
Streaming Deep
Reinforcement Learning

March 3, 2025
Rupam Mahmood

2

● Learning from a stream of experience

○ as soon as they arrive

○ without storing experience in raw form

future

present

etet-1et-2et-3

past

What is streaming learning?

● Uses and learns a nonlinear function approximation

● Stores past experience in raw form

● Makes mini-batch updates

Deep RL has been batch learning instead of streaming

● TD(𝜆), Q(𝜆), SARSA(𝜆), AC(𝜆)

● Uses linear function approximation

● Or learns last linear layer on top of fixed representation

Classic RL has been streaming

Pseudocode of a typical Deep RL algorithm

● Discussion

Why do we need streaming learning?

● To understand natural learning

● To adapt fast

● To learn continually in real time under resource constraints

○ In real-world deployed systems, on-demand learning compute is always scarce

Why do we need streaming learning? (cont’d)

Why do we need streaming learning? (cont’d)

https://docs.google.com/file/d/17lwDh7X_X6Lv0fWTNbnUajvf3ZScAm6b/preview

● Discussion

Why hasn't there been streaming deep RL?

This was done using deep RL
but offline in simulations

Why hasn't there been streaming deep RL? (cont’d)

Kaufmann et al. (Nature 2023)

In simulations, we can always make one update per time step

11

Simulations assume abundant computational power

Policy
inference

Learning
update

. . .

Simulation
paused

Policy
inference

Learning
update

Simulation
paused

Simulation
advanced

Policy
inference

Learning
update

Simulation
paused

Simulation
advanced

Time step 1 Time step 2

Mini-batch updates are computation-wise expensive

12

1ms

100ms

10ms

10s

40ms action
cycle time

Policy
inference

batch
update

Policy
inference

batch
update

Workstation Jetson Nano

Y-axis in log-scale

13

Mini-batch updates are too expensive for real-time learning

Yuan, Y., & Mahmood, A. R. (ICRA 2022)

Achieved
action cycle

Wall time

. . .

Target
action
cycle

Deadline missed
for obs. & action

Replay buffers are memory-wise expensive
10GB

100MB

10MB

100KB

Policy Replay buffer Policy Replay buffer

Non-image based Image based

Y-axis in log-scale

Reducing the buffer size has a catastrophic effect

Vasan et al. (NeurIPS 2024)

Deep RL under resource constraint didn’t work so far

Tethered to a
workstation

Tethered to a
laptop

Tethered to a
Jetson Nano
(emulated)

Wang*, Vasan*, & Mahmood (ICRA 2023)

Deep RL under resource constraint hasn’t work so far

Continual Learning on Real Robots - Rupam Mahmood

https://www.youtube.com/watch?v=smOIJldYbhk

● Discussion

Why has deep RL under resource constraint not work
so far?

● Learning without replay buffer causes failure

Why has deep RL under resource constraint not work
so far? (cont’d)

● For that we can go to the source of replay/batch/non-sequential learning

● Experience replay in RL was first introduced by Lin (1992)

○ “experience replay was quite effective in speeding up the credit assignment process”

○ But a similar idea even earlier as relaxation planning in tabular Dyna-Q (Sutton 1990)

● But the idea of revisiting past samples was used earlier in NN

○ To address catastrophic forgetting in the original paper by McCloskey and Cohen (1989)

○ But even earlier by Hinto and Plaut (1987) to “deblur old memories” by “rehearsing”

Why does learning without replay buffer cause failure?

What is catastrophic forgetting?

● Catastrophic forgetting (CF) is the phenomenon of the learner performing
poorly on past tasks upon learning new tasks, i.e., in continual learning

● This problem was first observed in sequential learning

○ As can be seen, 80s were full of streaming learning and adjacent ideas

● Replaying/rehearsing/revisiting past samples was introduced as a remedy

● Generally, learning dynamics face pathologies when learning …

○ under nonstationarity

○ using backpropagation/gradient descent

● Deep RL has both of these components even when learning a single task

● We contend that learning dynamics in deep RL face similar pathologies

Why is a pathology of CL relevant to single-task deep RL?

● Catastrophic forgetting caused by interfering signals from nonstationary data

○ Causes instability

● Instability can also be caused by exploding gradient

● There are also pathologies causing loss of plasticity/trainability

○ Feature dormancy/saturation, large weight, vanishing gradient, representation collapse,
ill-conditioning, loss of curvature

What are some of the pathologies?

● Augment or go beyond backprop / gradient-based learning

● Search methods are known to avoid catastrophic forgetting

○ Like evolutionary methods, but they are expensive

● Representation can be searched in a streaming manner as well

○ Mahmood and Sutton (2013) introduced streaming search with feature re-initialization

○ It was combined with backprop for deep network by Dohare et al. (2024)

A major remedy: Search

● The pathologies are often together referred to as stability-plasticity dilemma

● Many classic and modern ML/DL techniques provide recourse

○ Special weight initialization and re-initialization

○ Sparse representation and norm regularization

○ Normalization techniques

○ Skip connections, gradient clipping, and modern activations

○ Adaptive optimizers

What are some of the pathologies and their remedies?

26

InputWeightPre-activation Activation
output

Activation
function

Backpropagation
chain rule:

Forward pass:

“Steepest descent procedures preferentially change existing, already-useful features rather than
make new ones from unused units.” (Sutton 1986)

Elsayed, M., & Mahmood, A. R. (ICLR 2024)

In a recent work, we looked at backprop more closely

27

● More useful weights have higher protection from change

● Less useful weights are repurposed for plasticity through perturbation

We introduce Utility-based Perturbed Gradient Descent
(UPGD)

The diagonal of Hessian
can be approximated

well in O(n) (ICML-2024)

Elsayed, M., & Mahmood, A. R. (ICLR 2024)

[0, 1]

28

UPGD addresses continual learning issues in the
streaming learning setting fully incrementally

Elsayed, M., & Mahmood, A. R. (ICLR 2024)

● We introduced the action-value gradient method that makes policy gradient
updates by taking the gradient of the action-values wrt the (cont’s) action

○ Think of SAC without replay buffers, target networks, and mini-batch updates

● We added the following techniques

○ Observation and TD error normalization

○ Penultimate Normalization

Deep streaming learning algorithm: AVG

Vasan et al. (NeurIPS 2024)

Deep streaming learning algorithm: AVG (cont’d)

Vasan et al. (NeurIPS 2024)

● We introduced a number of techniques on top of classic RL algorithms with
eligibility traces like Q(𝜆), SARSA(𝜆), AC(𝜆)

○ Sparse initialization

○ Layer normalization

○ Observation and reward normalization

○ Bounding step-size based on update size

Class of deep streaming learning algorithms: Stream-X

Elsayed, Vasan & Mahmood (arXiv 2024)

● One notion of a “too large” update is overshooting in the loss landscape

○ Used in batch learning or in optimization where the true loss function is known

● For single sample updates, overshooting can be quantified as

○ Opposing error sign:𝛿(w)𝛿(wʹ) < 0

○ Negative inner product between gradients: ∇𝛿2(w)T∇𝛿2(wʹ) < 0

○ Effective step size being larger than 1: (𝛿(w) — 𝛿(wʹ)) / 𝛿(w) > 1

○ Introduced in Mahmood (2010) and Mahmood et al. (2012)

Quantifying update size

Elsayed, Vasan & Mahmood (arXiv 2024)

● When an update is deemed too large

○ Then bound the step size by a value to make the update small enough

○ Use the original step size, otherwise

● It mitigates having opposing error signs / gradient / interference

○ Potentially providing stability

Bounding step size when the update too large

Elsayed, Vasan & Mahmood (arXiv 2024)

Performance of Stream-AC

Elsayed, Vasan & Mahmood (arXiv 2024)

● Streaming deep RL is important for continual learning in deployment

● It shares the same issues continual learning has

● Overcoming some of the continual learning issues allowed us having
successful streaming deep RL for the first time

Conclusion

36

Almost all AI we currently know are offline learned / train-once AI

Offline learning ends before deployment

Stored data or
simulation

AI model

Deploy model

with no
Further learning

Training

Real world

Phase 1 Phase 2

Real-time learning interacts and learns while deployed

37

AI model

Real-time
learning

while deployed

Real world

