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Reminders & Notes

Assignment 2 is marked
Assignment 3 is on the way; you'll still have 3 weeks to do it
Lecture-notes-wise: | will try to release some more, at least about this topic

| will release instructions about seminar and paper review
during the reading week (Feb 18 — Feb 21)
You should send me your groups

| will be travelling on March 3rd (Monday), 2025
A. Rupam Mahmood will give a guest lecture on streaming deep RL

There’s no class next week. It is the reading week.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Last class: Distributional Reinforcement Learning

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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We Now Look at Auxiliary Objectives

o e |

Marlos C. Machado
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Deep RL is About Learning Representations

e S0 far, representations are learned in quite a passive way

o The data stream experienced by the agent solely determines the representations the agent learns
« The reward function is the only thing that guides representation learning

« But in the agent-environment interaction, there’s much more information

o The reward can be encoded with just a few bits, but the observation (and transition) is quite rich

« The ability of predicting other aspects of the world is potentially quite useful, and
trying to do so forces the agent to learn more comprehensive representations

o Thisidea is far from new, and GVFs (Sutton et al., 2011) are maybe its clearest early instantiation

Marlos C. Machado
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Impacting Representations through the Loss Function

o We can impact the learned representation through NN architectural changes as
well, but today we’ll focus on using different objective functions

o UNsupervised REinforcement and Auxiliary Learning (UNREAL) [yaderberg et al., 2017]
was the first to bring up this idea in deep RL through auxiliary tasks

UNREAL DQN UNREAL
‘C = ‘C “ + /Bci Z LCi
c; €C

weights cumulants

Marlos C. Machado
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U N REAI_ [Jaderberg et al., 2017]

UNREAL __ pDQN UNREAL
L =L 18, ) LY
c;i€C

LUNREAL _ E(s,a,r,s")~U(D) [(Rt+1 it VIR Q(Si+1,a’307) — Q(St, Ay Bt))2
_ 2
4B, Z (Ci,H—l I 75{123{}'@@ (St+1,0"507) — Qc, (St, At; Ht)) ]

C

In UNREAL, the agent is predicting
cumulants as if it were maximizing
those. This maybe became less
common over time.

Marlos C. Machado
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UN REAI_ [Jaderberg et al., 2017]
o u |—

Obj.

AuUX.
Obj.

Marlos C. Machado
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The Motivation Behind Auxiliary Tasks

o Ultimately, they lead to better performance, we can speculate why

o Maybe they make it easier for the agent to overcome spurious correlations between the
observations and rewards, or to focus on a longer horizon

o Requiring agents to predict the long-term consequences of their actions to the environment
(beyond rewards), or trying to control other parts of the environment, is a good inductive bias

« Mechanistically speaking, they change the loss landscape and they “densify” the
gradients, mainly in early training; they can also be seen as regularization

« A great way of introducing inductive biases into the deep RL agent

Marlos C. Machado
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It does work

Labyrinth Performance

Avg. TOP 3 agents
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Marlos C. Machado
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Agent Input nav_maze_all_random_02 samples

PC: Pixel Control
RP: Reward Prediction
VR: Value Function Replay

* These results were obtained with ASC + LSTMs, and more, they are
not really significant for the course, they are shown just for reference.

They are plotting “the mean human-normalised performance over last
100 episodes of the top-3 jobs at every point in training”
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A Non-Exhaustive List of Auxiliary Tasks

» Input Reconstruction
LO — IE:(o,a,o’)NU(D) [HVO(Oa 9) - OH%]

Lro =E, 1,a,_1,0)~U(D) [||VAO(Ot—1, 0¢;0) — (O — Ot_1)||§]

Marlos C. Machado
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A Non-Exhaustive List of Auxiliary Tasks

o Next (Agent-)State Prediction
Lnas =K, 1,a:1,00)~U(D) [| [Vvas(O¢—1,As—1;0) — ¢(Ot)||§]

LaNas =Eo, 1 ai_1,00)~U(D) [| [Vanas(Or—1, At—1;0) — (¢(Or) — ¢(O¢—1))] |§]

Marlos C. Machado
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A Non-Exhaustive List of Auxiliary Tasks

o« Reward Prediction
LR = IIE‘:(o,a,,r,o’)NU(D) [(VR(O7 9) - R)2]

ﬁR — ]E(o,a,r,o’)NU(D) [(VR(Ov A; 0) - R)2]

Marlos C. Machado
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A Non-Exhaustive List of Auxiliary Tasks

o Successor Features Prediction

’l:b‘/r(S, a) = E'lr

Z’ytgb(st)at)‘S() =s,Ay=a
t=0

Lsp = IE(o,a,'r,o’,a')NU(D)

HVSF(O,A; 07 — (¢(0,A; é) +yVsr(O', A’ e))ﬂ

2

Lo =Eo,a,r0)~U(D)

(VSF(O, 4;0)Tw — Q(O, A; e))2]

Marlos C. Machado
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A Non-Exhaustive List of Auxiliary Tasks

« Inverse Dynamics Model

Marlos C. Machado

Lip = —logm(a|O, O¢y1;0)

Lip = —logm(al$(Or), #(Or11);0)

Lamb et al. (2023): multi-step inverse model (predicting actions from
distant observations) “can discover the minimal control-endogenous latent
state which contains all of the information necessary for controlling the
agent, while fully discarding all irrelevant information”.
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DeepMDP (Gelada et al., 2019]

« Ifoneis to think about the setting in which the observation space can be

projected into a low-dimensional space
o prediction of rewards and prediction of the distribution over next latent states are “enough”
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DeepMDP Comparisons (Gelada et al., 2019]

Seaquest Frostbite Breakout Gravitar

350000 8000 700 900

C51

Next Latent State
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‘a 150000
3000
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100000 20001
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0
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Figure 8. Using various auxiliary tasks in the Arcade Learning Environment. We compare predicting the next state’s representation (Next
Latent State, recommended by theoretical bounds on DeepMDPs) with reconstructing the current observation (Observation), predicting
the next observation (Next Observation), and predicting the next C51 logits (Next Logits). Training curves for a baseline C51 agent are
also shown.
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But which auxiliary objective is “the best””
Is there something we should be looking for in
these different objective functions?

aaaaaaaaaaaaaaa
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The Value-Improvement Path paoney et al., 2021]

« The regression problem faced by RL agents is non-stationary

« We can consider the sequence of value functions generated by the different
policies the agent learns over time, that’s the value-improvement path

« ‘“arepresentation specialized to the optimal policy may be inadequate for
representing the sequence of functions leading to it mccaium 1996; Li, waish, and Littman 2006]

o “We argue that, when learning a
representation d(x), we should keep in Linear RL Deep RL .Ei]eep F:'L
mind that we are traversing the space (with auxliary)

of value functions, and thus over- TQ/’ i T"%n,,m T”Q/"‘-.‘nqﬁ,m
specializing d(X) to a particular value 7 i w /\I/
function is analogous to overfitting to - d ’]/ /,J;/Z;‘ T

a finite dataset in supervised learning.

Marlos C. Machado
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The Value-Improvement Path paoney et al., 2021]

o “representation learning in deep RL should be seen as the search for ¢(x) that
allows for good approximations of all value functions in an algorithm’s
value-improvement path”

Value-lmprovement Path  Value-Only Cumulant Valve ~ Cumulant Policy Past Policies

Q7r~ d

Qs i

o

Marlos C. Machado
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The Value-Improvement Path paoney et al., 2021]

Generalization error Performance (mean)
o Atari-57 benchmark from the ALE o5 [— soseoan " -
0.30 = | s CumulantPolicies /‘/
« Gumulants were generated by a i 2 1= et
A o,

Random network ol

0.10 -
0.05 -

« Relied on a LFA assumption T e
Time Difference (Policy - Representation)

Million frames traine d

e Two key trends:

o The methods’ ability to generalize to future value functions largely reflects the intuition from the
previous figure (given all the assumptions they made)

o “The generalization error for future value functions is remarkably, although not perfectly, predictive
of long-term performance”. montezuma_revenge

« There’s alot of nuance here, though, including when cumulants are useful

rivate_eye
Marlos C. Machado M
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Where do Representations Live”

o Penultimate layer of the neural network?

o It allows us to sort of see deep RL under the LFA lens

o At the “split” to the multiple “heads”?

o Distributed across layers?

Marlos C. Machado
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Where do Representations Live”? wangetal., 2024

« If we think the role of a representation is to promote future learning

Value Network Fjy,,
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Marlos C. Machado
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An Apples-to-Apples Comparison in Transfer Problems

Total reward, averaged over transfer tasks
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Marlos C. Machado

[Wang et al., 2024]
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Next class

o What | plan to do:

o Talk about auxiliary inputs and different variations to the experience replay buffer

« What | recommend YOU to do for next class:

o Read
- Tao, R. Y., White, A., Machado, M. (2023). Agent-State Construction with Auxiliary Inputs. Transactions on
Machine Learning Research. Preprint made available on November 15, 2022.

o - Schaul, T., Quan, J., Antonoglou, 1., Silver, D. (2016). Prioritized Experience Replay. In Proceedings of the
International Conference on Learning Representations. Preprint made available on November 18, 2015.

o  Fedus, W. et al. (2020). Revisiting Fundamentals of Experience Replay. In Proceedings of the International
Conference on Machine Learning (ICML). Preprint made available on July 13, 2020.

« Forthose who didn’t, please send me the groups for the presentation / report

O [ have received only 4 groups so far. The reading week is around the corner.

Marlos C. Machado



