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o CMPUT 628 — Class 14/25

Reminders & Notes

o There’s no office hours today

o Next Monday, A. Rupam Mahmood will give a guest lecture on streaming deep
reinforcement learning (I won’t be here, but you should come)

« | strongly recommend you start Assignment 3, if you haven’t already done so

» You should also be already thinking about your Seminar and Paper Commentary
And the four remaining people should vote if they want to be heard

« Assignment 4 will be done 28 March
(and it will be released before the Assignment’s 3 deadline)

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Lin (1991, 1902): The origins of the experience replay buffer

30+ years ago, Lin was already evaluating the pairing of Q-learning and neural
networks in “moderately complex and nondeterministic” environments

The experience replay buffer was introduced to improve learning efficiency
instead of having a sample used “only once and then thrown away”

Decorrelating data never motivated the experience replay buffer. It is even said
that it can be more effective if a “sequence of experiences is replayed in
temporally backward order”.

Lin also wrote that ideally, “the agent should only replay the experiences
involving actions that still follow the current policy”

Marlos C. Machado
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Mnih et al. o1s; 2015 resuscitated the experience replay buffer

. When first mentioned, it is said that the experience replay buffer “randomizes
over the data, thereby removing correlations in the observation sequence and
smoothing over changes in the data distribution”

“learning directly from consecutive samples is inefficient, owing to the strong correlations between

the samples; randomizing the samples breaks these correlations and therefore reduces the
variance of the updates”

. Besides that, "each step of experience is potentially used in many weight
updates, which allows for greater data efficiency”

Marlos C. Machado



Hyperparameters really matter
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The size of the experience replay buffer is a very sensitive hyperparameter

- The size of the replay buffer obviously impacts the amount of off-policy data the agent uses

- The same is true for the number of updates per time step (and many other hypers, actually)

The reality is that many hyperparameters, and algorithnmic choices, are deeply
intertwined — the traditional assumptions about independence are wrong

Fedus et al. (2019) has coined the term

replay ratio: “the number of gradient
updates per environment transition”,
which is arguably what really matters

Marlos C. Machado

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000
25,000,000 | 250.000 7.906 2,500
Oldest 2,500,000 7.906 2.500 0.791 0.250

Policy 250,000

2.500 0.791 0.250 0.079 ﬂ 0.025
25,000

0.250 0.079

Figure 1. Replay ratio varies with replay capacity and the age
of the oldest policy. The replay ratio for controlling different
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Hyperparameters really matter (redus et al., 2019)

. The replay ratio can have a really big impact on performance.

. Results by Fedus et al. (2019) with
RaiNbOW (Hessel et al., 2018 ON @ Subset
of 14 Atari 2600 games averaged
over 3 seeds (using sticky actions).

. Insights (on Rainbow, not DQN):

o Increasing replay capacity improves perf.
Agent | Fixed replay ratio Fixed oldest policy perf
DQN ‘ +0.1% -0.4%

Rainbow +28.7% +18.3%

o But “sparse-reward games” benefit from
data generated by older policies

Marlos C. Machado

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000
25,000,000 | -74.9 -76.6 -77.4 -721 -54.6
Oldest 2,500,000 -78.1 -73.9 -56.8 -16.7 28.7
Policy 250,000 -70.0 -57.4 0.0 13.0 18.3
25,000 -31.9 12.4 16.9

Figure 2. Performance consistently improves with increased
replay capacity and generally improves with reducing the age
of the oldest policy. Median percentage improvement over the
Rainbow baseline when varying the replay capacity and age of the
oldest policy in Rainbow on a 14 game subset of Atari. We do not
run the two cells in the bottom-right because they are extremely
expensive due to the need to collect a large number of transitions
per policy.
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Which one of Rainbow'’s is the culprit? (equs et al, 2019)

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000

25,000,000

Oldest 2,500,000 : | 287 DQN +0.1% -0.4%
Policy 250,000 ’ 183 Rainbow +28.7% +18.3%

25,000 -31.9 12.4 16.9 == =

Agent | Fixed replay ratio Fixed oldest policy

= NN
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Why? Because of the deadly triad and a smaller bootstrap? Variance reduction? Unclear

Marlos C. Machado
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There are other takes on experience replay buffers

Zhang and Sutton (2017) present a quite opinionated one

Empirical analysis is somewhat contrived =
Tabular and LFA are not interesting in this context

Non-LFA is done with 1 hidden layer; it is not

surprising Fedus et al. (2016) were unable to :
reproduce Zhang and Sutton’s (2016) findings ~

The idea of incorporating the last sample
into the minibatch (size 10) is interesting

Marlos C. Machado
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Non-LFA Results by Zhang and Sutton (2017)

return
return
return

P L 7 W I L i
(a) Online-Q ) DQN «) DQN + CER

Figure 6: Training progression with non-linear function representation in the game Pong. Lines with different colors
represent replay buffers with different size, and the number inside the image shows the replay buffer size. The results
are averaged over 10 independent runs, and standard errors are plotted. The curves are smoothed by a sliding window
of size 30. It is expected that the agent does not solve the game Pong, as it is to difficult to approximate the state-value

function with a single-hidden-layer network.

Marlos C. Machado
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Schaul et al. o1e): Prioritized Experience Replay (PER)

. Inmost approaches, samples are drawn uniformly at random

. Are there transitions that are more informative than others?
- At least for value learning, yes — This dates back all the way to prioritized sweeping Moore & Atkeson; 1993)

And there are even some transitions that are rare

. Key idea: Prioritize experience according to their usefulness at a specific time

- Specifically, Schaul et al. propose prioritizing transitions by the magnitude of their TD error

. We can think about which experiences to store and which experiences to
sample; PER is about sampling

Marlos C. Machado
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You have faced a pedagogical example before

Schaul et al. (2016)
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Main idea: Prioritize transitions by the magnitude of their
TD error (schaulet al, 2016), aNd if they’ve been sampled before

10* 10° 10° 10
#samples

Implementing this can be quite inefficient. Schaul et al. (2016) implemented their
replay buffer as a binary heap, which makes sampling O(1) and updating O(log N)
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Greedy is not great, though (schauletal., 2016)
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*Linear function approximation

Implementing these is even trickier. Schaul et al. (2016) discuss using a piecewise

linear function with k segments for the proportional strategy, and a sum-tree for the
rank-based one
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/(... In Atari 2600 games)
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Distributed Experience Replay Buffers

Can we learn faster?
Bottleneck: Data generation. Can we parallelize that?

|dea: Have multiple agents running in parallel while interacting with multiple
instances of the same environment

Before we even continue, you have to realize that going to a distributed data

generating system is changing the problem formulation and constraints
Or maybe, it is in fact just generating data faster \_(*)_/

Actors can store their own experience, leading to a distributed experience replay
buffer, or can have a shared, central experience replay buffer (Nair et al., 2015)

Marlos C. Machado
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General RL Architecture (Gorila) (Nar et at, 2015)

. Distributed training of DQN through Asynchronous Stochastic Gradient Descent
(ASGD), leading to a 10x speed-up

global N steps

Learner
DQN Loss

Parameter Server

DQN Loss
et — Shard 1 Shard 2 Shard K o
Copy every, Target

N updates Q Network

max_Q(s;a’; 6)

Gradient

Target Q
Network

DQN Gorila

* This is obviously a new architecture as well
Marlos C. Machado
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Distributed
General RL Architecture (Gorila) (air et a., 2015~ Q-Network
Q(s,a; 67)
I gli)l/)r;cl lflvsetreps
Parameter Server Learner

DQN Loss
Shard 1 Shard 2 Shard K y
Gradient ;
wrt loss - max,Q(s;a’; 6)
A = d rs

Sync

, Actor
argmax, Q(s,a; 6)

Environment possssssssw  Q Network 5.a15)

S

Marlos C. Machado
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g\b!N

: Parameter Server Learner
Gorila DQN (Nair et al., 2015) T

‘‘‘‘‘ Target Q

nc e Network
. Parameter server parameters are 6*

Environment

. Actors and Learners have replicas of
the current Q-Network, Q(s,a; 6), and
they update from parameter server, 6*

. Learner has both the local, current Q-Network, Q(s,a; 6), a target net Q(s,a; 67)
The learner sends the gradient updates to the parameter server

. Actor and learner networks, Q(s,a; 6), are synchronized before every acting step

. “The learner’s target network is updated from the parameter server 8 after every
N gradient updates in the central parameter server.”

. “gradients are not applied directly, but instead communicated to the (...) server”

Marlos C. Machado
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Gorila DQN (Nair et al., 2015)

. A couple of stability tricks:

- “All gradients older than the threshold
are discarded by the parameter server”

Class 14/25

Parameter Server

Siadent Target Q
Network

max, Q(s;a’; 6)

Environment nossssssw Q Network

- “each actor/learner keeps a running average and standard deviation of the absolute DQN loss for
the data it sees and discards gradients with absolute loss higher than the mean plus several

standard deviations”

o “we used the AdaGrad update rule (Duchi et al., 2011).”

Marlos C. Machado
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Gorila DQN in Atari 2600 Games (Nair et al., 2015)

“In all experiments, Gorila DQN used: Nparam =31 and NIeam = NaCt = 100. We
use the bundled mode. Replay memory size D = 1 million frames and used
e-greedy as the behaviour policy with annealed from 1 to 0.1 over the first one
million global updates. Each learner syncs the parameters 6~ of its target
network after every 60K parameter updates performed in the parameter server.

100 actors and learners running in parallel, with the parameter vector split across 31 machines

Marlos C. Machado
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Gorila DQN in Atari 2600 Games Nair et al., 2015)
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Distributed Prioritized Experience Replay (Horgan et al., 2018)

. Idea: to decouple acting from learning, focusing on distributed generation of
experience (instead of parallelizing the computation of gradients)

o Specifically: “the actors interact with their own instances of the environment by selecting actions
according to a shared neural network, and accumulate the resulting experience in a shared
experience replay memory; the learner replays samples of experience and updates the neural
network”

Sampled experience

Learner Replay

Updated priorities

Network Experiences

Actor

A

“focus only on the
Gemerated experionee | MOSE significant data
Environment generated by the
actors”

Network Initial priorities

Network parameters

»

Marlos C. Machado
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Distributed Prioritized Experience Replay (Horgan et al., 2018)

“In our experiments, hundreds of actors run on CPUs to generate data, and a
single learner running on a GPU samples the most useful experiences”

Uses a shared replay buffer with shared priorities (instead of a local one uniformly sampled)

“We use 360 actor machines (each using one CPU core) to feed data into the
replay memory as fast as they can generate it; approximately 139 frames per
second (FPS) each, for a total of ~50K FPS, which corresponds to ~12.5K
transitions (because of a fixed action repeat of 4) (...) gradients are computed for
~9.7K transitions per second on average”

They actually considered DDQN with n-step returns and duelling networks (with
prioritized experience replay); not really DQN

Marlos C. Machado
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Distributed Prioritized Experience Replay (Horgan et al., 2018)

450% . L 50K Beam Rider 1K Breakout
Ape-X DQN (120hrs) £ 40K 800
400% ° =g 30K 600
Ape-X DQN (70hrs) 3 § 20K 400
o=
L4 2 10K 200
350% Ape-X DQN (20h: =) gl — =
g PP QN (20hrs) = 0 0 =
o =
58 Pon, bert
& E 300% g 20 g A0K 2
B £ 10 32K
12 ~ g
g § 250% g % 0
23 . 2= 10
=} "
g g 200% Rainbow L% 20 L
=) st
o° Seaquest Space Invaders
Prioritized DQN = 160K 30K
150% =
£ 120K 24K
2 18K
K
100% . 83 80 12K
Gorila o @2 — 40K 6K
2
DRN 2 0 0
0 10 0 200 20 30 0 2 4 6 8 10 0 2 4 6 8 10
Training Time (Hours) Training Time (Hours) Training Time (Hours)

Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari
training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C;
Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

Marlos C. Machado
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Distributed Prioritized Experience Replay (Horgan et al., 2018)

Algorithm Training Environment Resources Median Median

Time Frames (per game) (no-op starts) (human starts)
Ape-X DQN 5 days 22800M 376 cores, 1 GPU * 434 % 358 %
Rainbow 10 days 200M 1 GPU 223% 153%
Distributional (C51) | 10 days 200M 1 GPU 178% 125%
A3C 4 days - 16 cores — 117%
Prioritized Dueling 9.5 days 200M 1 GPU 172% 115%
DQN 9.5 days 200M 1 GPU 79% 68%
Gorila DQN ¢ ~4 days — unknown ° 96% 78%
UNREAL ¢ — 250M 16 cores 331% ¢ 250% ¢

Table 1: Median normalized scores across 57 Atari games.  Tesla P100. ® >100 CPUs, with a mixed number
of cores per CPU machine. © Only evaluated on 49 games. ¢ Hyper-parameters were tuned per game.

Marlos C. Machado
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Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

Recurrent Replay Distributed DQN (R2D2) “is most similar to Ape-X, built upon
prioritized distributed replay and n-step double Q-learning (with n = 5), generating
experience by a large number of actors (typically 256) and learning from batches
of replayed experience by a single learner. Like Ape-X, we use the dueling network
architecture of Wang et al. (2016), but provide an LSTM layer after the
convolutional stack”

R2D2 has many many details and implementation choices; | won’t cover them
here, I'll focus on the high-level intuition of what they did with their replay buffer

Marlos C. Machado
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Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

Kapturowski et al., 2019 argued that Hausknecht and Stone’s (2015) approach
might have worked just because their problems were too simple

Instead, they evaluated
Storing the recurrent state of the RNN in the experience replay buffer

Allowing the network a burn-in period to get a start state for the LSTM
(they consider a sequence of length 80, with a burn-in period of 20 or 40)

That’s itl The key insights about the distributed architecture come from Ape-X, but
they carefully analyzed a couple of options on how to deal with RNNs

Marlos C. Machado
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Training RNN-based RL agents from Ape-X (Kapturowski et al., 2019)

(a) Computation of AQ (b) Initial state _ Final state
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Figure 1: Top row shows Q-value discrepancy A(Q) as a measure for recurrent state staleness. (a)
Diagram of how AQ is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, I = 0 (no burn-in). (b) AQ measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom
row. (c¢) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.
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It works in Atari 2600 games \_(“J)_f (Kapturowski et al., 2019)

Marlos C. Machado
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Asteroids
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Figure 2: Atari-57 results. Left: median human-normalized scores and training times of various
agent architectures. Diagram reproduced and extended from (Horgan et al., 2018). Right: Example
individual learning curves of R2D2, averaged over 3 seeds, and Ape-X, single seed.

50B frames?
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And in DM-Lab30 \_(“J)_f (Kapturowski et al., 2019)
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Figure 3: DMLab-30 comparison of R2D2 and R2D2+ with our re-run of IMPALA shallow and
deep in terms of mean-capped human-normalized score (Espeholt et al., 2018).
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Distributed training is very appealing

Who doesn’t want to get results faster?
Even if that means not making apples-to-apples comparisons? «—sarcasm

Sometimes it just works, your problem is conducive to it and all you care about
is to get good results (e.g., controlling balloons in the stratosphere)

Sometimes data generation in parallel (the problem) is even (
introduced as a solution to limitations of solution methods ul

We will talk more about this in the context of policy gradient methods

APE-X, for example, was also evaluated with DDPG

Marlos C. Machado
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Next class

. What | plan to do:
Not being here. Rupam will talk about Streaming Deep RL

Next next class: I'll start talking about Policy Gradient Methods (yup, | flipped the order)

. What | recommend YOU to do for next (and next next) class:

Read

= M. Elsayed, G. Vasan, A. R. Mahmood: Streaming Deep Reinforcement Learning Finally Works.
CoRR abs/2410.14606 (2024)

= V. Mnih et al.: Asynchronous Methods for Deep Reinforcement Learning. ICML 2016
= [. P Lillicrap et al.. Continuous Control with Deep Reinforcement Learning. ICLR 2016

= S. Fujimoto, H. van Hoof, D. Meger: Addressing Function Approximation Error in Actor-Critic
Methods. ICML 2018

« [. Haarnoja, A. Zhou, P. Abbeel, S. Levine: Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. ICML 2018

Marlos C. Machado



