"A beginning is the time for taking the most delicate care that the balances are correct."
Frank Herbert, Dune
Marlos C. Machado
"A beginning is the time for taking the most delicate care that the balances are correct."
Frank Herbert, Dune
\qquad
20

$$
8
$$

\square

\qquad
\qquad
\qquad

$$
\mathfrak{z ~}
$$

$$
88
$$

\qquad

Notification

An audio recording of this class may be made for the purpose of facilitating a student's approved academic accommodation.

Office hours

- Slack and eClass: Asynchronous
- Marlos: Thursday 15:00-16:45 in ATH 3-08 (Athabasca Hall, 3-08)
- Anna: Monday 12:00-14:00 in CAB 3-13
- Bryan: Wednesday 14:00-16:00 in CAB 3-13
- David: Tuesday 13:00-15:00 in CSC 3-50
- Gabor: Wednesday 9:15-11:15 in CAB 3-13
- Marcos: Friday 10:00-12:00 in CAB 3-13

Syllabus ecalass, Slack, webste, Goocle Divive

Plan

- Probability \& statistics
- Linear algebra
- Calculus

Please, interrupt me at any time!

Probability and statistics

Definitions

- Probability is about predicting the likelihood of future events.
- Statistics is about estimating a model (rule) from past events.

We'll need to understand probability to do statistics.

Probability - The basics

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

Example

Dungeons \& Dragons!

$\operatorname{Pr}($ rolling 20 $)=1 / 20=5 \%$
$\operatorname{Pr}($ rolling 19 or 20$)=$
$\operatorname{Pr}($ rolling 19) $+\operatorname{Pr}($ rolling 20) $=$

$$
1 / 20+1 / 20=10 \%
$$

$\operatorname{Pr}($ rolling 20 and 20) $=$
$\operatorname{Pr}($ rolling 20) $\times \operatorname{Pr}($ rolling 20) $=$ $1 / 20 \times 1 / 20=1 / 400=0.25 \%$

Probability - Somewhat more formally

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

Probability - Somewhat more formally

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

- A set is collection of disjoint elements.
- A sample space is the set of all possible outcomes of an experiment.
- An event is any subset of the sample space.
Example
Sample space. $\{1,2, \ldots, 20\}$
Event. Rolling higher than 16:
$\{17,18,19,20\}$

Probability - Somewhat more formally

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

- A set is collection of disjoint elements.
- A sample space is the set of all possible outcomes of an experiment.
- An event is any subset of the sample space.
- A function, $f . A \rightarrow B$, is a map, a rule, that maps every element of the set A to a unique element in the set B. We call A the domain, and B the codomain, or the range, of the function. Given $\mathrm{x} \in A$, the element it is associated with in the set B is called its image under f.

Probability - Somewhat more formally

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

- A probability distribution is defines how the probability is distributed among the outcomes.

$$
\begin{aligned}
& \text { Example } \\
& \text { For an unbiased dice, each } \\
& \text { number is equally likely (i.e., } \\
& \text { uniform probability distribution). } \\
& \text { Thus, for each outcome e } \in \mathrm{S} \text {, } \\
& \operatorname{Pr}(\mathrm{e})=1 /|\mathrm{S}| \text {. }
\end{aligned}
$$

Probability - Somewhat more formally

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

- A probability distribution is defines how the probability is distributed among the outcomes.
- A way of calculating the probability of a specific event is a matter of identifying the sample space (set of all possible outcomes) and the probability distribution.

Example 1

For an unbiased dice, the probability of rolling a 20 is $\operatorname{Pr}($ rolling 20 $)=1 / 20$.

Example 2

For an unbiased dice, the probability of rolling higher than 18 is $\mathbf{P r}$ (rolling 19 or 20) $=1 / 20+1 / 20=1 / 10$.

Probability - Properties

A probability is a function that associates a number between 0 and 1 to an event, with this number being a measure of the likelihood of that set of outcomes.

- Nonnegativity: $\operatorname{Pr}(A) \geq 0$.
- Normalization: $\sum_{\mathrm{e} \in \mathrm{S}} \operatorname{Pr}(\mathrm{e})=1$.
- Additivity: $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B) ; A \cap B=\{ \}$.

Example

For an unbiased dice, the probability of rolling higher than 18 is $\mathbf{P r}$ (rolling 19 or 20) $=1 / 20+1 / 20=1 / 10$.

Probability - Considering all possible events

How many distinct events are possible in a dice rolling experiment?

Probability - Considering all possible events

How many distinct events are possible in a dice rolling experiment?
The number of all possible subsets of the sample space.
The power set of the sample space S, denoted $2^{\text {S }}$.

Example

$2^{S}=\{S,\{ \},\{1\},\{2\},\{3\}, \ldots,\{20\},\{1$,
$2\},\{1,3\}, \ldots\{18,19,20\}, \ldots\{1,2$,
$3,4,5,6,7,8,9,10,11,12,13\}$,
$\ldots,\{1,2,3,4,5,6,7,8,9,10,11$,
$12,13,14,15,16,17,18,19\}, \ldots\}$

Number of elements in 2^{s} :
$2^{20}=1,048,576$

Probability - Considering all possible events

How many distinct events are possible in a dice rolling experiment?
The number of all possible subsets of the sample space.
The power set of the sample space S, denoted $2^{\text {S }}$.

$$
\begin{aligned}
& \operatorname{Pr}(S)=1 . \\
& \operatorname{Pr}(\})=0 .
\end{aligned}
$$

Formally, $\operatorname{Pr}: 2^{\mathrm{S}} \rightarrow[0,1]$.

Example 1

For an unbiased dice, the probability of rolling a 20 is
$\operatorname{Pr}($ rolling 20$)=1 / 20$.

Example 2

For an unbiased dice, the probability of rolling higher than 18 is $\mathbf{P r}$ (rolling 19 or 20) $=1 / 20+1 / 20=1 / 10$.

Random variables and expectations

Random variables

Random variables are ways to map outcomes of random processes to real numbers.
They are not a traditional variable, nor random θ

Examples

When rolling a d20 dice, let X be the random variable denoting the outcome of the roll.

$$
\begin{array}{ll}
\operatorname{Pr}(X<19) ? & \\
\operatorname{Pr}(X=19] \cup[X=20] \cup[1 \leq X \leq 18]) \quad=1 \\
\operatorname{Pr}(X=19] \cup X=20] \cup[X<1]) & =1 \\
\operatorname{Pr}(X=19)+\operatorname{Pr}(X=20)+\operatorname{Pr}(X<19) & =1 \\
\operatorname{Pr}(X<19) & =1-\operatorname{Pr}(X=19)-\operatorname{Pr}(X=20) \\
\operatorname{Pr}(X<19) & =1-1 / 20-1 / 20 \\
\operatorname{Pr}(X<19) & =18 / 20 \\
\operatorname{Pr}(X<19) & =9 / 10
\end{array}
$$

Conditional probabilities

Chain rule:

$\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A, B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$
The probability of an event A given another event B is defined as:

$$
\operatorname{Pr}(A \mid B) \doteq \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} .
$$

In a classroom with 100 students, out of those 100, 20 students play tabletop RPG, and 30 students have read The Lord of the Rings books. There are 15 students who play tabletop RPG who have read LOTR. What is the probability that a student has read LOTR given that the student plays tabletop RPG?

Let X be the random variable denoting the probability that a student plays tabletop RPG, and let Y be the random variable denoting the probability that a student has read LOTR.
$\operatorname{Pr}(X)=0.2 \quad \operatorname{Pr}(Y)=0.3 \quad \operatorname{Pr}(X \cap Y)=0.15$
$\operatorname{Pr}(Y \mid X)=0.15 / 0.2=0.75$

Conditional probabilities

The probability of an event A given another event B is defined as:

$$
\operatorname{Pr}(A \mid B) \doteq \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} .
$$

When playing D\&D, Tristan needs to roll 17 or higher on a d20 to successfully hit the troll. Tristan gets a critical hit when they roll a 20 . Knowing that Tristan has successfully hit the target, what's the likelihood that Tristan got a critical hit?

Let X be the random variable denoting the number Tristan rolled on a d20, and Y a binary random variable denoting whether Tristan rolled a $20(\mathrm{Y}=1)$ or not $(\mathrm{Y}=0)$.

$$
\begin{array}{ll}
\operatorname{Pr}(X \geq 17)=1 / 5 & \operatorname{Pr}(Y=1 \cap X \geq 17)=1 / 20 \\
\frac{\operatorname{Pr}(Y=1 \cap X \geq 17)}{\operatorname{Pr}(X \geq 17)}=\frac{1 / 20}{1 / 5}=\frac{5}{20}=25 \%
\end{array}
$$

Independence

Two events are independent when the likelihood of an event does not change after knowing the other event. A is independent of B if and only if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

$\operatorname{Pr}(A \mid B)$	$=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$
$\operatorname{Pr}(A \cap B)$	$=\operatorname{Pr}(A \mid B)$
$\operatorname{Pr}(B)$	
$\operatorname{Pr}(A \cap B)$	$=\operatorname{Pr}(A) \operatorname{Pr}(B)$
$\operatorname{Pr}(B \mid A)$	$=\operatorname{Pr}(B \cap A) / \operatorname{Pr}(A)$
	$=\operatorname{Pr}(B) \operatorname{Pr}(A) / \operatorname{Pr}(A)$
	$=\operatorname{Pr}(B)$

Example

Tristan now rolls two d20 dice. Given that they rolled a 1 on the first dice, what's the likelihood of them running a 20 on the second dice?

Let X be the random variable denoting the roll on the first dice, and Y be the equivalent for the second dice.

$$
\begin{aligned}
& \operatorname{Pr}(X=1)=1 / 20 \quad \operatorname{Pr}(Y=20)=1 / 20 \quad \operatorname{Pr}(X=1 \cap Y=20)=1 / 400 \\
& \operatorname{Pr}(Y=20 \mid X=1)=(1 / 400) /(1 / 20)=1 / 20
\end{aligned}
$$

Conditional probabilities with more than 2 variables

The probability of an event A given another event B is defined as:

$$
\operatorname{Pr}(A \mid B) \doteq \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} .
$$

Chain rule:
$\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A, B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$

What's $\operatorname{Pr}(A, B \mid C)$?
Let $D=A \cap B$. Then, $\operatorname{Pr}(D \mid C)=\operatorname{Pr}(D, C) / \operatorname{Pr}(C)$. Thus $\operatorname{Pr}(A, B \mid C)=\operatorname{Pr}(A, B, C) / \operatorname{Pr}(C)$.
Now, let $E=B \cap C$, and recall, by the chain rule, that $\operatorname{Pr}(A, E)=\operatorname{Pr}(A \mid E) \operatorname{Pr}(E)$.
We then have $\operatorname{Pr}(A, B, C)=\operatorname{Pr}(A \mid B, C) \operatorname{Pr}(B, C)=\operatorname{Pr}(A \mid B, C) \operatorname{Pr}(B \mid C) \operatorname{Pr}(C)$.
Putting these two together: $\operatorname{Pr}(A, B \mid C)=\operatorname{Pr}(A \mid B, C) \operatorname{Pr}(B \mid C) \operatorname{Pr}(C) / \operatorname{Pr}(C)$.
Assuming $\operatorname{Pr}(C) \neq 0, \operatorname{Pr}(A, B \mid C)=\operatorname{Pr}(A \mid B, C) \operatorname{Pr}(B \mid C)$.

Next class

- What I plan to do: Fundamentals of RL: An introduction to sequential decision-making (Bandits)
- Finish these slides first.
- Discuss, more in depth, things related to bandits (Chapter 2 of the textbook).
- What I recommend YOU to do for next class:
- Watch videos of Week 1 of Coursera's Fundamentals of RL (Module 1): M1W1.
- Finish the recommended reading for Coursera's M1W2.
- Watch videos of Coursera's M1W2.
- Start collecting (and post) questions in eClass/Slack about Chapter 2 of the textbook.
- Submit practice quiz for Coursera's Fundamentals of RL: Sequential decision-making (M1 W2).
- At least start programming assignment for M1 W2.

