + γV(s’)

Thus, A(s,a) = r + γV(s’) - V(s)

Advantage Actor-Critic (A2C)
[Mnih et al., 2016]

33 CMPUT 628 – Class 16/25

Marlos C. Machado

A2C is quite close to standard Actor-Critic Methods
[Mnih et al., 2016]

34 CMPUT 628 – Class 16/25

Marlos C. Machado

35

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

Can we be faster? Can we “cheat”?

36 CMPUT 628 – Class 16/25

● Can we generate results faster in the problems people have been looking at?

● Can we avoid using GPUs?

● What if we wanted to parallelize learning using distributed computation?
○ Again, notice that this can be seen as a change in the problem formulation

Maybe it is just accelerating data generation, but it does rely on very strong assumptions

Marlos C. Machado

● Key idea: Have many actors generating data in parallel while updating a shared
model, the critic

● Implementation-wise, they use multiple CPU threads (no GPU!), removing
communication costs as in approaches such as Gorila

● Some consequences of such an approach:
○ Exploration: Actors might end up exploring different parts of the state space
○ Getting rid of the experience replay buffer: The multiple actors already “decorrelate” the data

This makes on-policy learning possible

Asynchronous Advantage Actor-Critic [Mnih et al., 2016]

37 CMPUT 628 – Class 16/25

Marlos C. Machado

Additional details for A3C [Mnih et al., 2016]

38 CMPUT 628 – Class 16/25

Marlos C. Machado

● They accumulate gradients over multiple timesteps, reducing the chance
different actor learners cancel each other’s updates

● Different actors follow different exploration policies

○ ε-greedy with periodically sampled ε from some distribution by each actor

● More algorithmic details

○ n-step return

○ Recurrent agent with an additional 256 LSTM cells after the final hidden layer

○ Entropy regularization w.r.t. policy parameters

○ Shared network parameters between actor and critic (all non-output layers are shared)

○ Share statistics of the gradient across threads for RMSProp

39

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● Evaluated in Atari 2600 games, MuJoCo, TORCS, and Labyrinth
○ In Atari 2600 games, the output layer of the policy network was a softmax

In MuJoCo, the policy network outputs two real numbers, the mean and variance of a
multidimensional normal distribution

Empirical evaluation of A3C [Mnih et al., 2016]

40 CMPUT 628 – Class 16/25

Marlos C. Machado

A3C [Mnih et al., 2016] is faster

41 CMPUT 628 – Class 16/25

Marlos C. Machado

Modern implementations still use GPUs for neural network
computation because training with GPUs is still faster

● At first, you might expect that the
number of steps to achieve the
same performance would be the
same. Thus, if you have two threads
and are generating twice as much
data, you’d learn 2x faster. However,
it seems that multiple threads can
lead to superlinear speedup

○ “We believe this is due to positive effect
of multiple threads to reduce the bias in
one-step methods.”

Some approaches [Mnih et al., 2016] even reach superlinear speedups

42 CMPUT 628 – Class 16/25

Marlos C. Machado

It is said those methods are also more robust [Mnih et al., 2016]

43 CMPUT 628 – Class 16/25

Marlos C. Machado

“Apples-to-apples” comparison in terms of # steps [Mnih et al., 2016]

44 CMPUT 628 – Class 16/25

● Number of “wins”:
○ DQN: 0
○ Gorila: 5
○ DDQN: 4
○ Dueling: 9
○ Prioritized: 12
○ A3C FF: 4
○ A3C LSTM: 19

● It seems you can train faster, but you
can’t necessarily reach better
performance (but maybe you can
better use an LSTM)

Marlos C. Machado

45

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 16/25

● What I plan to do:

○ Wrap up the discussion about policy gradient methods, covering TRPO, PPO (and GAE) & SAC

● What I recommend you to do for next class:

○ Assignments, as usual :-)

○ Read

■ J. Schulman et al.: Trust Region Policy Optimization. ICML, 2015.

■ J. Schulman et al.: Proximal Policy Optimization Algorithms. CoRR abs/1707.06347, 2017.

■ J. Schulman et al.: High-Dimensional Continuous Control Using Generalized Advantage

Estimation. ICLR, 2016

■ T. Haarnoja et al.: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor. ICML, 2018.

Next class

46 CMPUT 628 – Class 16/25

Marlos C. Machado

