"For even the very wise cannot see all ends."

J.R.R. Tolkien, The Fellowship of the Ring

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 24/35

Coursera Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

The deadlines in the public session **do not align** with the deadlines in Coursera.

If you have any questions or concerns, **talk with the TAs** or email us cmput365@ualberta.ca.

Reminders and Notes

- The programming assignment is due today.
- Midterm 2 grades are available.
 - Exam viewing will be today and tomorrow.
 - Wednesday from 10am to 1pm at CSC 3-49.
 - Thursday from 1pm to 4pm at CSC 3-50.
- Next week is reading week.
- Our final exam has now been confirmed. It will indeed be on December 17th, 1pm, at CCIS 1-440.

CMPUT 365 – Class 24/35

RSVP form (not required, but appreciated):

https://docs.google.com/forms/d/11odJJgO3kgJ_XFDq9v nEz4FABjlNKx7-iL6AkCJ67ZQ/edit_

Direct link to the zoom:

https://ualberta-ca.zoom.us/j/93282952849?pwd=eqE7h m46hwMJS02EZoqjw5GOngtWkK.1_ CMPUT 365 - Class 24/35

Please, interrupt me at any time!

Last Class: The Prediction Objective

- In the tabular case we can have equality, but with FA, not anymore.
 - Making one state's estimate more accurate invariably means making others' less accurate.
- Mean Squared Error:

$$\overline{\mathrm{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \Big]^2$$

• When doing nonlinear function approximation, we lose pretty much every guarantee we had (often, even convergence guarantees).

7

Stochastic-gradient Methods

- The approximate value function, v(s,w), needs to be a differentiable function of w for all states.
- For this class, consider that, on each step, we observe a new example $S_t \mapsto v_{\pi}(S_t)$. Even with the exact target, we need to properly allocate resources.
- Stochastic gradient-descent (SGD) is a great strategy:

$$\begin{aligned} \mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \Big[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big]^2 \\ &= \mathbf{w}_t + \alpha \Big[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t) \end{aligned} \qquad \nabla f(\mathbf{w}) \doteq \Big(\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d} \Big)^\top \end{aligned}$$
Few (one) state at a time We need to consider the impact of our update. Thus, small

updates are often preferred.

Example – Stochastic gradient descent

$$z' \leftarrow z \pm \alpha \nabla_z f(z)$$

Example – Stochastic gradient descent

$$z' \leftarrow z \pm \alpha \nabla_z f(z)$$

Example – Stochastic gradient descent

$$z' \leftarrow z \pm \alpha \nabla_z f(z)$$

CMPUT 365 - Class 24/35

Example – Stochastic gradient descent (intuition)

$\frac{f(z)}{dz} = 2z$	$z' \leftarrow z \pm \alpha \nabla_z f(z)$
a = 0.4	
$ abla f(4) = 2 \times 4 = 8$ z' \leftarrow 4 - 0.4 \times 8 z' = 0.8	$\nabla f(0.8) = 2 \times 0.8 = 1.6$ z'' $\leftarrow 0.8 - 0.4 \times 1.6$ z'' = 0.16

Recipe for Deriving a Concrete Algorithm for SGD

- 1. Specify a function approximation architecture (parametric form of v_{π}).
- 2. Write down your objective function.
- 3. Take the derivative of the objective function with respect to the weights.
- 4. Simplify the general gradient expression for your parametric form.
- 5. Make a weight update rule:
 - $\mathsf{W}=\mathsf{W}-\mathsf{\Omega}\;\mathsf{GRAD}$

1. Specify a FA architecture (parametric form of v_{π})

• We will use state aggregation with linear function approximation

1. Specify a FA architecture (parametric form of v_{π})

- We will use state aggregation with linear function approximation
- State aggregation
 - The features are always binary with only a single active feature that is not zero

State aggregation is far from perfect!

1. Specify a FA architecture (parametric form of v_{π})

- We will use state aggregation with linear function approximation
- State aggregation
 - The features are always binary with only a single active feature that is not zero
- Value function
 - Linear function

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^{\top} \mathbf{x}(s) \doteq \sum_{i=1}^{d} w_i \cdot x_i(s)$$

2. Write down your objective function

• We will use the value error

$$\overline{\mathrm{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \Big]^2$$
$$= \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big]^2$$

		0	
S			

CMPUT 365 - Class 24/35

3. Take the derivative of the obj. function w.r.t. the weights

$$\begin{aligned} \overline{\mathrm{VE}}(\mathbf{w}) &= \nabla \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big]^2 \\ &= \sum_{s \in \mathcal{S}} \mu(s) \nabla \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big]^2 \\ &= -\sum_{s \in \mathcal{S}} \mu(s) 2 \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \nabla \mathbf{w}^{\top} \mathbf{x}(s) \end{aligned}$$

 ∇

4. Simplify the general gradient expression

$$\nabla \overline{\mathrm{VE}}(\mathbf{w}) = -\sum_{s \in \mathcal{S}} \mu(s) 2 \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \nabla \mathbf{w}^{\top} \mathbf{x}(s)$$
$$= -\sum_{s \in \mathcal{S}} \mu(s) 2 \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \mathbf{x}(s) \qquad \nabla \mathbf{w}^{\top} \mathbf{x}(s) = \mathbf{x}(s)$$

5. Make a weight update rule

$$\nabla \overline{\mathrm{VE}}(\mathbf{w}) = -\sum_{s \in \mathcal{S}} \mu(s) 2 \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \mathbf{x}(s)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha 2 \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \mathbf{x}(s)$$
$$= \mathbf{w}_t + \alpha \Big[v_{\pi}(s) - \mathbf{w}^{\top} \mathbf{x}(s) \Big] \mathbf{x}(s)$$

A More Realistic Update

• Let U_t denote the *t*-th training example, $S_t \mapsto v_{\pi}(S_t)$, of some (possibly random), approximation to the true value.

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big[U_t - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated Input: a differentiable function $\hat{v} : \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$ Algorithm parameter: step size $\alpha > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$) Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T$ using π Loop for each step of episode, $t = 0, 1, \dots, T - 1$: $\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$

