"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along "To look ahead," said he. "And what brought you back in the nick of time?" "Looking behind," said he.

J.R.R. Tolkien, The Hobbit

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 16/35

Reminder I

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks. You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

There were **2 pending invitations** for students who are still enrolled in the course.

At the end of the term, I will not port grades from the public session in Coursera.

If you have any questions or concerns, talk with the TAs or email us cmput365@ualberta.ca

Plan / Reminder II

- The time of my office hours has changed.
 - Thursday 10:00am 12:00pm in ATH 3-08.
- On the midterm:
 - I plan on marking it this week, worst case scenario next week you should have your marks.

• I want your feedback!

- Mid-term Course and Instruction Feedback online evaluation opened today.
- It will be open for this week only: Oct 16 Oct 20.

Plan / Reminder III

- What <u>I</u> plan to do today:
 - Finish overview of Monte Carlo Methods for Prediction & Control (Chapter 5 of the textbook).
- What I recommend **YOU** to do:
 - Read Chapter 5 up to Section 5.5.
 - Graded Quiz (Off-policy Monte Carlo).
 - Programming Assignment is not graded this week.

CMPUT 365 - Class 16/35

Please, interrupt me at any time!

Afterstates

- One could evaluate states *after* the agent has taken an action (instead of states in which the agent has the option to select an action).
- This is particularly useful when we have knowledge of an initial part of the environment's dynamics but not necessarily of the full dynamics (e.g., how an opponent will reply in a game).
- This can be much more efficient!

Example – Tic-Tac-Toe

Marlos C. Machado

Back to MC: An Example – Estimating v_{π}

Exercise 5.5 of the Textbook

Consider an MDP with a single nonterminal state and a single action that transitions back to the nonterminal state with probability p and transitions to the terminal state with probability 1-p, Let the reward be +1 on all transitions, and let γ =1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What are the first-visit and every-visit estimators of the value of the nonterminal state?

```
Generate an episode following \pi: S_0, A_0, R_1, S_1, \dots, S_{T-1}, A_{T-1}, R_T

G \leftarrow 0

Loop for each step of episode, t = T - 1, T - 2, \dots, 0

G \leftarrow \gamma G + R_{t+1}

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

Exercise 5.5 of the Textbook

An Example – Estimating q_{π}

Last Class: Monte Carlo ES

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
    \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in S
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in S, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
    Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```


MC Control without Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$	
Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S$, $a \in \mathcal{A}(s)$	
$ \begin{array}{ll} \mbox{Repeat forever (for each episode):} & \\ \mbox{Generate an episode following π: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ } & \\ \mbox{G} \leftarrow 0 & \\ \mbox{Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:} & \\ \mbox{G} \leftarrow \gamma G + R_{t+1} & \\ \mbox{Unless the pair S_t, A_t appears in $S_0, A_0, S_1, A_1 \dots, S_{t-1}, A_{t-1}$:} & \\ \mbox{Append G to $Returns(S_t, A_t)$ } & \\ \mbox{Q}(S_t, A_t) \leftarrow \mbox{average}(Returns(S_t, A_t)) & \\ \mbox{A^*} \leftarrow \mbox{argmax}_a Q(S_t, a) & \\ \mbox{For all $a \in \mathcal{A}(S_t)$:} & \\ \mbox{$\pi(a S_t) \leftarrow $\left\{ \begin{array}{c} 1 - \varepsilon + \varepsilon / \mathcal{A}(S_t) & \mbox{if $a = A^*$} \\ \varepsilon / \mathcal{A}(S_t) & \mbox{if $a \neq A^*$} \end{array} \right. } \end{array} \right. } \end{array} \right. $	ed to ensure that the bility we select each is not zero.

MC Control without Exploring Starts

On-policy: You learn about the policy you used to make decisions.

Off-policy: You learn about a policy that is different from the one you used to make decisions.

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                   (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```


17

Learning with exploration

- ... but how can we learn about the optimal policy while behaving according to an exploratory policy? We need to behave non-optimally in order to explore 🤔.
- So far we have been *on-policy*, which is a compromise: we learn about a near-optimal policy, not the optimal one.
- But what if we had two policies? We use one for exploration but we learn about another one, which would be the optimal policy?
 Behaviour policy

Target policy

That's off-policy learning!

Pros and cons of off-policy learning

Pros

Cons

- It is more general.
- It is more powerful.
- It can benefit from external data
 - and other additional use cases.

- It is more complicated.
- It has much more variance.
 - Thus it can be much slower to learn.
- It can be unstable.

Check Example 5.5 in the textbook about Infinite Variance

What's the actual issue?

Let π denote the target policy, and let b denote the behaviour policy.

We want to estimate $\mathbb{E}_{\pi}[G_t]$, but what we can actually directly estimate is $\mathbb{E}_{\mathbf{b}}[G_t]$. In other words, $\mathbb{E}[G_t | S_t = s] = v_{\mathbf{b}}(s)$.

Importance Sampling

A general technique for estimating expected values under one distribution given samples from another. It is based on re-weighting the probabilities of an event.

Importance Sampling

In RL, the probability of a trajectory is:

$$\begin{aligned} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ &= \pi(A_t | S_t) p(S_{t+1} | S_t, A_t) \pi(A_{t+1} | S_{t+1}) \cdots p(S_T | S_{T-1}, A_{T-1}) \\ &= \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k), \end{aligned}$$

Importance Sampling

In RL, the probability of a trajectory is:

$$Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\}$$

= $\pi(A_t|S_t)p(S_{t+1}|S_t, A_t)\pi(A_{t+1}|S_{t+1})\cdots p(S_T|S_{T-1}, A_{T-1})$
= $\prod_{k=t}^{T-1} \pi(A_k|S_k)p(S_{k+1}|S_k, A_k),$

the relative prob. of the traj. under the target and behavior policies (the IS ratio) is: We require coverage:

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k | S_k)}{b(A_k | S_k)}.$$
The IS ratio does not depend on the MDP, that is, on p(s', r | s, a)!

h(a|s) > 0 when $\pi(a|s) > 0$

The solution

The ratio $\rho_{t:T-1}$ transforms the returns to have the right expected value:

$$\mathbb{E}[\rho_{t:T-1}G_t \mid S_t = s] = v_{\pi}(s).$$

-

$$V(s) \doteq rac{\sum_{t \in \mathfrak{T}(s)}
ho_{t:T(t)-1} G_t}{|\mathfrak{T}(s)|}.$$

Set of all time steps in which state s is visited.

~

Weighted importance sampling:

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1}}$$

Incremental update (Weighted IS)

We want to form the estimate

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}, \qquad n \ge 2. \qquad \qquad W_i = \rho_{t_i:T(t_i)-1}$$

The update rule for V_n is

$$V_{n+1} \doteq V_n + \frac{W_n}{C_n} \Big[G_n - V_n \Big], \qquad n \ge 1,$$

and

$$C_{n+1} \doteq C_n + W_{n+1}$$

Marlos C. Machado

Off-policy MC prediction for estimating q_{π}

