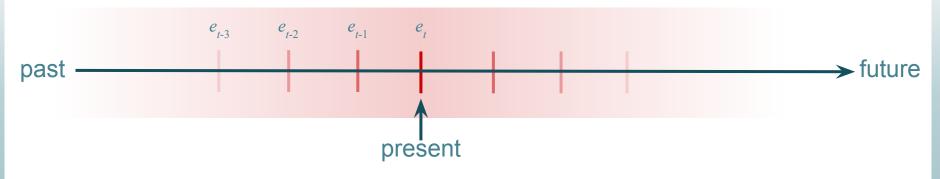
Streaming Deep Reinforcement Learning

> March 3, 2025 Rupam Mahmood

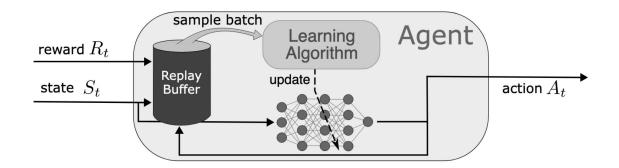
# What is streaming learning?

- Learning from a stream of experience
  - $\circ$  as soon as they arrive
  - without storing experience in raw form



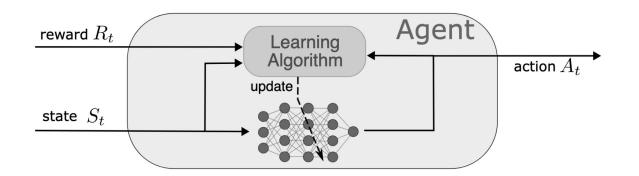
# Deep RL has been batch learning instead of streaming

- Uses and learns a nonlinear function approximation
- Stores past experience in raw form
- Makes mini-batch updates



#### Classic RL has been streaming

- TD( $\lambda$ ), Q( $\lambda$ ), SARSA( $\lambda$ ), AC( $\lambda$ )
- Uses linear function approximation
- Or learns last linear layer on top of fixed representation



# Pseudocode of a typical Deep RL algorithm

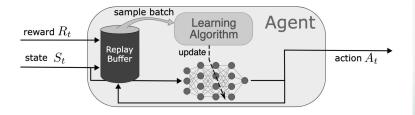
Initialize an empty replay buffer:  $\mathcal{D} \leftarrow \emptyset$ Initialize state  $S_0$ For time t:0 to T

Policy inference:  $A_t \sim \pi_w(\cdot|S_t)$ 

Observe reward and next state:  $R_{t+1}, S_{t+1}$ Store sample:  $\mathcal{D} \leftarrow \mathcal{D} \cup \{S_t, A_t, R_{t+1}, S_{t+1}\}$ 



Make batch update: 
$$w \leftarrow w - \alpha \frac{\partial \mathcal{L}(w, \mathcal{B})}{\partial w}$$



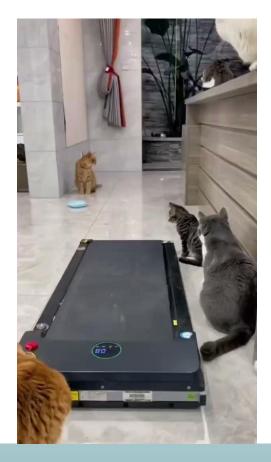
# Why do we need streaming learning?

• Discussion

# Why do we need streaming learning? (cont'd)

- To understand natural learning
- To adapt fast
- To learn continually in real time under resource constraints
  - In real-world deployed systems, on-demand learning compute is always scarce

# Why do we need streaming learning? (cont'd)



# Why hasn't there been streaming deep RL?

• Discussion

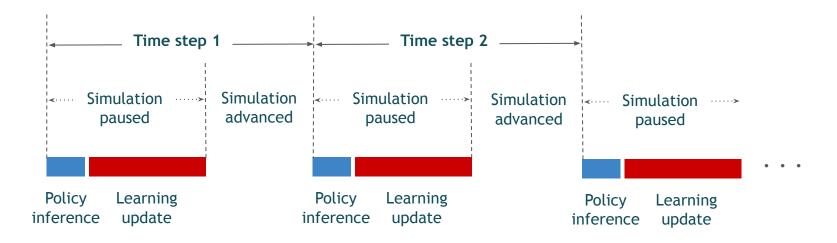
## Why hasn't there been streaming deep RL? (cont'd)



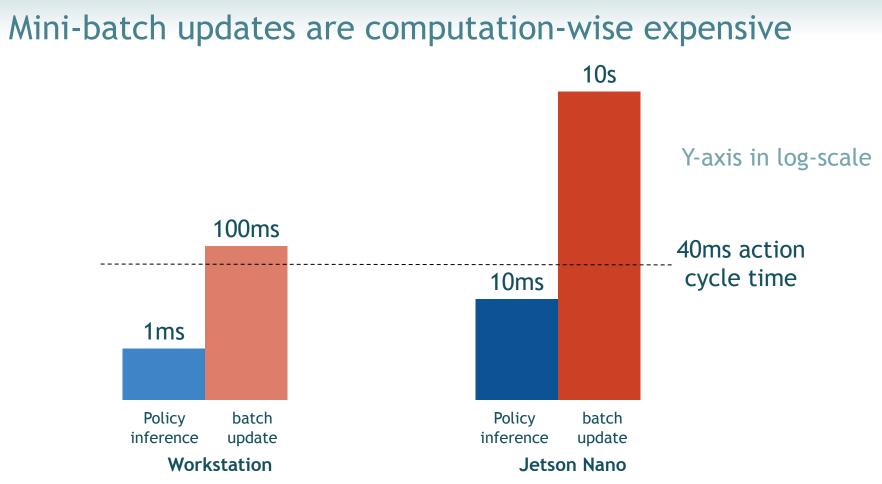
# This was done using deep RL but offline in simulations

Kaufmann et al. (Nature 2023)

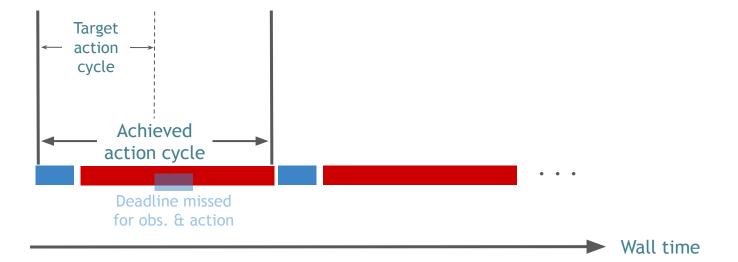
# Simulations assume abundant computational power

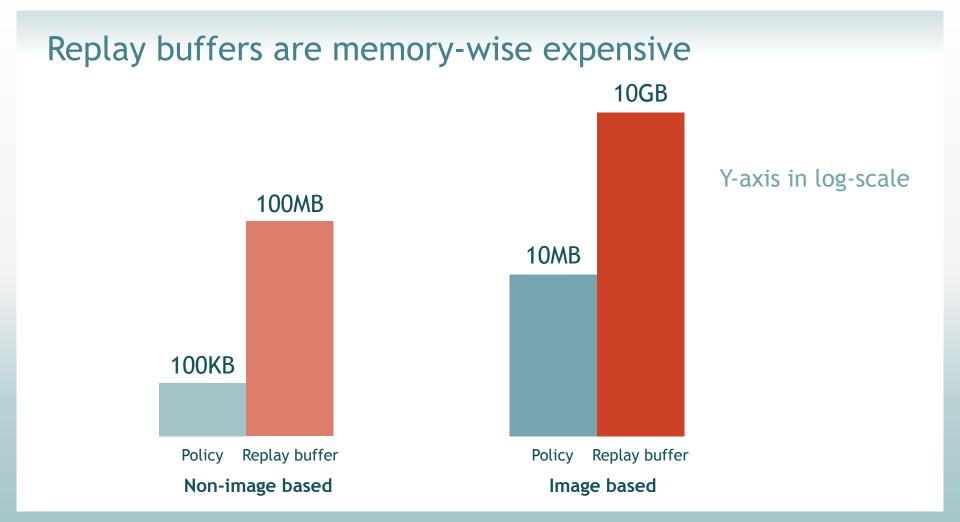


In simulations, we can always make one update per time step

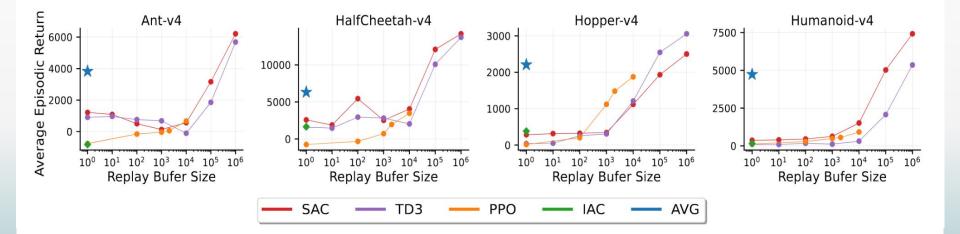


# Mini-batch updates are too expensive for real-time learning

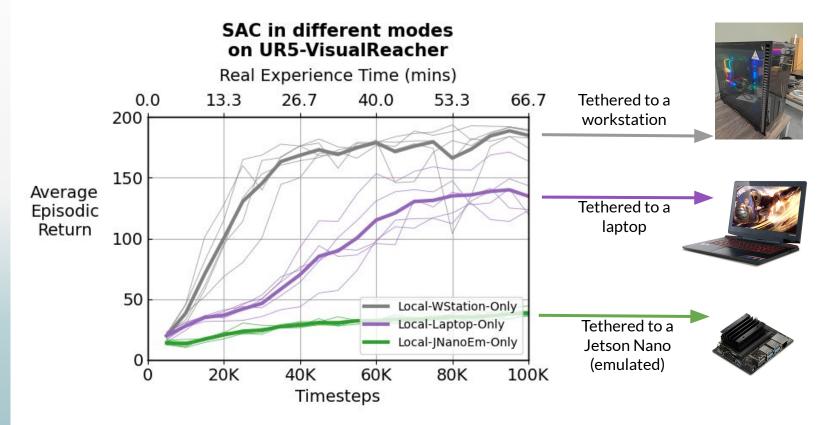




## Reducing the buffer size has a catastrophic effect



### Deep RL under resource constraint didn't work so far



Wang\*, Vasan\*, & Mahmood (ICRA 2023)

#### Deep RL under resource constraint hasn't work so far



Continual Learning on Real Robots - Rupam Mahmood

# Why has deep RL under resource constraint not work so far?

• Discussion

# Why has deep RL under resource constraint not work so far? (cont'd)

• Learning without replay buffer causes failure

## Why does learning without replay buffer cause failure?

- For that we can go to the source of replay/batch/non-sequential learning
- Experience replay in RL was first introduced by Lin (1992)
  - *"experience replay was quite effective in speeding up the credit assignment process"*
  - But a similar idea even earlier as *relaxation planning* in tabular Dyna-Q (Sutton 1990)
- But the idea of revisiting past samples was used earlier in NN
  - To address catastrophic forgetting in the original paper by McCloskey and Cohen (1989)
  - But even earlier by Hinto and Plaut (1987) to "deblur old memories" by "rehearsing"

#### What is catastrophic forgetting?

• *Catastrophic forgetting* (CF) is the phenomenon of the learner performing poorly on past tasks upon learning new tasks, i.e., in continual learning

- This problem was first observed in sequential learning
  - As can be seen, 80s were full of streaming learning and adjacent ideas

• Replaying/rehearsing/revisiting past samples was introduced as a remedy

# Why is a pathology of CL relevant to single-task deep RL?

- Generally, learning dynamics face pathologies when learning ...
  - under nonstationarity
  - using backpropagation/gradient descent
- Deep RL has both of these components even when learning a single task

• We contend that learning dynamics in deep RL face similar pathologies

#### What are some of the pathologies?

- Catastrophic forgetting caused by interfering signals from nonstationary data
  - Causes instability
- Instability can also be caused by exploding gradient

- There are also pathologies causing loss of plasticity/trainability
  - Feature dormancy/saturation, large weight, vanishing gradient, representation collapse, ill-conditioning, loss of curvature

#### A major remedy: Search

- Augment or go beyond backprop / gradient-based learning
- Search methods are known to avoid catastrophic forgetting
  - Like evolutionary methods, but they are expensive

- Representation can be searched in a streaming manner as well
  - Mahmood and Sutton (2013) introduced streaming search with feature re-initialization
  - It was combined with backprop for deep network by Dohare et al. (2024)

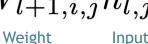
# What are some of the pathologies and their remedies?

- The pathologies are often together referred to as stability-plasticity dilemma
- Many classic and modern ML/DL techniques provide recourse
  - Special weight initialization and re-initialization
  - Sparse representation and norm regularization
  - Normalization techniques
  - Skip connections, gradient clipping, and modern activations
  - Adaptive optimizers

#### In a recent work, we looked at backprop more closely

Forward pass:

$$a_{l+1,i} = \sum_{j=1}^{|h_l|} W_{l+1,i,j} h_{l,j}$$



 $oldsymbol{h}_l = oldsymbol{\sigma}(oldsymbol{a}_l)$ 

Pre-activation

Input

Activation Activation output function

Backpropagation chain rule:

$$\frac{\partial \mathcal{L}}{\partial W_{l,i,j}} = \frac{\partial \mathcal{L}}{\partial a_{l,i}} \frac{\partial a_{l,i}}{\partial W_{l,i,j}} = \frac{\partial \mathcal{L}}{\partial a_{l,i}} h_{l-1,j}$$

$$\frac{\partial \mathcal{L}}{\partial a_{l,i}} = \sigma'(a_{l,i}) \sum_{k=1}^{|\boldsymbol{a}_{l+1}|} \frac{\partial \mathcal{L}}{\partial a_{l+1,k}} W_{l+1,k,i}$$

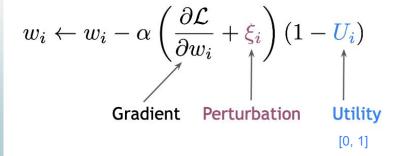
"Steepest descent procedures preferentially change existing, already-useful features rather than make new ones from unused units." (Sutton 1986)

Elsayed, M., & Mahmood, A. R. (ICLR 2024)

# We introduce Utility-based Perturbed Gradient Descent (UPGD)

- More useful weights have higher protection from change
- Less useful weights are repurposed for plasticity through perturbation

$$U_i = \mathcal{L}(\mathcal{W}_{\neg[i]}, Z) - \mathcal{L}(\mathcal{W}, Z)$$



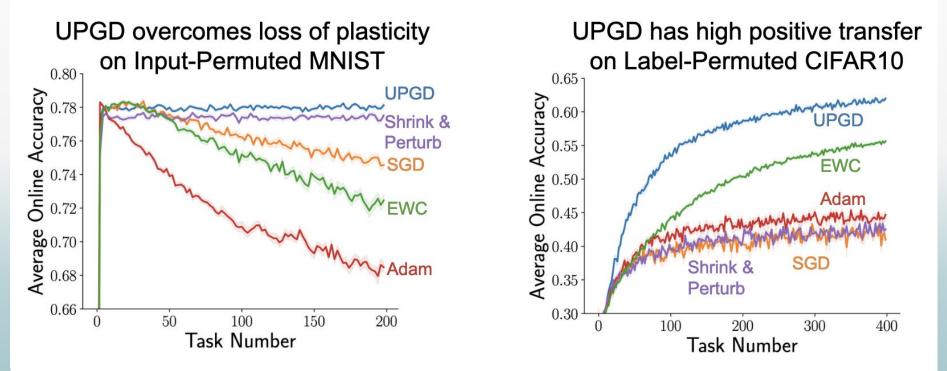
Utility of a weight is defined as the excess loss for not having the connection

$$\approx -\frac{\partial \mathcal{L}}{\partial w_i}w_i + \frac{1}{2}\frac{\partial^2 \mathcal{L}}{\partial w_j^2}w_i^2$$

The diagonal of Hessian can be approximated well in *O*(*n*) (ICML-2024)

Utility is estimated using Taylor approximation and scaled between [0, 1]

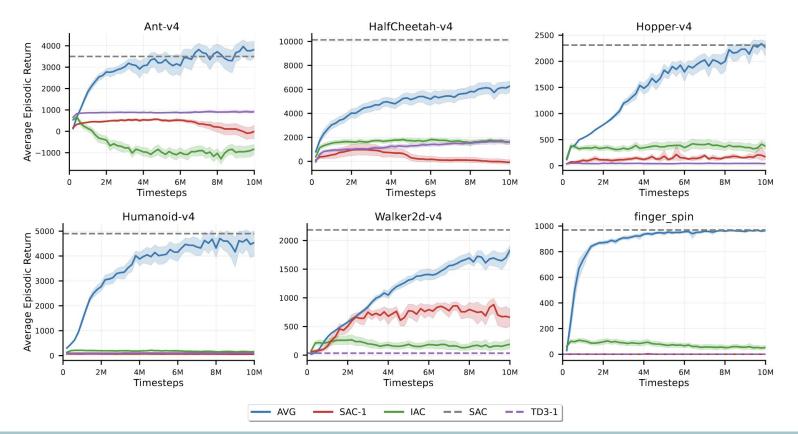
# **UPGD** addresses continual learning issues in the streaming learning setting fully incrementally



## Deep streaming learning algorithm: AVG

- We introduced the action-value gradient method that makes policy gradient updates by taking the gradient of the action-values wrt the (cont's) action
  - Think of SAC without replay buffers, target networks, and mini-batch updates
- We added the following techniques
  - Observation and TD error normalization
  - Penultimate Normalization

# Deep streaming learning algorithm: AVG (cont'd)



Vasan et al. (NeurIPS 2024)

# Class of deep streaming learning algorithms: Stream-X

- We introduced a number of techniques on top of classic RL algorithms with eligibility traces like  $Q(\lambda)$ , SARSA( $\lambda$ ), AC( $\lambda$ )
  - Sparse initialization
  - Layer normalization
  - Observation and reward normalization
  - Bounding step-size based on update size

### Quantifying update size

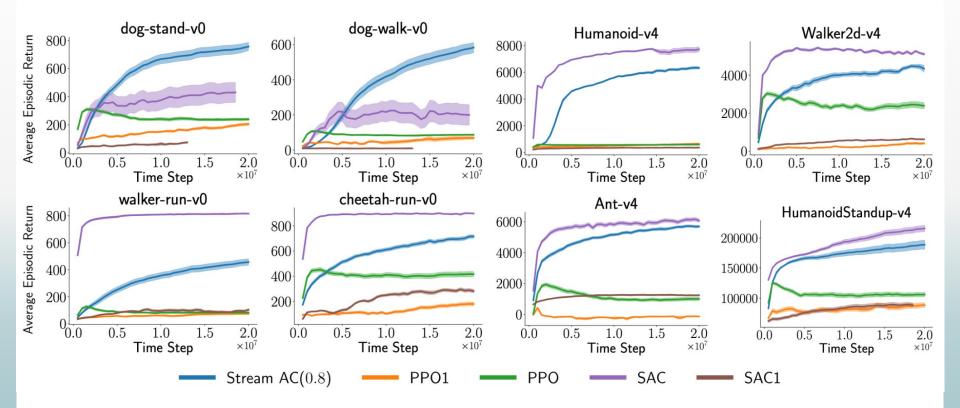
- One notion of a "too large" update is overshooting in the loss landscape
  - Used in batch learning or in optimization where the true loss function is known
- For single sample updates, overshooting can be quantified as
  - Opposing error sign: $\delta(w)\delta(w') < 0$
  - Negative inner product between gradients:  $\nabla \delta^2(w)^T \nabla \delta^2(w') < 0$
  - Effective step size being larger than 1: ( $\delta(w) \delta(w')$ ) /  $\delta(w) > 1$
  - Introduced in Mahmood (2010) and Mahmood et al. (2012)

Elsayed, Vasan & Mahmood (arXiv 2024)

### Bounding step size when the update too large

- When an update is deemed too large
  - Then bound the step size by a value to make the update small enough
  - Use the original step size, otherwise
- It mitigates having opposing error signs / gradient / interference
  - Potentially providing stability

#### Performance of Stream-AC



Elsayed, Vasan & Mahmood (arXiv 2024)

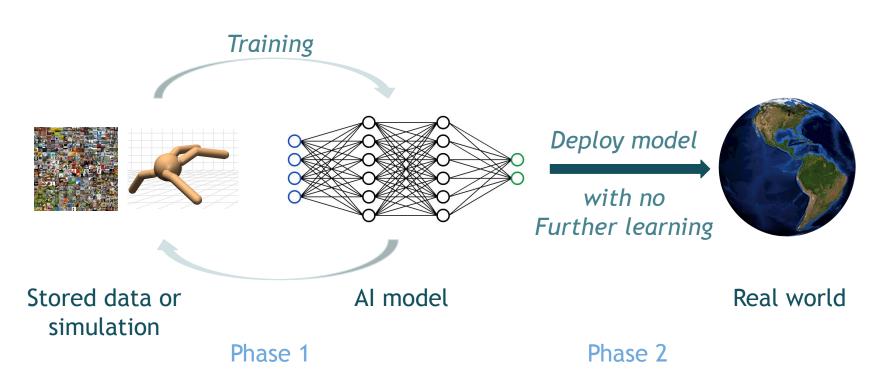
#### Conclusion

• Streaming deep RL is important for continual learning in deployment

• It shares the same issues continual learning has

• Overcoming some of the continual learning issues allowed us having successful streaming deep RL for the first time

# Offline learning ends before deployment



Almost all AI we currently know are offline learned / train-once AI

# Real-time learning interacts and learns while deployed

