“The rotten tree-trunk, until the very moment when the storm-blast breaks it in two,
the appearance of might it ever had.”
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Plan

o Value Functions and Bellman Equations

o Aroadmap to the course

o Content overview
m We are still not talking about solution methods, we are only formalizing things

Marlos C. Machado
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Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.
| cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting
quizzes and assignments to the private section.

Some students who are enrolled in Coursera haven’t submitted any quizzes or
assignments in the private session, and that’s all | can see.

The deadlines in the public session do not align with the deadlines in Coursera.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« Reinforcement learning is about solving sequential decision-making problems from
interactions with the environment
o Key features:
m [rial-and-error
m Exploration-exploitation trade-off
m Delayed credit-assignment

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« Reinforcement learning is about solving sequential decision-making problems from
interactions with the environment
o Key features:
m [rial-and-error
m Exploration-exploitation trade-off
m Delayed credit-assignment

o That’s too abstract! Can we be more concrete and start from a simple example?
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Why? Where are we”?! We need a roadmap

« Reinforcement learning is about solving sequential decision-making problems from
interactions with the environment
o Key features:
m [rial-and-error
m Exploration-exploitation trade-off
m Delayed credit-assignment
o That’s too abstract! Can we be more concrete and start from a simple example?
o Yes! Bandits

Chapter 2 of the textbook
Week 1 of Fundamentals of RL

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« Reinforcement learning is about solving sequential decision-making problems from
interactions with the environment

o Key features:
m [rial-and-error
m Exploration-exploitation trade-off
m Delayed credit-assignment

o That’s too abstract! Can we be more concrete and start from a simple example?
o Yes! Bandits
« What if actions have consequences? What'’s a sequential decision-making problem?

What does “solving” a sequential decision-making problem means?
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Why? Where are we”?! We need a roadmap

« Reinforcement learning is about solving sequential decision-making problems from
interactions with the environment

o Key features:
m [rial-and-error
m Exploration-exploitation trade-off
m Delayed credit-assignment

o That’s too abstract! Can we be more concrete and start from a simple example?
o Yes! Bandits
« What if actions have consequences”? What’s a sequential decision-making problem?

What does “solving” a sequential decision-making problem means?
o  We need a formal language for that: MDPs

Chapter 3 of the textbook
Weeks 2 & 3 of Fundamentals of RL

Marlos C. Machado



10 CMPUT 365 — Classes 7-9/35

Why? Where are we?! We need a roadmap

« How can we do that?

Marlos C. Machado
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Why? Where are we?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming

Chapter 4 of the textbook
Week 4 of Fundamentals of RL

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming

o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?

Marlos C. Machado
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Why? Where are we?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming
o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?

o  Well, we can use Monte Carlo methods Chapter 5 of the textbook

Week 2 of Sample-based
Learning Methods

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming

o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?
o  Well, we can use Monte Carlo methods

o Do we really need to wait until episodes are over to learn something? What
about continuing tasks?

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming

o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?
o  Well, we can use Monte Carlo methods

o Do we really need to wait until episodes are over to learn something? What

Tat8l 2
about continuing tasks" Chapter 6 of the textbook

o  Nope! Temporal-difference learning Weeks 3 & 4 of Sample-based
Learning Methods

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« How can we do that?
o  We can leverage Bellman equations and do Dynamic Programming
o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?
o  Well, we can use Monte Carlo methods
o Do we really need to wait until episodes are over to learn something? What
about continuing tasks?
o  Nope! Temporal-difference learning
« Can’t we learn more efficiently? Can we only learn from interactions with the
environment?

Marlos C. Machado
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Why? Where are we”?! We need a roadmap

« How can we do that?
o We can leverage Bellman equations and do Dynamic Programming
o But what if you don’t know how the world works (you don’t know p(s’, r | s, a)?
o  Well, we can use Monte Carlo methods
o Do we really need to wait until episodes are over to learn something? What
about continuing tasks?
o  Nope! Temporal-difference learning

« Can’t we learn more efficiently? Can we only learn from interactions with the

environment?
. , , , Chapter 8 of the textbook
o We can be more efficient, we can do planning alongside leaming | yweek 5 of Sample-based

Learning Methods

Marlos C. Machado
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Why? Where are we?! We need a roadmap

« But what if we have many (maybe infinite) states? This doesn’t scale!

Marlos C. Machado
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Why? Where are we?! We need a roadmap

« But what if we have many (maybe infinite) states? This doesn’t scale!

(@)

Marlos C. Machado

We then do function approximation

Chapters 9 & 10 of the textbook
Weeks 1, 2, & 3 of Prediction and
Control with Function Approximation
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Why? Where are we”?! We need a roadmap

« But what if we have many (maybe infinite) states? This doesn’t scale!
o  We then do function approximation

« What about many (maybe infinite) actions? And stochastic policies?

Marlos C. Machado
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Why? Where are we?! We need a roadmap

« But what if we have many (maybe infinite) states? This doesn’t scale!
o  We then do function approximation

« What about many (maybe infinite) actions? And stochastic policies?
o A way to tackle this problem is with policy gradient methods

Chapter 13 of the textbook
Week 4 of Prediction and Control
with Function Approximation

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Value Functions and Policies

o \Value functions are “functions of states (or state-action pairs) that estimate how
good it is for the agent to be in a given state”.

« “How good” means expected return.

o EXxpected returns depend on how the agent behaves, that is, its policy.

Marlos C. Machado
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Policy

o A policy is a mapping from states to probabilities of selecting each possible action:
T:S — A(A)

in other words, 1i(als) is the probability that A =aif§ =s.

Ezxercise 3.11 1If the current state is S;, and actions are selected according to a stochastic

policy 7, then what is the expectation of R;;; in terms of m and the four-argument
function p (3.2)7 O

Marlos C. Machado
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Value Function

« The value function of a state s under a policy i, denoted v (s) is the expected
return when starting in s and following 1t thereafter.

state-value

function for 56

policy T —___ .

’U7T(S) = EW[Gt | StZS] = EW Z’Yth-l—k-i-l St:8]
k=0
- _ _ _ - k _ _
g=(s,a) = E Gy | St=s,A:=a] = E; ny Riiki1 | Si=s,As=a
k=0

action-value
function for

policy Why is this difference important?

Marlos C. Machado
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Exercises from the Textbook

Ezercise 3.12 Give an equation for v, in terms of ¢, and .

Ezercise 3.13 Give an equation for ¢, in terms of v, and the four-argument p.

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Value Functions Satisfy Recursive Relationships

’Uﬂ-(S) - EW[Gt | St :8]

Marlos C. Machado
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Value Functions Satisfy Recursive Relationships

vr(8) = Ei Gy | Sp=s]
= Ex[Riy1 +vGq1 | St =3]

_ Z m(als) Z Zp(s', r|s,a) [r + YEA[Ge11|Se41 ZSI]]

=2 n(ale) o p(erlosa)[r + 70 A

This is a system of linear equations!

p'r
OO OO O O

Backup diagram for v,

Marlos C. Machado




CMPUT 365 — Classes 7-9/35

30
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State-Action Value Functions Satisfy Recursive Relationships

Ezxercise 3.17 What is the Bellman equation for action values, that 5,a
is, for ¢,? It must give the action value ¢, (s,a) in terms of the action /N
values, q.(s’,a’), of possible successors to the state—action pair (s, a). s’
Hint: The backup diagram to the right corresponds to this equation. /O\ Z&
Show the sequence of equations analogous to (3.14), but for action ¢ o ¢ od
values. O

qr backup diagram

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Value functions define a partial ordering over policies.
o mxT1iffv(s)=v_(s)forals € .
o There is always at least one policy that is better than or equal to all other policies. The optimal policy.

V4 (8) = max v, (s)
" q+(s,a) = E[Ri11 + 0« (Si41) | Se=s5, A¢=aq]

g« (s,a) = maxq.(s,a)

33
Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values.

* — ax (r ’
V() T g .(s,a)

Marlos C. Machado
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Optimal Policies and Optimal Value Functions

« Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values.

* — ax (r ’
V() T g .(s,a)

=maxE; [G: | St=s,Ar=q]
= m3XEW*[Rt+1 + G411 | Se=s, Ay =al]
= m(?X]E[RtH + Yvx(St+1) | Se=s, Ar=a]

= mngp(s’,ﬂs,a) [ + Yo, (s)].

s',r

0.(5,0) = E[Rip1+ymaxq.(Sis,a) | S =s,4, =q

- Zp(s’,ﬂs,a) ['r' —|—'ymaxq*(s’,a')].
a/

Marlos C. Machado /
s’,r
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Also...

| have highlighted a couple of exercises during the class, but there are more.
Take a look at exercises in the Worksheet!

Marlos C. Machado
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Reinforcement learning is very related to search algorithms

“Heuristic search methods can be viewed as expanding the right-hand side of the
equation below several times, up to some depth, forming a “tree” of possibilities, and
then using a heuristic evaluation function to approximate v,, at the “leaf” nodes.”

V4 (8) = max Zp(s', r|s,a)|r + v (s")].

s',r

38
Marlos C. Machado
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Yay! We solved sequential decision-making problems

Except...
1.

> W

Marlos C. Machado
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Yay! We solved seguential decision-making problems

Except...

1. we need to know the dynamics of the environment
2. we have enough computational resources to solve the system of linear eq.

3. actually, we need to solve a system of nonlinear equations (the optimality ones)

4. the Markov property

Marlos C. Machado
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Example: Value Function Computation

Consider the 8-state MDP on the side. It has four actions available: {up, down,
left, and right}. Ilts dynamics are deterministic, except at the purple states,

where the agent can go up with 40% chance, regardless of the s | s,
action taken, and 60% chance one goes to the intended direction.

The reward is +1 upon entering state s, +2 upon entering the K
terminal state, and O otherwise. Let y = 0.8. Consider the policy S¢ | S7 | Sg

below:

l

l

l

l

—_—

ost

0.5

T

Marlos C. Machado

a) What's v _(s,)?

Recall
vr(8)= Zvr(als) Zp(s',r|s,a) [r +’y’uﬂ(s')], for all s € 8

a

42
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Solution: Value Function Computation

Marlos C. Machado
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Solution: Value Function Computation

Marlos C. Machado
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