
CMPUT 628
Deep RL

Marlos C. Machado Class 14/ 25Marlos C. Machado Book Cover

“Life shouldn’t be a lifetime of waiting.”

Liu Cixin, Death's End

● There’s no office hours today

● Next Monday, A. Rupam Mahmood will give a guest lecture on streaming deep
reinforcement learning (I won’t be here, but you should come)

● I strongly recommend you start Assignment 3, if you haven’t already done so

● You should also be already thinking about your Seminar and Paper Commentary
○ And the four remaining people should vote if they want to be heard

● Assignment 4 will be done 28 March
(and it will be released before the Assignment’s 3 deadline)

Reminders & Notes

2 CMPUT 628 – Class 14/25

Marlos C. Machado

Please, interrupt me at any time!

CMPUT 628 – Class 14/253

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

So far: DQN and much more

4 CMPUT 628 – Class 14/25

Marlos C. Machado

Today

5 CMPUT 628 – Class 14/25

Marlos C. Machado

6

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● 30+ years ago, Lin was already evaluating the pairing of Q-learning and neural
networks in “moderately complex and nondeterministic” environments

● The experience replay buffer was introduced to improve learning efficiency
instead of having a sample used “only once and then thrown away”

● Decorrelating data never motivated the experience replay buffer. It is even said
that it can be more effective if a “sequence of experiences is replayed in
temporally backward order”.

● Lin also wrote that ideally, “the agent should only replay the experiences
involving actions that still follow the current policy”

Lin (1991, 1992): The origins of the experience replay buffer

7 CMPUT 628 – Class 14/25

Marlos C. Machado

● When first mentioned, it is said that the experience replay buffer “randomizes
over the data, thereby removing correlations in the observation sequence and
smoothing over changes in the data distribution”

○ “learning directly from consecutive samples is inefficient, owing to the strong correlations between
the samples; randomizing the samples breaks these correlations and therefore reduces the
variance of the updates”

● Besides that, “each step of experience is potentially used in many weight
updates, which allows for greater data efficiency”

Mnih et al. (2013; 2015) resuscitated the experience replay buffer

8 CMPUT 628 – Class 14/25

Marlos C. Machado

● The size of the experience replay buffer is a very sensitive hyperparameter
○ The size of the replay buffer obviously impacts the amount of off-policy data the agent uses

○ The same is true for the number of updates per time step (and many other hypers, actually)

● The reality is that many hyperparameters, and algorithmic choices, are deeply
intertwined — the traditional assumptions about independence are wrong

● Fedus et al. (2019) has coined the term
replay ratio: “the number of gradient
updates per environment transition”,
which is arguably what really matters

Hyperparameters really matter

9 CMPUT 628 – Class 14/25

Marlos C. Machado

● The replay ratio can have a really big impact on performance.

● Results by Fedus et al. (2019) with
Rainbow (Hessel et al., 2018) on a subset
of 14 Atari 2600 games averaged
over 3 seeds (using sticky actions).

● Insights (on Rainbow, not DQN):
○ Increasing replay capacity improves perf.

○ Reducing the oldest policy improves perf.
…

○ But “sparse-reward games” benefit from
data generated by older policies

Hyperparameters really matter (Fedus et al., 2019)

10 CMPUT 628 – Class 14/25

Marlos C. Machado

Which one of Rainbow’s is the culprit? (Fedus et al., 2019)

11 CMPUT 628 – Class 14/25

Marlos C. Machado
Why? Because of the deadly triad and a smaller bootstrap? Variance reduction? Unclear

12

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● Zhang and Sutton (2017) present a quite opinionated one

● Empirical analysis is somewhat contrived
○ Tabular and LFA are not interesting in this context

○ Non-LFA is done with 1 hidden layer; it is not
surprising Fedus et al. (2016) were unable to
reproduce Zhang and Sutton’s (2016) findings

● The idea of incorporating the last sample
into the minibatch (size 10) is interesting

There are other takes on experience replay buffers

13 CMPUT 628 – Class 14/25

Marlos C. Machado

R
A

M
 features

Non-LFA Results by Zhang and Sutton (2017)

14 CMPUT 628 – Class 14/25

Marlos C. Machado

R
A

M
 features

DQN DQN + CER

15

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● In most approaches, samples are drawn uniformly at random

● Are there transitions that are more informative than others?
○ At least for value learning, yes – This dates back all the way to prioritized sweeping (Moore & Atkeson; 1993)

○ And there are even some transitions that are rare

● Key idea: Prioritize experience according to their usefulness at a specific time
○ Specifically, Schaul et al. propose prioritizing transitions by the magnitude of their TD error

● We can think about which experiences to store and which experiences to
sample; PER is about sampling

Schaul et al. (2016): Prioritized Experience Replay (PER)

16 CMPUT 628 – Class 14/25

Marlos C. Machado

You have faced a pedagogical example before

17

Schaul et al. (2016)

Main idea: Prioritize transitions by the magnitude of their
TD error (Schaul et al., 2016), and if they’ve been sampled before

18

Implementing this can be quite inefficient. Schaul et al. (2016) implemented their
replay buffer as a binary heap, which makes sampling O(1) and updating O(log N)

Greedy is not great, though (Schaul et al., 2016)

19

Proportional:

Rank-based:

*Linear function approximation

Implementing these is even trickier. Schaul et al. (2016) discuss using a piecewise
linear function with k segments for the proportional strategy, and a sum-tree for the
rank-based one

Now, y
ou al

so
 n

ee
d

im
porta

nce
 sa

m
plin

g

(b
ut t

hey
 an

nea
l t

heir
s)

Guess what? It works ¯_(ツ)_/¯ (... in Atari 2600 games)

20

*1 seed? No-op setting, similar to what DDQN did

21

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

Distributed Experience Replay Buffers

● Can we learn faster?
○ Bottleneck: Data generation. Can we parallelize that?

● Idea: Have multiple agents running in parallel while interacting with multiple
instances of the same environment

● Before we even continue, you have to realize that going to a distributed data
generating system is changing the problem formulation and constraints

○ Or maybe, it is in fact just generating data faster ¯_(ツ)_/¯

● Actors can store their own experience, leading to a distributed experience replay
buffer, or can have a shared, central experience replay buffer (Nair et al., 2015)

22 CMPUT 628 – Class 14/25

Marlos C. Machado

● Distributed training of DQN through Asynchronous Stochastic Gradient Descent
(ASGD), leading to a 10× speed-up

General RL Architecture (Gorila) (Nair et al., 2015)

23 CMPUT 628 – Class 14/25

Marlos C. Machado

GorilaDQN
* This is obviously a new architecture as well

General RL Architecture (Gorila) (Nair et al., 2015)

24 CMPUT 628 – Class 14/25

Marlos C. Machado

Distributed
Q-Network
Q(s,a; θ+)

Gorila DQN (Nair et al., 2015)

● Parameter server parameters are θ+

● Actors and Learners have replicas of
the current Q-Network, Q(s,a; θ), and
they update from parameter server, θ+

● Learner has both the local, current Q-Network, Q(s,a; θ), a target net Q(s,a; θ-)
The learner sends the gradient updates to the parameter server

● Actor and learner networks, Q(s,a; θ), are synchronized before every acting step

● “The learner’s target network is updated from the parameter server θ+ after every
N gradient updates in the central parameter server.”

● “gradients are not applied directly, but instead communicated to the (...) server”

25 CMPUT 628 – Class 14/25

Marlos C. Machado

● A couple of stability tricks:

○ “All gradients older than the threshold
are discarded by the parameter server”

○ “each actor/learner keeps a running average and standard deviation of the absolute DQN loss for
the data it sees and discards gradients with absolute loss higher than the mean plus several
standard deviations”

○ “we used the AdaGrad update rule (Duchi et al., 2011).”

Gorila DQN (Nair et al., 2015)

26 CMPUT 628 – Class 14/25

Marlos C. Machado

● “In all experiments, Gorila DQN used: Nparam = 31 and Nlearn = Nact = 100. We
use the bundled mode. Replay memory size D = 1 million frames and used
ε-greedy as the behaviour policy with annealed from 1 to 0.1 over the first one
million global updates. Each learner syncs the parameters θ− of its target
network after every 60K parameter updates performed in the parameter server.”

○ 100 actors and learners running in parallel, with the parameter vector split across 31 machines

Gorila DQN in Atari 2600 Games (Nair et al., 2015)

27 CMPUT 628 – Class 14/25

Marlos C. Machado

vs 12-14 days

Gorila DQN in Atari 2600 Games (Nair et al., 2015)

28 CMPUT 628 – Class 14/25

Marlos C. Machado but seeing 100x more data

29

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● Idea: to decouple acting from learning, focusing on distributed generation of
experience (instead of parallelizing the computation of gradients)

○ Specifically: “the actors interact with their own instances of the environment by selecting actions
according to a shared neural network, and accumulate the resulting experience in a shared
experience replay memory; the learner replays samples of experience and updates the neural
network”

Distributed Prioritized Experience Replay (Horgan et al., 2018)

30 CMPUT 628 – Class 14/25

Marlos C. Machado

“focus only on the
most significant data
generated by the
actors”

● “In our experiments, hundreds of actors run on CPUs to generate data, and a
single learner running on a GPU samples the most useful experiences”

○ Uses a shared replay buffer with shared priorities (instead of a local one uniformly sampled)

● “We use 360 actor machines (each using one CPU core) to feed data into the
replay memory as fast as they can generate it; approximately 139 frames per
second (FPS) each, for a total of ∼50K FPS, which corresponds to ∼12.5K
transitions (because of a fixed action repeat of 4) (...) gradients are computed for
∼9.7K transitions per second on average”

● They actually considered DDQN with n-step returns and duelling networks (with
prioritized experience replay); not really DQN

Distributed Prioritized Experience Replay (Horgan et al., 2018)

31 CMPUT 628 – Class 14/25

Marlos C. Machado

Distributed Prioritized Experience Replay (Horgan et al., 2018)

32 CMPUT 628 – Class 14/25

Marlos C. Machado

Distributed Prioritized Experience Replay (Horgan et al., 2018)

33 CMPUT 628 – Class 14/25

Marlos C. Machado

34

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● Recurrent Replay Distributed DQN (R2D2) “is most similar to Ape-X, built upon
prioritized distributed replay and n-step double Q-learning (with n = 5), generating
experience by a large number of actors (typically 256) and learning from batches
of replayed experience by a single learner. Like Ape-X, we use the dueling network
architecture of Wang et al. (2016), but provide an LSTM layer after the
convolutional stack”

● R2D2 has many many details and implementation choices; I won’t cover them
here, I’ll focus on the high-level intuition of what they did with their replay buffer

Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

35 CMPUT 628 – Class 14/25

Marlos C. Machado

● Kapturowski et al., 2019 argued that Hausknecht and Stone’s (2015) approach
might have worked just because their problems were too simple

● Instead, they evaluated
○ Storing the recurrent state of the RNN in the experience replay buffer

○ Allowing the network a burn-in period to get a start state for the LSTM
(they consider a sequence of length 80, with a burn-in period of 20 or 40)

● That’s it! The key insights about the distributed architecture come from Ape-X, but
they carefully analyzed a couple of options on how to deal with RNNs

Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

36 CMPUT 628 – Class 14/25

Marlos C. Machado

Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

37 CMPUT 628 – Class 14/25

Marlos C. Machado

It works in Atari 2600 games ¯_(ツ)_/¯ (Kapturowski et al., 2019)

38 CMPUT 628 – Class 14/25

Marlos C. Machado

50B frames?

And in DM-Lab30 ¯_(ツ)_/¯ (Kapturowski et al., 2019)

39 CMPUT 628 – Class 14/25

Marlos C. Machado

40

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 628 – Class 14/25

● Who doesn’t want to get results faster?
Even if that means not making apples-to-apples comparisons? ←sarcasm

● Sometimes it just works, your problem is conducive to it and all you care about
is to get good results (e.g., controlling balloons in the stratosphere)

● Sometimes data generation in parallel (the problem) is even
introduced as a solution to limitations of solution methods

● We will talk more about this in the context of policy gradient methods
○ APE-X, for example, was also evaluated with DDPG

Distributed training is very appealing

41 CMPUT 628 – Class 14/25

Marlos C. Machado

Next class

42 CMPUT 628 – Class 14/25

Marlos C. Machado

● What I plan to do:
○ Not being here. Rupam will talk about Streaming Deep RL

○ Next next class: I’ll start talking about Policy Gradient Methods (yup, I flipped the order)

● What I recommend YOU to do for next (and next next) class:
○ Read

■ M. Elsayed, G. Vasan, A. R. Mahmood: Streaming Deep Reinforcement Learning Finally Works.
CoRR abs/2410.14606 (2024)

■ V. Mnih et al.: Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

■ T. P. Lillicrap et al.: Continuous Control with Deep Reinforcement Learning. ICLR 2016

■ S. Fujimoto, H. van Hoof, D. Meger: Addressing Function Approximation Error in Actor-Critic
Methods. ICML 2018

■ T. Haarnoja, A. Zhou, P. Abbeel, S. Levine: Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. ICML 2018

