"Where did you go to, if I may ask?" said Thorin to Gandalf as they rode along "To look ahead," said he. "And what brought you back in the nick of time?" "Looking behind," said he.

J.R.R. Tolkien, The Hobbit

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 15/35

Reminder I

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

There were **12 pending invitations** last time I checked.

If you have any questions or concerns, **talk with the TAs** or email us cmput365@ualberta.ca.

Plan / Reminder II

- The time of my office hours has changed.
 - Thursday 10:00am 12:00pm in ATH 3-08.
- On the midterm:
 - I plan on marking it next week, worst case scenario next next week you should have your marks.
- What <u>I</u> plan to do today:
 - Where are we?
 - Overview of Monte Carlo Methods for Prediction & Control (Chapter 5 of the textbook).
- What I recommend **YOU** to do for next class:
 - Read Chapter 5 up to Section 5.5.
 - Graded Quiz (Off-policy Monte Carlo).
 - Programming Assignment is not graded this week.

CMPUT 365 - Class 15/35

Please, interrupt me at any time!

CMPUT 365 - Class 15/35

Interlude

- Main features of a reinforcement learning problem:
 - Trial-and-error learning
 - Exploration
 - Delayed credit assignment

- Main features of a reinforcement learning problem:
 - Trial-and-error learning
 - Exploration A flavour

A flavour of RL: Bandits (Chapter 2)

• Delayed credit assignment

- Main features of a reinforcement learning problem:
 - Trial-and-error learning
 - Exploration
 - Delayed credit assignment —

But what does that mean? What is this sequential decision-making problem we are trying to solve? What does solution mean here?

A problem formulation: MDPs (Chapter 3)

- Main features of a reinforcement learning problem:
 - Trial-and-error learning
 - Exploration
 - Delayed credit assignment
- What about the solution?

A first solution: Dynamic Programming (Chapter 4)

- Main features of a reinforcement learning problem: •
 - Trial-and-error learning
 - Exploration
 - Delayed credit assignment Ο
- What about the solution? •
 - We need to know p(s', r | s, a) and it Dynamic programming! can be computationally expensive to Ο

solve the system of linear equations.

Our first learning algorithm: Monte Carlo Methods (Chapter 5)

Chapter 5

Monte Carlo Methods

- This is our **first learning** method.
- We do not assume complete knowledge of the environment.
- "Monte Carlo methods require only experience sample sequences of states, actions, and rewards from actual or simulated interaction with an environment."
- It works! And different variations are used everywhere in the field (n-step returns, TD(λ), MCTS–AlphaGo/AlphaZero–, etc).
- ... but we still need a model, albeit only a sample model.

MC Methods are ways of solving the RL problem based on avg. sample returns (similar to bandits, but instead of rewards we are sampling returns).

Monte Carlo Prediction

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Some useful information / reminders about MC Methods

- Often it is much easier to get samples than to get the distribution of next events. Recall the Blackjack example in the textbook.
- Monte Carlo methods do not *bootstrap* (the estimate for one state does not build upon the estimate of any other state).
- First/every-visit MC converge to $v_{\pi}(s)$ as the number of visits to s goes to infinity. In first-visit MC, each return is i.i.d. and has finite variance $\sqrt{(\mathcal{Y})}$
- The computational cost of estimating the value of a single state is independent of the number of states.

Monte Carlo Estimation of Action Values

- If we don't have access to a model, we need to estimate action values.
- Same as before, but now we visit state-action pairs _(𝒴)_/
 But to estimate q_∗ we need to estimate the value of *all* actions from each state.
 Solution? Exploration! ... or exploring starts 😒

Monte Carlo Control

Monte Carlo ES

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
    \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in S
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in S, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
    Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```


MC Control without Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi pprox \pi_*$	
Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S$, $a \in \mathcal{A}(s)$	
$ \begin{array}{ll} \mbox{Repeat forever (for each episode):} & \\ \mbox{Generate an episode following π: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ \\ $G \leftarrow 0$ \\ \mbox{Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:} & \\ $G \leftarrow \gamma G + R_{t+1}$ \\ \mbox{Unless the pair S_t, A_t appears in $S_0, A_0, S_1, A_1 \ldots, S_{t-1}, A_{t-1}$:} & \\ $Append G to $Returns(S_t, A_t)$ \\ $Q(S_t, A_t) \leftarrow average(Returns(S_t, A_t))$ \\ $A^* \leftarrow \arg\max_a Q(S_t, a)$ & (with ties broken arbitrarily)$ \\ $For all $a \in \mathcal{A}(S_t)$:} $ \\ $\pi(a S_t) \leftarrow \left\{ \begin{array}{c} 1 - \varepsilon + \varepsilon/ \mathcal{A}(S_t) & \text{if $a = A^*$} \\ \varepsilon/ \mathcal{A}(S_t) & \text{if $a \neq A^*$} \end{array} \right. \end{array} \right. $	to ensure that the ty we select each not zero.

MC Control without Exploring Starts

On-policy: You learn about the policy you used to make decisions.

Off-policy: You learn about a policy that is different from the one you used to make decisions.

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow empty list, for all s \in S, a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                   (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```


Learning with exploration

- We stopped after On-policy first-visit MC control (for ε -soft policies).
- ... but how can we learn about the optimal policy while behaving according to an exploratory policy? We need to behave non-optimally in order to explore
- So far we have been *on-policy*, which is a compromise: we learn about a near-optimal policy, not the optimal one.
- But what if we had two policies? We use one for exploration but we learn about another one, which would be the optimal policy?

Behaviour policy

That's off-policy learning! Target policy

Pros and cons of off-policy learning

Pros

Cons

- It is more general.
- It is more powerful.
- It can benefit from external data
 - and other additional use cases.

- It is more complicated.
- It has much more variance.
 - Thus it can be much slower to learn.
- It can be unstable.

Check Example 5.5 in the textbook about Infinite Variance

What's the actual issue?

Let π denote the target policy, and let b denote the behaviour policy.

We want to estimate $\mathbb{E}_{\pi}[G_t]$, but what we can actually directly estimate is $\mathbb{E}_{\mathbf{b}}[G_t]$. In other words, $\mathbb{E}[G_t | S_t = s] = v_{\mathbf{b}}(s)$.

Importance Sampling

A general technique for estimating expected values under one distribution given samples from another. It is based on re-weighting the probabilities of an event.

Importance Sampling

In RL, the probability of a trajectory is:

$$Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\}$$

= $\pi(A_t|S_t)p(S_{t+1}|S_t, A_t)\pi(A_{t+1}|S_{t+1})\cdots p(S_T|S_{T-1}, A_{T-1})$
= $\prod_{k=t}^{T-1} \pi(A_k|S_k)p(S_{k+1}|S_k, A_k),$

Importance Sampling

In RL, the probability of a trajectory is:

$$Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ = \pi(A_t | S_t) p(S_{t+1} | S_t, A_t) \pi(A_{t+1} | S_{t+1}) \cdots p(S_T | S_{T-1}, A_{T-1}) \\ = \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k),$$

the relative prob. of the traj. under the target and behavior policies (the IS ratio) is: We require coverage:

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k | S_k)}{b(A_k | S_k)}.$$
The IS ratio does not depend on the MDP, that is, on p(s', r | s, a)!

h(a|s) > 0 when $\pi(a|s) > 0$

Marlos C. Machado

The solution

The ratio $\rho_{t:T-1}$ transforms the returns to have the right expected value:

$$\mathbb{E}[\rho_{t:T-1}G_t \mid S_t = s] = v_{\pi}(s).$$

-

$$V(s) \doteq rac{\sum_{t \in \mathfrak{T}(s)}
ho_{t:T(t)-1} G_t}{|\mathfrak{T}(s)|}.$$

Set of all time steps in which state s is visited.

~

Weighted importance sampling:

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1}}$$

31

