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Reminder |

You should be enrolled in the private session we created in Coursera for CMPUT 365.
| cannot use marks from the public repository for your course marks.

You need to check, every time, if you are in the private session and if you are submitting
quizzes and assignments to the private section.

The deadlines in the public session do not align with the deadlines in Coursera.

If you have any questions or concerns, talk with the TAs or email us
cmput365@ualberta.ca.

Marlos C. Machado
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Reminder |l / Updates

« The practice quiz for “Constructing features for prediction” is due today.
« The Student Perspectives of Teaching (SPOT) Survey is now available.

« Rich Sutton will give a guest lecture Dec 1st (this Friday). Spread the word.

Marlos C. Machado
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Please, interrupt me at any time!

Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Feature Construction for Linear Methods

o Linear methods can be effective, but they heavily rely on how states are
represented in terms of features.

» Feature construction is a way of adding domain knowledge; but at the same time,
it went out of fashion because of deep reinforcement learning.

o Nalve linear function approximation methods do not take into consideration the
interaction between features.

Marlos C. Machado



CMPUT 365 - Class 30/35

State Aggregation

o Simplest form of representation
« States are grouped together (one component of the vector w) for each group.

« State aggregation is a special case of SGD in which the gradient, VV(S,,w,), is 1
for S,’s group’s component and O for the other components.

resy
N

Marlos C. Machado http://irl.cs.brown.edu/pinball/
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

But what about interactions? \What if both features were zero?

x(s) = (1, s1, 82,5182) "

Marlos C. Machado
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Polynomials

o Doesn’t work so well, but they are one of the simplest families of features.

e Suppose an RL problem has states with two numerical dimensions.

x(s) = (s1,82)

But what about interactions? What if both features were zero?
T
X(S) = (1, S1, 82, 8182)
And we can keep going...

. 2 .2 2 .2 22\ T
X(S) — (17817 $2,81582,87, S9, 81827818278182)

Marlos C. Machado
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Polynomials
Suppose each state s corresponds to k numbers, s1, Ss, ..., Sk, with each s; € R.
For this k-dimensional state space, each order-n polynomial-basis feature x; can be
written as

Z (S = Hles;?"’j, (9.17)
where each c; ; is an integer in the set {0,1,...,n} for an integer n > 0. These
features make up the order-n polynomial basis for dimension k, which contains
(n + 1)F different features.

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Coarse Coding

« Consider a task in which the natural representation of the state set is a
continuous two- dimensional space.

o \We define binary features indicating
whether a state is present or not in
a specific circle.

The shape defines generalization

Receptive
Field

Narrow generalization Broad generalization

Marlos C. Machado
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Tile Coding

« Tile coding is a form of coarse coding for multi-dimensional continuous spaces
(with a fixed number of active features per timestep).
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Marlos C. Machado
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Tile Coding

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations
for asymmetrically
offset tilings

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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It Isn’t that We do Function Approximation Because \We
Cannot do Tabular Reinforcement Learning

e Successor Representation [Dayan, Neural Computation 1993].

¥.(s,s') [Z‘Ytlst—s'lso—s]

Agent

Average extra steps to goal

Goal | —

Barrier

Marlos C. Machado
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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Nonlinear Function Approximation: Artificial Neural Networks

« The basics of deep reinforcement learning.

« lIdea: Instead of using linear features, we feed the “raw” input to a neural network
and ask it to predict the state (or state-action) value function.

Marlos C. Machado
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Neural Networks
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Neural Networks
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The activation function
introduces non-linearity

S+ b1)E.g.: f(x) = max(0, x)
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Neural Networks

h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h FEXWL XWX W+ X W 41+B
h? = act(h'W? + b?)

2 _hlg? 162 1 \p2 162
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Neural Networks
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Marlos C. Machado

h' = actxW' + b")

1 _ 1 1 1 1 1
s.t.h1_x1wﬁ+x2w21+x3W31+x4w41+B

h2 = act(h'W2 + b?)

2 _ g2 102 112 102
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BZ
o = act(h®W? + b?)

2 3 2 .3 2 3 2 3 2
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o = act(act@ctxW' + b"YW? + b?W? + b3)
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Neural Networks

Marlos C. Machado

F'!epresentat'ion
(Learned features)

h' = actxW' + b")
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Marlos C. Machado https://pngtree.com/freepng/question-expression-cartoon-illustration_4545209.ht
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A Note from the Textbook

The backpropagation algorithm can produce good results for shallow networks having
1 or 2 hidden layers, but it may not work well for deeper ANNs. In fact, training a

network with k£ 4+ 1 hidden layers can actually result in poorer performance than training
a network with k£ hidden layers, even though the deeper network can represent all the
functions that the shallower network can (Bengio, 2009). Explaining results like these
is not easy, but several factors are important. First, the large number of weights in

a typical deep ANN makes it difficult to avoid the problem of [overfitting,| that is, the
problem of failing to generalize correctly to cases on which the network has not been
trained. Second, backpropagation does not work well for deep ANNs because the partial
derivatives computed by its backward passes either decay rapidly toward the input side
of the network, making learning by deep layers extremely slow, or the partial derivatives
grow rapidly toward the input side of the network, making learning unstable. Methods

Marlos C. Machado
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Deep Convolutional Network

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
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Figure 9.15: Deep Convolutional Network. Republished with permission of Proceedings of the
IEEE, from Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio,
and Haffner, volume 86, 1998; permission conveyed through Copyright Clearance Center, Inc.

Marlos C. Machado
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Deep Convolutional Network
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Marlos C. Machado [Figure from demo in https://cs231ln.github.io/convolutional-networks/]
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Learned Representations

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet. Notice that the first-layer
weights are very nice and smooth, indicating nicely converged network. The color/grayscale features are clustered because the
AlexNet contains two separate streams of processing, and an apparent consequence of this architecture is that one stream
develops high-frequency grayscale features and the other low-frequency color features. The 2nd CONV layer weights are not as
interpretable, but it is apparent that they are still smooth, well-formed, and absent of noisy patterns.

Marlos C. Machado [Figure from https://cs231n.github.io/understanding-cnn/]
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