Deep R

Marlos C. MaChadO https://thomasbronzwaer.wordpress.com/2020/07/30/the-trisolaran-probe~from-liu-cixins-the-three-body-problem/ ClaSS 10/ 25
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Reminders & Notes

o Assignment 2 is due on Friday, February 7
« I’'m doing my best to release Assignment 3; it might end up being delayed
o Lecture-notes-wise: | haven’t written about distributional RL yet

o | will release instructions about seminar and paper review
during the reading week (Feb 18 — Feb 21)
You should send me your groups

o | will be travelling on March 3rd (Monday), 2025
A. Rupam Mahmood will give a guest lecture on streaming deep RL

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Last class: Multi-step Credit Assignment

Episode 2

B(Ak|Sk)
Y(Rt+1, Ot+1; 9_)

7(Ag|Sk)

Bl i 4.22
b(A|Sk) (4.22)
Rt+1 + Y glgfq( Q(Ot+1, G,/; 0_) (423)
Y(Rt+1,0t+1;0_) — Q(Ot,At;Ot) (424)

_ Euim) [(Z(wt ( I ﬂ(Ausk))az) ]
k=1

t=0

’C
OO
3ete

)

X ¢
< -O
o

‘O
s

Marlos C. Machado

Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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We Continue to Look at Different Objective Functions

o e |

AuX.
Obj.

Marlos C. Machado



Distributional Reinforcement Learning

DISTRIBUTIONAL
REINFORCEMENT
LEARNING

Marc G. Bellemare,
Will Dabney,
and Mark Rowland
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Traditional RL is All About the Expected Return

vr(s) =Eg
—E,
= ..

Gt | St=4]
Rit1+7Giq1 | Sp=s]

Rit1+ vvr(Sit1) | St =s]

= 3 n(el9) 3 pls' rlssa) [+ ()

ap,x(0,a) =Ep[r(0,a)] +1Ep,x |- (O", A)]

Marlos C. Machado
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Distributional RL Models the Return Distribution

« Instead of modelling the expected return, they propose studying the random
return, z, whose expectation is the value g. This leads to the value distribution:

Z - is distributed D L.
according to the Zp,w(07 a) = 7“10(0 a) + YZp, 71'(0 A )

same law as in the RHS @p (0,a) =Eyp 1 [z,,r (o, CL)]

o Why should we do this? Intuitions from the first paper [Bellemare et al., 2017]:
Preserves multimodality in value distribution

Mitigates the effects of learning from a nonstationary policy

Overall, “makes approximate reinforcement learning significantly better behaved”

Better deal with state aliasing

Auxiliary task effect (a richer set of predictions)

© O O O O

Marlos C. Machado
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An example [Bellemare et al. 2017]
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Marlos C. Machado
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http://www.youtube.com/watch?v=v-RbNX4uETw
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An example [Bellemare et al. 2017]

Marlos C. Machado
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There are Equivalent Distributional Bellman Operators

T"Z(x,a) g

Pz vP”™ I
OT"Z .

Marlos C. Machado |mageS by Bellemare et al. (201 7)

R(x,a) +yP"Z(
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Categorial Algorithm: A First Distributional Algorithm
[Bellemare et al. 2017]

« Model value distribution using a discrete distribution with N atoms, ranging from
Vi 10 V), SUCh that Az = (V,, -V, )/(N-1)

o The probability of each atom is given by a softmax
e They reduce the Bellman update to multiclass classification (more on this later)

o Sample loss is the cross-entropy term of the KL divergence

Dx1 (qﬁz(o, a: 0)||2(0, a; 9))

Projected Bellman update X
—> " ®T2(k | 0,a;0)log z(k | 0,a;6)

Marlos C. Machado
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Categorial Algorithm: A First Distributional Algorithm

[Bellemare et al. 2017]

Marlos C. Machado

Algorithm 1 Categorical Algorithm

input A transition xy, at, ¢, Tt11, v € [0, 1]
Q($t+1, a) = Z, ZiDi (fL’t+1, a)
a* < arg max, Q(r¢+1,a)
m; =0, 2€0,...,N—1
forj €0,...,N—1do

# Compute the projection of 7A‘zj onto the support {z; }

. 1Vmax
TZJ — [’I“t + ’YtZJ]VMIN

b; « (T2 — Van)/Az #b; € [0,N —1]
L4 [bj], w < [b;]
# Distribute probability of 7A’zj
my < my + p;j(Ter1,a”)(u — by)
i 1 + 23 (B041, 0" (b — )
end for
output — > . m;logp;(zs,a;) # Cross-entropy loss
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Categorial Algorithm in Atari 2600 Games [Bellemare et al. 2017]

o Deterministic Arcade Learning Environment

« DQN but outputting atom prob. p(o,a) instead of action-values (V,, = -V,, = 10)

e &-greec

Marlos C. Machado
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Categorial Algorithm in Atari 2600 Games [Bellemare et al. 2017]

5 .n“m'zm}m{f-:- i

Marlos C. Machado


http://www.youtube.com/watch?v=yFBwyPuO2Vg
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18
How many atoms? [Bellemare et al. 2017]
80000 400
ASTERIX
60000 | 300t PR T
40000 200} |f ,"'
o !
20000 + 100 + 7
§ / BREAKOUT
[H] 00 50 ."-1-6;) ......... 550 200 00 5IO 100 150 200
g’ 000 100000
14
e SEAQUEST
> Pt oo e oy
<C 10000 ‘_.-""' soo0e
00001 Dueling Arch. ..
6000 - ',’."' 40000
2000} ff Q * BERT 20000
0 50 100 150 200 00 50 100 1-5-0"""""2'00

Training Frames (millions)

Marlos C. Machado
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PONG
=20 .
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Categorical DQN

m=mm 5 returns
mems 1] returns == 51 returns

21 returns

Bernoulli ——- DQN
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C51 on the Arcade Learning Environment [Bellemare et al. 2017]

» &-greedy exploration with €=0.01 and evaluation every 1M frames with £=0.001

Mean | Median | > H.B. | >DQN T

DQN 228% 79% 24 0 3

DDQN 307% | 118% 33 43 g

DUEL. 373% 151% 37 50 |-

PRIOR. 434% | 124% 39 48 g

PR. DUEL. | 592% 172% 39 44 é

Cs1 701% 178 % 40 50 8

UNREALT | 880% | 250% | -
Figure 6. Mean and median scores across 57 Atari games, mea- Figure 7. Percentage improvement, per-game, of C51 over Dou-
sured as percentages of human baseline (H.B., Nair et al., 2015). ble DQN, computed using van Hasselt et al.’s method.

Number of seeds not mentioned, lower € than the baselines...

But it works!

Marlos C. Machado
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C51 is but one algorithm

« (b1 was not that well-aligned with the existing theoretical results at the time
o Ideally one wants to minimize the Wasserstein distance between a distribution, z, and its Bellman

update, 2, but Bellemare et al. (2017) showed that “the Wasserstein metric, viewed as a loss,
cannot generally be minimized using SGD” [Dabney et al., 2018]

o QR-DQN: using quantile regression to directly minimize the Wasserstein metric,
rather than its heuristic approximation pasney et al., 201g]

o ‘“Instead of using NN fixed locations for its approximation distribution and adjusting their probabilities,
they assign fixed, uniform probabilities to N adjustable locations”

Marlos C. Machado
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Quantile XA 27 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In statistics and probability, quantiles are cut points dividing the range of a probability distribution
into continuous intervals with equal probabilities, or dividing the observations in a sample in the
same way. There is one fewer quantile than the number of groups created. Common quantiles
have special names, such as quartiles (four groups), deciles (ten groups), and percentiles (100
groups). The groups created are termed halves, thirds, quarters, etc., though sometimes the
terms for the quantile are used for the groups created, rather than for the cut points.

Probability density of a normal =

. e % g . . distribution, with quantiles shown.
- ntil re val that partition a finit t of val in ubsets of (nearl | sizes. :
g-quantiles are values that partition a e set of values into g subsets of (nearly) equal sizes The araa below the Fsd Birve i

There are g — 1 partitions of the g-quantiles, one for each integer k& satisfying 0 < k£ < g. In some the same in the intervals

cases the value of a quantile may not be uniquely determined, as can be the case for the median (=0,01), (01,0,), (0,03), and
(2-quantile) of a uniform probability distribution on a set of even size. Quantiles can also be (Q3,F).

applied to continuous distributions, providing a way to generalize rank statistics to continuous

variables (see percentile rank). When the cumulative distribution function of a random variable is known, the g-quantiles are the
application of the quantile function (the inverse function of the cumulative distribution function) to the values

{1/q,2/q, ..., (g — 1)/g}.

Marlos C. Machado
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Quantile Regression

Marlos C. Machado

Quantiles of asymmetric Pareto distributed target
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The intuition of quantile regression
N
7 e 9 . o . A _ A 2
« “Traditional” regression minimizes L(g,y) = E (9; — yi)

)

« Quantile regression minimizes something slightly different:

Lo@y)=p Y |9pi—wl+0=p) Y |9pi —uil

yi>gp,'i yi<'gp,i

Quantlle Example: \d2=0'4 d3’=-0.4\

level )
\d1 =-1.3

Marlos C. Machado https://www.aptech.com/blog/the-basics-of-quantile-regression/
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The intuition of quantile regression

o Quantile regression (p = 0.9):
o xd,+(1-p) x |[d, +d,]
= 09><O4+O1><|13 0.4
= 0.36+0.17=0.53 vs. 2.01

o xd,+(1-p) x |d, +d,]
= 09><02+O1x|15 0.6|
= 018+0.21=0.39 vs. 2.65

o xd,+(1-p) x [d, + d,
= 09x06+0.1x]|-1.1-0.2|
= 054 +013=0.67 vs. 1.61

Marlos C. Machado https: //www .

£(@y) = D0~ )

Lo(g,y)=p Z 9p,s — il + (1= p) Z 9p,i — il

Yi>Yp,i Yi<Up,i

aptech.com/blog/the-basics-of-quantile-regression/
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. ", . . ﬁ(.ﬁ,y)zi(@i—yif
The intuition of quantile regression ,.
Lo@v)=p Y lpi—vil +(1=p) D |dpi—uil

U >STA s Ui < T n s
o Que Quantile regression: 7 = 0.9
/

= =)
3 b
- N

©
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(@]
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- o
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< 5
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Marlos C. Machado https://www.aptech.com/blog/the-basics-of-quantile-regression/
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QR-DQN: Quantile Regression Q-Learning paoney et al., 201g)

o QR-DQN looks for the “locations” that will divide the distribution into 1/N quantiles

“Compared to the original parametrization, the benefits of a parameterized quantile
distribution are threefold. First, (1) we are not restricted to prespecified bounds on
the support, or a uniform resolution, potentially leading to significantly more accurate
predictions when the range of returns vary greatly across states. This also (2) lets us
do away with the unwieldy projection step present in C51, as there are no issues of
disjoint supports. Together, these obviate the need for domain knowledge about the
bounds of the return distribution when applying the algorithm to new tasks. Finally,
(3) this reparametrization allows us to minimize the \Wasserstein loss, without
suffering from biased gradients, specifically, using quantile regression.”

— Dabney et al. (2018)

Marlos C. Machado
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QR-DQN: Quantile Regression Q-Learning paoney et al., 201g)

« They actually use a Quantile Huber Loss, check out the paper for that

° QRTD

9'&(0) — 07, (0) + a(ﬁz - 5r+’7z’<9¢(0))
\u ’
/ ‘ Value” of the
Estimated value of Quantile next observation

the “threshold” w/
observation o

Dirac. Sort of an indicator
function, but not really

Marlos C. Machado
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QR-DQN: Quantile Regression Q-Learning paoney et al., 201g)

« They actually use a Quantile Huber Loss, check out the paper for that

« QRTD:
91(0) < 02 (0) + a(ﬁz - 5r+’7z’<0¢ (o))
\u ’
/ ‘ Value” of the
Estimated value of Quantile next observation,
but sampled

the “threshold” w/

observation o from the distrib.

Dirac. Sort of an indicator
function, but not really

Marlos C. Machado
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QR-DQN: Quantile Regression Q-Learning paoney et al., 201g)

o For Deep RL there are three modifications to DQN:
o  Output layer becomes |.«4 x N, where N is a hyper-parameter giving the # of quantile targets
o Replace Huber Loss by Quantile Huber Loss (see pseudo-code below)

o Replace RMSProp with Adam

Algorithm 1 Quantile Regression Q-Learning

Require: N,k
input z,a,7,z’,v €[0,1)
# Compute distributional Bellman target
Q' a) =3, 4;6;(«',a')
_ a* < argmax, Q(z,a’)
Quantile Huber Loss TO; < 1 +40;(z',a*), Vj

t til ion 1 Equation 10
(similar to the previous loss for - i‘:mgl < (%;:‘?n lne(ze%r'eiﬂgfzxosj);] quation 10)
quantile regression, but more robust) P i=1 g [P\ Y5 — Uil

Marlos C. Machado
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Guess what? It works [Dabney et al., 2018]

3 seeds

Marlos C. Machado
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= [
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=
X R

80%
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40%
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20%

0% %=
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Double DQN
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C51
QR-DQN-0
QR-DQN-1

100
Millions of Samples
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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IQN: Implicit Quantile Networks paoney et al., 201g]

« “A simple distributional generalization of the DQN algorithm”

« Instead of “learning a discrete set of quantiles, one can learn the full quantile
function, a continuous map from probabilities to returns”

« |QN is different from QR-DQN in two ways:

o ‘“Instead of approximating the quantile function at n fixed values of p we approximate it with
Zp(o, a) = f((0), ¢(p)), for some differentiable functions f, |, and ¢.”

m  Letf((0), be the output of DQN. All we are adding is ¢(p), which is an embedding for the sample point p.

o p, P, pare sampled from continuous, independent, distributions.

Marlos C. Machado
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IQN: Implicit Quantile Networks paoney et al., 2018

Marlos C. Machado
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IQN: Implicit Quantile Networks paoney et al., 2018

« What value of N should we consider?

e Should N =1 resemble DQN?
That would mean the performance benefits are due to the auxiliary task effect

1500
100
I 10 39 < 1010 .
80
N N
_ 8 u 40 N | 1067 ci580
60
Z & | 11 42 o 967 1050
40
900
— 10 29 20 =~ 757
1 8 =T 64 1 8 32 64

N N

Merlos G. Machado DQN (32, 253) QR-DQN (144, 1243).
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Some More Atari 2600 Results paoney et al., 201g]

Mean Median
o 200% +
o 800% |
A
s Rainbow
150% +
[ L
g 600% IQN
g QR-DQN
% kL
E 400% | 1% Prioritized DQN
: DQN
5 .
2 /_//\/‘\,«nf\_/\/”\f"\/n‘\/v e
=)
< W
0% L ! 1 ) O% L I L Il
10 50 100 200 10 50 100 200
Training Frames (Million) Training Frames (Million)

Figure 4. Human-normalized mean (left) and median (right) scores on Atari-57 for IQN and various other algorithms. Random seeds
shown as traces, with IQN averaged over 5, QR-DQN over 3, and Rainbow over 2 random seeds.

Marlos C. Machado
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But why does this work??
At the end of the day we are only using the
expected value anyway,.

aaaaaaaaaaaaaaa
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A Theoretical and an Empirical Analysis of the Why (e etal., 2019

o Theoretically, “distributional RL often performs identically to expected RL”

o Emopirically (in toy tasks such as Cartpole and Acrobot), “distributional
reinforcement learning does not improve performance when combined with
tabular representations or linear function approximation”

« “we find evidence of improved performance when combined with deep
networks, suggesting that the answer lies (...) in distributional reinforcement
learning’s interaction with nonlinear function approximation.”

» “the benefits of distributional reinforcement learning are primarily gained from
improved learning in the earlier layers of deep neural networks, as well as in the
nonlinear softmax used in C51” « Regularization? Auxiliary Task Effect?

Marlos C. Machado
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Stop Regressing! rarebrother et al., 2024

B Softmax —
x; ) Neural ; ;
Network

| B

Project

<+ p(y|z:)

| Target
sl Distribution

Figure 2 | Regression as Classification. Data points x; are transformed by a neural network to produce a categorical
distribution via a softmax. The prediction y is taken to be the expectation of this categorical distribution. The logits of the
network are reinforced by gradient descent on the cross-entropy loss with respect to a target distribution whose mean is
the regression target y;. Figure 3 depicts three methods for constructing and projecting the target distribution in RL.

Marlos C. Machado
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Stop Regressing! rarebrother et al., 2024

Two-Hot HL-Gauss 1 Categorical Distributional RL

v

21 22 Z3 24 25 21 Z2 Z3 24 Z5 Z4 zZ5
1
{ v
v A4
0L . 1N v v __v W v
" P2 P3 Pa Ps P P2 p3 P4 Ps P P2 P3 P4 Ds

Figure 3 | Visualizing target-value categorical distribution in cross-entropy based TD learning. While Two-Hot
(left, §3.1) puts probability mass on exactly two locations, HL-Gauss (middle, §3.1) distributes the probability mass to
neighbouring locations (which is akin to smoothing the target value). CDRL (right, §3.2) models the categorical return
distribution, distributing probability mass proportionally to neighboring locations.

Marlos C. Machado
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Stop Regressing! rarebrother et al., 2024

Online RL: Atari 200M Aggregate Statistics @ Offline RL: Atari CQL
QM Optimality Gap § i
HL-Gauss | I %

N

cs51 | | = 1.0

MSE | | g 0.5
Two-Hot| B I 2
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1.2 1.4 1.5 0.2 03 03 0.3 =4 0 25 50 75 100
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S’[Op Regl’eSSiﬂg! [Farebrother et al., 2024]

Offline RL (Distill): Chess Transformer Scaling

0.95

Accuracy (10k)

Lichess Puzzle

Marlos C. Machado
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Next class

o What | plan to do:

o Start talking about auxiliary objectives (instead of the main objective), that is: auxiliary tasks

e What | recommend YOU to do for next class:

o Read
- Jaderberg, M., et al.. (2017). Reinforcement Learning with Unsupervised Auxiliary Tasks. Preprint made available

on November 16, 2016.

- [Optional] Wang, H., et al. (2024). Investigating the Properties of Neural Network Representations in Reinforcement
Learning. Artificial Intelligence (AlJ), 330:104100. Preprint made available on March 30, 2022.

o Please start sending me the groups for the presentation / report, please do

Marlos C. Machado



