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“One learns from books and example only

that certain things can be done. Actual

learning requires that you do those things.”

Frank Herbert, Children of Dune



You should be enrolled in the private session we created in Coursera for CMPUT 365.

I cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting 
quizzes and assignments to the private section. 

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us 

cmput365@ualberta.ca.

Coursera Reminder
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● The practice quiz and programming assignment for “Control with FA”                  
are due on Friday (only 2 to go!).

● The Student Perspectives of Teaching (SPOT) Survey is now available.
https://go.blueja.io/qVavvKlQuUedfy1YlM1_kA

Reminders and Notes
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Please, interrupt me at any time!
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Last Class: Neural Networks and Feature/Input Construction
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Image by Yu, Miao, and Wang (2022)

https://wiki.pathmind.com/deep-autoencoder

https://www.scaler.com/topics/deep-learning/rnn/ Image by Vaswani et al. (2017)
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● We need to approximate the action-value function now,              , that is 
represented as a parameterized function form with weight vector w. 

● Before (until last class): St ↦ Ut.
Now: St, At ↦ Ut.

Episodic Semi-gradient Control
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● We need to approximate the action-value function now,              , that is 
represented as a parameterized function form with weight vector w. 

● Before (until last class): St ↦ Ut.
Now: St, At ↦ Ut.

● Action-value prediction:

● Episodic semi-gradient one-step Sarsa:

Episodic Semi-gradient Control
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Episodic Semi-gradient Sarsa
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This really works!
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● Observations: (x, ẋ)

● Actions:
○ Full throttle forward: +1
○ Full throttle reverse: -1
○ Zero throttle: 0

● Rewards: -1 at every time step, until end of episode.

● Dynamics:

Example: Mountain Car Task
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● Feature representation:
○ Grid-tilings with 8 tilings and asymmetrical offsets.

○ FeaturesS

● Sarsa
○ Weights initialized at zero. Effectively optimistic initialization.

“Solution”: Mountain Car Task
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https://docs.google.com/file/d/1dL4Okx3VGfSp0SI2OS6NSLueXxuAUgFt/preview


Deep Q-Network (and Deep RL)
[Mnih et al., 2013, 2015]
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Deep Q-Network (DQN)
[Mnih et al., 2013, 2015]

Experience replay buffer (Lin, 1993)
Original size: 1M frames

Target network
Original update frequency: 10k

ε decay
Originally, from 1.0 to 0.1 over 1M frames

Stacked frames -1, 0, +1 rewards

RMSProp

Clipped error term
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● Tables imply an apples-to-apples comparison, even when they are not:

● DQN saw much more data than the baselines.

● DQN measured its performance differently than the baselines.

● DQN used domain knowledge other baselines didn’t:

○ Lives signal

○ Action set

Tables can be misleading
[Machado et al., 2018]
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● Continuing problems without discounting.
○ The agent cares about all rewards equally.

Avg. Reward: A Problem Setting for Continuing Tasks
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● Continuing problems without discounting.
○ The agent cares about all rewards equally.

● Quality of a policy is defined by the average rate of reward, r(π):

Avg. Reward: A Problem Setting for Continuing Tasks
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If the MDP is ergodic: the starting state and any 
early decision made by the agent can have only a 
temporary effect; in the long run the expectation 
of being in a state depends only on the policy and 
the MDP transition probabilities.



● (Differential) Return:

Avg. Reward: A Problem Setting for Continuing Tasks
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● (Differential) Return:

● Differential value functions:

Avg. Reward: A Problem Setting for Continuing Tasks
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● Differential value functions:

● Differential TD error:

Avg. Reward: A Problem Setting for Continuing Tasks
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Differential semi-gradient Sarsa

CMPUT 365 – Classes 30-32/36

Marlos C. Machado

34



35

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.html

CMPUT 365 – Classes 30-32/36



● Continuing problems without discounting.
○ The agent cares about all rewards equally.

Avg. Reward: A Problem Setting for Continuing Tasks

CMPUT 365 – Classes 30-32/36

Marlos C. Machado

36

+1

+2



● Continuing problems without discounting.
○ The agent cares about all rewards equally.

● Quality of a policy is defined by the average rate of reward, r(π):
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If the MDP is ergodic: the starting state and any 
early decision made by the agent can have only a 
temporary effect; in the long run the expectation 
of being in a state depends only on the policy and 
the MDP transition probabilities.
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Exercise

In the context of control algorithms with function approximation, please provide:

(a) The general form of the update rule for semi-gradient one-step Q-Learning.

(b) The the specific update, with no generic gradient terms, for semi-gradient 
one-step Q-learning with linear function approximation.
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