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“Life shouldn’t be a lifetime of waiting.”

Liu Cixin, Death's End



● There’s no office hours today

● Next Monday, A. Rupam Mahmood will give a guest lecture on streaming deep 
reinforcement learning (I won’t be here, but you should come)

● I strongly recommend you start Assignment 3, if you haven’t already done so

● You should also be already thinking about your Seminar and Paper Commentary
○ And the four remaining people should vote if they want to be heard

● Assignment 4 will be done 28 March
(and it will be released before the Assignment’s 3 deadline)

Reminders & Notes
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Please, interrupt me at any time!
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So far: DQN and much more
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Today
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● 30+ years ago, Lin was already evaluating the pairing of Q-learning and neural 
networks in “moderately complex and nondeterministic” environments

● The experience replay buffer was introduced to improve learning efficiency 
instead of having a sample used “only once and then thrown away”

● Decorrelating data never motivated the experience replay buffer. It is even said 
that it can be more effective if a “sequence of experiences is replayed in 
temporally backward order”. 

● Lin also wrote that ideally, “the agent should only replay the experiences 
involving actions that still follow the current policy”

Lin (1991, 1992): The origins of the experience replay buffer
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● When first mentioned, it is said that the experience replay buffer “randomizes 
over the data, thereby removing correlations in the observation sequence and 
smoothing over changes in the data distribution”

○ “learning directly from consecutive samples is inefficient, owing to the strong correlations between 
the samples; randomizing the samples breaks these correlations and therefore reduces the 
variance of the updates”

● Besides that, “each step of experience is potentially used in many weight 
updates, which allows for greater data efficiency”

Mnih et al. (2013; 2015) resuscitated the experience replay buffer
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● The size of the experience replay buffer is a very sensitive hyperparameter
○ The size of the replay buffer obviously impacts the amount of off-policy data the agent uses

○ The same is true for the number of updates per time step (and many other hypers, actually)

● The reality is that many hyperparameters, and algorithmic choices, are deeply 
intertwined — the traditional assumptions about independence are wrong

● Fedus et al. (2019) has coined the term
replay ratio: “the number of gradient
updates per environment transition”,
which is arguably what really matters

Hyperparameters really matter
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● The replay ratio can have a really big impact on performance.

● Results by Fedus et al. (2019) with
Rainbow (Hessel et al., 2018) on a subset
of 14 Atari 2600 games averaged
over 3 seeds (using sticky actions).

● Insights (on Rainbow, not DQN):
○ Increasing replay capacity improves perf.

○ Reducing the oldest policy improves perf.
…

○ But “sparse-reward games” benefit from
data generated by older policies

Hyperparameters really matter (Fedus et al., 2019)
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Which one of Rainbow’s is the culprit? (Fedus et al., 2019)
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Why? Because of the deadly triad and a smaller bootstrap? Variance reduction? Unclear
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● Zhang and Sutton (2017) present a quite opinionated one

● Empirical analysis is somewhat contrived
○ Tabular and LFA are not interesting in this context

○ Non-LFA is done with 1 hidden layer; it is not
surprising Fedus et al. (2016) were unable to
reproduce Zhang and Sutton’s (2016) findings

● The idea of incorporating the last sample
into the minibatch (size 10) is interesting

There are other takes on experience replay buffers
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Non-LFA Results by Zhang and Sutton (2017)
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● In most approaches, samples are drawn uniformly at random

● Are there transitions that are more informative than others?
○ At least for value learning, yes – This dates back all the way to prioritized sweeping (Moore & Atkeson; 1993)

○ And there are even some transitions that are rare

● Key idea: Prioritize experience according to their usefulness at a specific time
○ Specifically, Schaul et al. propose prioritizing transitions by the magnitude of their TD error

● We can think about which experiences to store and which experiences to 
sample; PER is about sampling

Schaul et al. (2016): Prioritized Experience Replay (PER)
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You have faced a pedagogical example before
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Schaul et al. (2016)



Main idea: Prioritize transitions by the magnitude of their        
TD error (Schaul et al., 2016), and if they’ve been sampled before
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Implementing this can be quite inefficient. Schaul et al. (2016) implemented their 
replay buffer as a binary heap, which makes sampling O(1) and updating O(log N)



Greedy is not great, though (Schaul et al., 2016)
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Proportional:

Rank-based:

*Linear function approximation

Implementing these is even trickier. Schaul et al. (2016) discuss using a piecewise 
linear function with k segments for the proportional strategy, and a sum-tree for the 
rank-based one
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Guess what? It works ¯\_(ツ)_/¯ (... in Atari 2600 games)
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*1 seed? No-op setting, similar to what DDQN did
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Distributed Experience Replay Buffers

● Can we learn faster?
○ Bottleneck: Data generation. Can we parallelize that?

● Idea: Have multiple agents running in parallel while interacting with multiple 
instances of the same environment

● Before we even continue, you have to realize that going to a distributed data 
generating system is changing the problem formulation and constraints

○ Or maybe, it is in fact just generating data faster ¯\_(ツ)_/¯

● Actors can store their own experience, leading to a distributed experience replay 
buffer, or can have a shared, central experience replay buffer (Nair et al., 2015)
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● Distributed training of DQN through Asynchronous Stochastic Gradient Descent 
(ASGD), leading to a 10× speed-up

General RL Architecture (Gorila) (Nair et al., 2015)
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GorilaDQN
* This is obviously a new architecture as well



General RL Architecture (Gorila) (Nair et al., 2015)
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Gorila DQN (Nair et al., 2015)

● Parameter server parameters are θ+ 

● Actors and Learners have replicas of
the current Q-Network, Q(s,a; θ), and
they update from parameter server, θ+ 

● Learner has both the local, current Q-Network, Q(s,a; θ), a target net Q(s,a; θ-)
The learner sends the gradient updates to the parameter server

● Actor and learner networks, Q(s,a; θ), are synchronized before every acting step

● “The learner’s target network is updated from the parameter server θ+ after every 
N gradient updates in the central parameter server.”

● “gradients are not applied directly, but instead communicated to the (...) server”
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● A couple of stability tricks:

○ “All gradients older than the threshold
are discarded by the parameter server”

○ “each actor/learner keeps a running average and standard deviation of the absolute DQN loss for 
the data it sees and discards gradients with absolute loss higher than the mean plus several 
standard deviations”

○ “we used the AdaGrad update rule (Duchi et al., 2011).”

Gorila DQN (Nair et al., 2015)
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● “In all experiments, Gorila DQN used: Nparam = 31 and Nlearn = Nact = 100. We 
use the bundled mode. Replay memory size D = 1 million frames and used 
ε-greedy as the behaviour policy with  annealed from 1 to 0.1 over the first one 
million global updates. Each learner syncs the parameters θ− of its target 
network after every 60K parameter updates performed in the parameter server.”

○ 100 actors and learners running in parallel, with the parameter vector split across 31 machines

Gorila DQN in Atari 2600 Games (Nair et al., 2015)
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vs 12-14 days

Gorila DQN in Atari 2600 Games (Nair et al., 2015)
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● Idea: to decouple acting from learning, focusing on distributed generation of 
experience (instead of parallelizing the computation of gradients)

○ Specifically: “the actors interact with their own instances of the environment by selecting actions 
according to a shared neural network, and accumulate the resulting experience in a shared 
experience replay memory; the learner replays samples of experience and updates the neural 
network” 

Distributed Prioritized Experience Replay (Horgan et al., 2018) 
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● “In our experiments, hundreds of actors run on CPUs to generate data, and a 
single learner running on a GPU samples the most useful experiences”

○ Uses a shared replay buffer with shared priorities (instead of a local one uniformly sampled)

● “We use 360 actor machines (each using one CPU core) to feed data into the 
replay memory as fast as they can generate it; approximately 139 frames per 
second (FPS) each, for a total of ∼50K FPS, which corresponds to ∼12.5K 
transitions (because of a fixed action repeat of 4) (...) gradients are computed for 
∼9.7K transitions per second on average”

● They actually considered DDQN with n-step returns and duelling networks (with 
prioritized experience replay); not really DQN

Distributed Prioritized Experience Replay (Horgan et al., 2018) 
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Distributed Prioritized Experience Replay (Horgan et al., 2018) 
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Distributed Prioritized Experience Replay (Horgan et al., 2018) 
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● Recurrent Replay Distributed DQN (R2D2) “is most similar to Ape-X, built upon 
prioritized distributed replay and n-step double Q-learning (with n = 5), generating 
experience by a large number of actors (typically 256) and learning from batches 
of replayed experience by a single learner. Like Ape-X, we use the dueling network 
architecture of Wang et al. (2016), but provide an LSTM layer after the 
convolutional stack”

● R2D2 has many many details and implementation choices; I won’t cover them 
here, I’ll focus on the high-level intuition of what they did with their  replay buffer

Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019) 
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● Kapturowski et al., 2019 argued that Hausknecht and Stone’s (2015) approach 
might have worked just because their problems were too simple

● Instead, they evaluated 
○ Storing the recurrent state of the RNN in the experience replay buffer

○ Allowing the network a burn-in period to get a start state for the LSTM
(they consider a sequence of length 80, with a burn-in period of 20 or 40)

● That’s it! The key insights about the distributed architecture come from Ape-X, but 
they carefully analyzed a couple of options on how to deal with RNNs

Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019) 
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Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019) 
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It works in Atari 2600 games ¯\_(ツ)_/¯ (Kapturowski et al., 2019) 
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And in DM-Lab30 ¯\_(ツ)_/¯ (Kapturowski et al., 2019) 
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● Who doesn’t want to get results faster?
Even if that means not making apples-to-apples comparisons? ←sarcasm

● Sometimes it just works, your problem is conducive to it and all you care about 
is to get good results (e.g., controlling balloons in the stratosphere)

● Sometimes data generation in parallel (the problem) is even
introduced as a solution to limitations of solution methods

● We will talk more about this in the context of policy gradient methods
○ APE-X, for example, was also evaluated with DDPG

Distributed training is very appealing
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Next class
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● What I plan to do:
○ Not being here. Rupam will talk about Streaming Deep RL

○ Next next class: I’ll start talking about Policy Gradient Methods (yup, I flipped the order)

● What I recommend YOU to do for next (and next next) class:
○ Read

■ M. Elsayed, G. Vasan, A. R. Mahmood: Streaming Deep Reinforcement Learning Finally Works.                          
CoRR abs/2410.14606 (2024)

■ V. Mnih et al.: Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

■ T. P. Lillicrap et al.: Continuous Control with Deep Reinforcement Learning. ICLR 2016

■ S. Fujimoto, H. van Hoof, D. Meger: Addressing Function Approximation Error in Actor-Critic 
Methods. ICML 2018

■ T. Haarnoja, A. Zhou, P. Abbeel, S. Levine: Soft Actor-Critic: Off-Policy Maximum Entropy Deep 
Reinforcement Learning with a Stochastic Actor. ICML 2018


