"The rotten tree-trunk, until the very moment when the storm-blast breaks it in two, has all the appearance of might it ever had."

Isaac Asimov, Foundation

CMPUT 365 Introduction to RL

Marlos C. Machado

Class 11/35

Plan

- Value Functions and Bellman Equations
 - Non-comprehensive overview
 - We are still not talking about solution methods, we are only formalizing things

Reminder

You should be enrolled in the private session we created in Coursera for CMPUT 365.

I **cannot** use marks from the public repository for your course marks.

You **need** to **check**, **every time**, if you are in the private session and if you are submitting quizzes and assignments to the private section.

The deadlines in the public session **do not align** with the deadlines in Coursera.

If you have any questions or concerns, **talk with the TAs** or email us cmput365@ualberta.ca.

CMPUT 365 - Class 11/35

Please, interrupt me at any time!

Δ

Marlos C. Machado

State-Action Value Functions Satisfy Recursive Relationships

Exercise 3.17 What is the Bellman equation for action values, that is, for q_{π} ? It must give the action value $q_{\pi}(s, a)$ in terms of the action values, $q_{\pi}(s', a')$, of possible successors to the state-action pair (s, a). Hint: The backup diagram to the right corresponds to this equation. Show the sequence of equations analogous to (3.14), but for action values.

Optimal Policies and Optimal Value Functions

- Value functions define a partial ordering over policies.
 - $\circ \qquad \pi \geq \pi' \text{ iff } v_{\pi}(s) \geq v_{\pi'}(s) \text{ for all } s \in \mathscr{S}.$
 - There is always at least one policy that is better than or equal to all other policies. The *optimal policy*.

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

Optimal Policies and Optimal Value Functions

• Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

Optimal Policies and Optimal Value Functions

 v_*

 Because v_{*} is the value function for a policy, it must satisfy the self-consistency condition given by the Bellman equation for state values.

$$(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$
= $\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$

$$q_*(s,a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a\Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a')\Big].$$

Marlos C. Machado

Reinforcement learning is very related to search algorithms

"Heuristic search methods can be viewed as expanding the right-hand side of the equation below several times, up to some depth, forming a "tree" of possibilities, and then using a heuristic evaluation function to approximate v_{*}, at the "leaf" nodes."

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')].$$

Yay! We solved sequential decision-making problems

Except...

1.

2.

З.

Yay! We solved sequential decision-making problems

Except...

- 1. we need to know the dynamics of the environment
- 2. we have enough computational resources to solve the system of linear eq.
- 3. the Markov property

Exercises from the Textbook

Exercise 3.11 If the current state is S_t , and actions are selected according to a stochastic policy π , then what is the expectation of R_{t+1} in terms of π and the four-argument function p(3.2)?

Exercise 3.12 Give an equation for v_{π} in terms of q_{π} and π .

Exercise 3.13 Give an equation for q_{π} in terms of v_{π} and the four-argument p.

Next class

- What <u>I</u> plan to do:
 - Non-comprehensive overview of Dynamic Programming (Chapter 4 of the textbook)

- What I recommend <u>YOU</u> to do for next class:
 - Read (most of) Chapter 4 of the textbook.
 - Submit Practice Quiz for Fundamental of RL: Dynamic Programming (Week 4).