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Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.
| cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting
quizzes and assignments to the private section.

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us
cmput365@ualberta.ca.

Marlos C. Machado



CMPUT 365 — Class 27/35

Reminders and Notes

e The programming assignment is due on \Wednesday.

« Rich Sutton will give a guest lecture Dec 9th, Monday. Spread the word.

o A note on the final exam:

o The required reading from the syllabus does not mean that’s what will be covered in the final
exam. There are some mismatches. Anything we discussed in class is fair game, including
Maximization Bias and Double Learning (Section 6.7), and Nonlinear Function Approximation:
Artificial Neural Networks (Section 9.7).

Marlos C. Machado
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Virtual Workshop
Thursday, Nov 21|5-7pm

Open to all undergrad students.
Scan below to RSVP and send questions!

bitly/csworkshop2u

(2] UNIVERSITY Department of Computing Science
HOSted by OF ALBERTA Equity, Diversity, and Inclusion Committee

cs.ualberta.ca/edi
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RSVP form (not required, but appreciated):

https://docs.google.com/forms/d/110dJJg03kgd XFDgOv

nEz4FABiINKx7-iL6AkCJI677Z0/edit

Direct link to the zoom:
https://ualberta—-ca.zoom.us/1/93282952849?pwd=egE7h

m46hwMJIS02EZogiwbGOngtWkK. 1


https://docs.google.com/forms/d/11odJJgO3kgJ_XFDq9vnEz4FABjlNKx7-iL6AkCJ67ZQ/edit
https://docs.google.com/forms/d/11odJJgO3kgJ_XFDq9vnEz4FABjlNKx7-iL6AkCJ67ZQ/edit
https://ualberta-ca.zoom.us/j/93282952849?pwd=eqE7hm46hwMJS02EZoqjw5GOngtWkK.1
https://ualberta-ca.zoom.us/j/93282952849?pwd=eqE7hm46hwMJS02EZoqjw5GOngtWkK.1
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Last Class: Coarse Coding

« Consider a task in which the natural representation of the state set is a
continuous two- dimensional space.

o \We define binary features indicating
whether a state is present or not in
a specific circle.

The shape defines generalization

Receptive
Field

Narrow generalization Broad generalization

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Tile Coding

« Tile coding is a form of coarse coding for multi-dimensional continuous spaces
(with a fixed number of active features per timestep).
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Marlos C. Machado
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Tile Coding

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations
for asymmetrically
offset tilings

Marlos C. Machado
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It Isn’t that We do Function Approximation Because \We
Cannot do Tabular Reinforcement Learning

e Successor Representation [Dayan, Neural Computation 1993].

¥.(s,s') [Z‘Ytlst—s'lso—s]

Agent

Average extra steps to goal

Goal | —

Barrier

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Nonlinear Function Approximation: Artificial Neural Networks

« The basics of deep reinforcement learning.

« lIdea: Instead of using linear features, we feed the “raw” input to a neural network
and ask it to predict the state (or state-action) value function.

Marlos C. Machado
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Neural Networks
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The activation function
introduces non-linearity

S+ b1)E.g.: f(x) = max(0, x)
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Neural Networks

h' = actxW' + b")
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Neural Networks

CMPUT 365 — Class 27/35

Marlos C. Machado

h' = actxW' + b")
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Neural Networks

Marlos C. Machado

F'!epresentat'ion
(Learned features)
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