
Learning through Advice-Seeking via Transfer

Phillip Odom1, Raksha Kumaraswamy1, Kristian Kersting2, and
Sriraam Natarajan1

1 Indiana University, Bloomington, Indiana
phodom,rakkumar,natarasr@indiana.edu

2 Technical University of Dortmund, Germany
kristian.kersting@cs.tu-dortmund.de

Abstract. Experts possess vast knowledge that is typically ignored by
standard machine learning methods. This rich, relational knowledge can
be utilized to learn more robust models especially in the presence of
noisy and incomplete training data. Such experts are often domain but
not machine learning experts. Thus, deciding what knowledge to provide
is a difficult problem. Our goal is to improve the human-machine inter-
action by providing the expert with a machine-generated bias that can
be refined by the expert as necessary. To this effect, we propose using
transfer learning, leveraging knowledge in alternative domains, to guide
the expert to give useful advice. This knowledge is captured in the form
of first-order logic horn clauses. We demonstrate empirically the value
of the transferred knowledge, as well as the contribution of the expert
in providing initial knowledge, plus revising and directing the use of the
transferred knowledge.

1 Introduction

There has been an increased interest in building intelligent agents with a human-
in-the-loop. This interest has been partially fueled by the rapid development of
advice-taking systems [21, 7, 13] that do not rely merely on data but utilize
domain advice provided by the expert. While specific adaptations differ, these
systems are motivated by the fact that there has been decades of knowledge
acquired by experts in various fields and restricting them to be “mere labelers”
places undue importance on possibly noisy data while ignoring their expertise.

In this work, we consider the formalism of probabilistic logic (PL) [8] for
learning from rich, structured, and possibly noisy data. Previously, a knowledge-
based PL learning approach was proposed [18] that adapted a powerful boosting
algorithm [16] to accept human advice about specific regions of the feature/state
space to learn in structured domains. It uses a pre-defined set of human expert
rules as advice in every iteration of the boosting algorithm to ensure the learned
model is robust even in the presence of significantly noisy data.

While successful, this method assumes that the expert provides all relevant
advice in advance. This increases the burden on the expert significantly. While
in classical systems the burden on the expert was to generate examples/labels, in



knowledge-based systems the burden shifts to providing relevant advice. We aim
to lessen this burden by providing the expert with an initial set of bias (advice
rules) that the expert can modify/adapt based on their knowledge.

Inspired by a recently successful transfer learning technique that identified
similarities across seemingly unrelated domains [12], we propose to employ trans-
fer learning for providing the initial bias to the human expert. The key idea in
our approach, that we call learning through advice-seeking via transfer (LAST) is
to transfer knowledge from a source domain to generate a set of potential advice
rules in the target domain. Then, these advice rules are provided to a domain
expert who could potentially refine the current set of rules. In turn, these rules
can then serve as advice for the subsequent learning algorithm.

Consider providing advice to a system that predicts the advisor of a student.
The current knowledge-based PL system [18] requires the domain expert to pro-
vide rules such as “students co-author papers with their advisors”, “students
TA for their advisor’s courses” etc. However, assume that we have knowledge
in a different domain like movies, where we have rules such as “actors work in
movies with directors”, “actors and directors typically work in similar genres”
etc., to predict if an actor works with a director. Now, using the transfer learn-
ing approach, we can potentially map actors to students, directors to advisors,
movies to papers, genres to departments and create a set of potentially interest-
ing rules that can be refined by the expert in the target domain. These refined
rules can then be combined with (noisy) data to learn a robust model. This can
significantly reduce the burden on the expert.

This paper makes the following key contributions – (1) It proposes the first
transfer-based approach for advice-giving to learning algorithms. (2) It com-
bines a successful advice-taking PL approach and a transfer learning approach
in a seamless manner. (3) It reduces the burden on the domain expert by au-
tomatically identifying relevant rules and restricts the expert input to simple
refinement operations. (4) Finally, it demonstrates excellent empirical perfor-
mance in several benchmark data sets and on a large real-world Never Ending
Language Learning (NELL) task [3].

2 Background

Learning through advice-seeking via transfer is related to both transfer learning
and knowledge-based probabilistic logic learning.

2.1 Transfer Learning

Recently, there has been an increasing interest in the development of techniques
that leverage information from a possibly related task to accelerate learning in
the current task. Collectively called transfer learning [19], they learn a model for
a source task, and transfer/adapt this learned model to a potentially related and
similar target task. Transfer learning has been explored previously in the con-
text of cognitive science [9, 11]. Transfer learning methods that transfer across



seemingly unrelated domains can be divided into two groups - the first group
consists of methods that assume that the two domains share an underlying re-
lational structure, even though they may appear dissimilar. Consequently, these
methods employed higher order logic to model this structural similarity [10].
Alternatively, the second set of methods search for explicit mappings between
the two domains and transfer rules from the source accordingly [14].

We consider a relational type-matching [12] transfer method called “language-
bias transfer learning” (LTL) that uses type matching typically done in Inductive
Logic Programming [5]. LTL utilizes types of arguments to map source predi-
cates to target predicates, identifying similar objects in the two domains, which
are then used to construct clauses in the target domain. This approach was
shown to obtain state-of-the-art results in PL domains.

Inspired by this, we propose the use of this transfer method for generating
good domain knowledge in the target domain that can then potentially be refined
by an expert. Such a generation has two major advantages. First, it reduces the
burden on the expert to generate several advice clauses in the target domain
that can be used for learning. Second, it improves the results of the LTL method
because it allows for the model transferred by the algorithm to be used to correct
(possibly noisy) data in the target domain. We now explain the background of
the learning method that can effectively exploit domain advice when learning
with noisy data.

2.2 Knowledge-based Probabilistic Logic Learning

Previous work [17] extended standard functional gradient boosting [6] to learn-
ing relational models. The key intuition to functional gradient boosting is to
transform the problem of discriminatively learning a large, complex model into
a series of smaller, simpler problems. This is accomplished by learning a series
of models—each one capturing some of the error w.r.t. the current model. In
relational function gradient boosting, each step of the learning problem is to
learn a single relational regression tree (RRT) [2]—binary decision trees with
first-order logic atoms in the nodes and regression values in the leaves.

While shown to be effective across a wide variety of different problems, Rela-
tional Functional-Gradient Boosting (RFGB) requires high-quality data in order
to learn a good model. Recently, there has been work on using knowledge-based
learning to learn in the presence of noisy data in relational domains [18]. This in-
troduced a knowledge-based framework that used label preferences to target and
correct noisy data. It assumes that experts will have the appropriate knowledge of
the domain to identify areas where noise is likely in the training data. The learn-
ing bias is specified in the form of first-order logic clauses (∧fi(x)− > advice(x)).
The body (∧fi) specifies a set of logical conditions that define the set of examples
to which the advice will apply while the head (advice(x)) of the clause defines the
label preferences. This can be written as a tuple < ∧fi,Pref label,Avoidlabel >.

Label preferences are a natural way for the expert to communicate. For in-
stance, when considering heart attacks, an expert might say “people who have
a family history of heart attacks are more likely to have a heart attack than a



stroke”. Here the body of the clause specifies that a patient’s family member has
had a heart attack and the head of the clause has heart attack as a preferred
label to stroke.

While this framework performs well in the presence of systematic noise, it
places an unnecessary burden on the expert. This is because, a key assumption is
that the human expert will be able to identify the most informative advice (i.e.,
that the expert will know where the systematic noise is present in the data).
This assumption can fail in several scenarios—for example, with domain experts
who may not inspect historical data on a regular basis.

The solution that we present next is to employ transfer learning for gener-
ating the body of the advice, i.e., defining for which examples the algorithm is
interested in having label preferences. The expert could then simply refine this
advice based on his/her expert knowledge.

3 Advice-Seeking for Transfer

Our goal in this work is to facilitate a natural human interaction with the learn-
ing algorithm by allowing for the human to be involved in several stages—as an
expert providing (minimal) knowledge in the source domain and as an expert
who can potentially look at several clauses in the target domain and vet out or
refine the clauses in the target domain.

Consequently, our Learning through Advice-Seeking for Transfer (LAST) al-
gorithm generates relevant advice clauses for the target domain from expert-
provided clauses in a source domain. This advice serves as a recommendation
for useful advice to the expert. While the expert is still responsible for providing
the label preferences for the advice, his/her task is simplified through transfer
learning. Thus, significant effort is reduced for the expert. In turn, this makes the
system more cognitively aware, i.e., it thinks like a human in developing prior
knowledge. It is key that the transfer algorithm is able to generate appropriate
(in this case relevant, or near-relevant) knowledge in the target domain. As a
motivating example, consider providing advice in the case of a movie domain.

Illustrative Example: In order to learn on a movie domain, let us assume
the presence of knowledge in an university domain. This domain comprises of
faculty, students, the publications that they author, and the courses they are
involved in. Networks like these are common across universities. Assume that
the knowledge provided in this domain aims to predict the advisor of a student.
One such knowledge could be that the students are more likely to co-author with
their advisor (as against with a random professor in their department).

paper(p1, per1), paper(p1, per2), student(per2)⇒ advisor(per1, per2)

The goal is to use this knowledge to transfer to a movie domain (say imdb) with
movies, actors and directors where the target is to predict which actors have
worked under which directors. When transferring the clause from the academic
domain to the movie domain, the language bias approach [12] will produce many



different predictive rules. Let us consider one such clause

mov(m1, per1),mov(m1, per2), act(per1)⇒ workedunder(per1, per2)

Notice how this clause captures a relationship, as actors do work under another
person working on the same movie. However, this clause also covers actors work-
ing under actors in the same movie. If this rule is provided to the expert who
understands the domain, he/she might suggest different refinements to this rule:
1). He/she could suggest that actors work under directors by adding a predicate
to the clause. 2) Alternatively, he/she might suggest that actors do not work
under each other. These lead to the following prior knowledge that can be used
by the algorithm of Odom et al [18].

1) < [mov(m1, per1),mov(m1, per2), act(per1), dir(per2)],

workedunder(per1, per2),¬workedunder(per1, per2) >

2) < [mov(m1, per1),mov(m1, per2), act(per1), act(per2)],

¬workedunder(per1, per2), workedunder(per1, per2) >

3.1 The Problem Formulation

We now formally define our problem:

Given : Source knowledge, noisy training data, and access to an expert

Todo : 1) Transfer knowledge from the source to target,

2) Solicit advice about this knowledge from expert

The goal of the advice seeking problem is to select the transferred knowledge
about which to query the expert (denoted q ⊆ K). Useful knowledge in our
context is a measure (δ) that is a function of the performance (say accuracy)
on the training data (D). While the goal is to maximize the performance of
the queries on the training data, there is a cost (C) for making a query to
the expert (as the expert has a limited budget to provide advice). Hence, the
goal is argmaxq⊆K δq(D)−C(q). We make the simplifying assumption that the
algorithm can select n queries to ask the expert. We also assume that there is a
constant cost for every query. It is an interesting direction to personalize these
costs based on difficulty of each query.

As mentioned earlier, we employ a relational transfer learning approach to
generate knowledge (K) in the target domain [12]. The set of queries can then
be selected from the potential list of clauses by considering the performance of
each clause on the training set. While the training set does suffer from noise, the
hypothesis is that reasonable knowledge will still be generated and the expert
can refine the knowledge into the appropriate advice.

4 The LAST Algorithm

We will now describe the components of our LAST algorithm (shown as algo-
rithm 1). The algorithm takes as input the noisy training data, the descriptions



of the source and target domains, a set of knowledge about the source domain
and a domain expert to query. The overall goal of LAST is to generate a set
of knowledge about the target domain (which we refer to as advice) and use it
to learn a more robust model in the target domain. The algorithm proceeds as
follows:

4.1 Step 1: LTL

First, we transfer the set of knowledge in the source domain to the target using
the LTL [12] algorithm. This transfer learning technique leverages the struc-
ture of the knowledge in the source domain to generate knowledge with similar
structure in the target domain (making use of the domain descriptions). While
effective, LTL generates all possible similar rules resulting in an impractical
number of potential expert queries. The next step mitigates this issue.

4.2 Step 2: SelectBestN

We select from among the large potential set of queries by comparing their
accuracy on the training set. Selecting the top N clauses allows the algorithm
to control the number of queries that can be directed to the expert. While more
advice benefits the learning algorithm, this parameter can be tuned based on
the availability of the expert.

4.3 Step 3: Improve

While LTL can generate appropriate knowledge in the target domain, it does not
account for noisy training data. Therefore, the expert can modify the knowledge
as needed to correct for any differences between the source and target domains.
As this can be a time consuming process, the expert is not required to correct
all (or any) of the knowledge. As we show empirically, sometimes minimal re-
finement is all that is needed to improve the learning algorithm. In several cases,
the use of a powerful learning algorithm that can exploit the provided advice as
bias can be expected to perform reasonably well in the target domain with noisy
data.

4.4 Step 4: Query

Now that appropriate knowledge has been provided in the target, the expert
is queried about the label preferences. As mentioned in the background, advice
consists of three components: the features describing to which examples the
advice will apply, the preferred (more likely) labels for those states, and the
avoided (less likely) labels for those states. The previous step defined the features
while this step solicits the label preferences. Now the advice is fully defined.



4.5 Step 5: Learn

The final step learns a robust model from the noisy training data and the expert
advice. We use an advice-based learning algorithm called KBPLL [18] which
is able to effectively utilize the expert advice to learn in the presence of noisy
training data. It learns by trading-off between the training data and any advice.
A key advantage of this approach is that it can not only learn with any amount
of advice, but it is also capable of handling conflicting advice.

Algorithm 1 The LAST algorithm: Learning through Advice-Seeking via
Transfer

Data, domain description in the source domain (DS), domain description in the
target domain (DT ), expert (E), knowledge in the source domain (KS)
function LAST(Data,DS ,DT ,KS , E)

KT = LTL(Data,DS ,KS ,DT )
q ∈ KT = SelectBestN(N,KT ,Data)
qr = Improve(E,q)
A =Query(E,qr)
return Learn(A,Data)

end function

Algorithm 1 presents these different steps. Please recall that the expert is
involved in both designing the source clauses and potentially refining the target
clauses.

5 Experimental Evaluation

We aim to address the following questions:

Q1: How effectively does LAST utilize the transferred advice?
Q2: How important is the contribution of the expert?
Q3: Does LAST properly assist the expert to generate advice?
Q4: What is the quality of the advice generated?

5.1 Domains Used

We use four standard PL domains – imdb, cora, uw and webkb – and the large-
scale NELL domain. In each domain we incorporate random noise (20%) to
demonstrate that our algorithm is capable of building robust models. The do-
mains are introduced pairwise - the source/target domain for transfer.

The imdb domain [15] consists of information about actors, directors and
movies. The overall goal of this domain is to predict which actors work under
which directors. This domain is paired with the cora domain [1] which consists
of information about the details of author, their publications and venues. The



Fig. 1. Experimental results in each of our domains. We compare both weighted-AUC
ROC (LEFT) and weighted-F score (RIGHT) in each domain. Higher bars represent
improved performance.

Fig. 2. Experimental results comparing the difference in performance when the expert
improves the transferred advice. We compare both weighted-AUC ROC (LEFT) and
weighted-F score (RIGHT). The more positive the result, the more impact the expert
has in the Improve step of LAST.

purpose of the domain is to predict which conferences take place in the same
venue.

The uw domain [20] consists of information about universities with details
like professors, courses, students, which professor teaches which course etc. The
goal is to use this information and predict which professor advises a particular
student. This is paired with the webkb domain [4] which has details of the
webpage structure of universities like department webpages, course webpages, a
link’s source and destination page. The goal is to predict the department of a
person.

NELL data is probabilistic data garnered through web crawling by an on-
line machine learning system designed and deployed at Carnegie Mellon Uni-



Table 1. The negative to positive ratio of examples in the experimental domains.

Domains imdb cora uw webkb NELL

#Neg/#Pos 14.9 1.7 548.9 400.5 7.2

Table 2. Sample source knowledge (S), target knowledge (T), and advice (A) along
with its english interpretation for two of our experimental domains.

uw

S: LinkTo(c, a, b), Student(a), Dept(b) T: taughtby(c1, b, q1), year(a, y1)

A1: < [taughtby(c1, b, q1), year(a, y1)], advisedby,¬advisedby >,
Professors who teach courses advise students who are in some year of the program.

A2 < [¬taughtby(c1, b, q1) ∨ ¬year(a, y1)],¬advisedby, advisedby >
People who do not teach courses do not advise students in any year of the program.

NELL

S: acq(comp1, comp2), sector(sect1, comp2) T: tmplystm(tm1, tm2), plays(sport1, tm1)

A1: < [tmplystm(tm1, tm2), plays(sport1, tm1)], teamplyssport,¬teamplyssport >,
Teams who play each other play the same sport.

A2: < [¬tmplystm(tm1, tm2) ∨ ¬plays(sport1, tm1)],¬teamplyssport, teamplyssport >
Teams who never play each other play different sports.

versity [3]. We experiment with the sports domain here, where we predict what
sport a particular team plays. The domain has details regarding members of
a team, the sports an individual plays, the league in which a team plays. The
source used for transfer is the finance domain, where the goal is to predict to
which financial sector a company belongs.

5.2 Evaluation Metrics Used

Relational domains naturally suffer from extreme class-imbalance as most rela-
tionships in the world are false - most students are not advised by most professors
and most actors do not work with most directors. Thus, algorithms that predict
all relations as false can achieve high performance on many traditional evalu-
ation metrics. Following previous work [22], we measure performance based on
weighted-AUC ROC and weighted-F scores that weigh the high recall regions of
ROC curve more than the low recall regions. Weighted-F score is defined as

Fβ = (1 + β2)
Precision×Recall

β2 × Precision+Recall

Note that the parameter β controls the trade-off between the Precision (percent-
age of correct positive predictions) and Recall (percentage of positive examples
correctly identified). Following [22], we use β = 5. Due to the large number of
negative examples in many of the domains (as shown in Table 1), the various
baselines sample from the set of negative examples. Based on previous expe-
rience, LAST samples 2 to 1 (negatives to positives) while LTL and LTL Ref
sample 5 to 1.



5.3 Methods Compared

We compare LAST against several baselines. To show how LAST deals with
noisy data, we compare against a language-bias transfer learning method (LTL).
To show how effective the human expert is in refining and improving the advice,
we compare against a variant of the previous transfer learning technique that
automatically refines the transferred rules (LTL Ref). In a separate experiment,
we empirically validate the expert contribution by measuring the performance
gained by the improve step of LAST.

5.4 Results

We show our results for weighted-AUC ROC (LEFT) and weighted-F score
(RIGHT) in Figure 1. In both performance measures, across all domains, our
LAST algorithm performs as well as or significantly better than the baselines.
More precisely, the results are significantly better than LTL and LTL Ref except
for the imdb domain (and uw for wauc-roc). As all of the methods are com-
parable on imdb, this is likely caused by this domain being easily solved (the
model can be captured by a single clause). These results clearly answer (Q1)
affirmatively, i.e., LAST is able to effectively learn with transferred advice.

As expected, the transfer learning techniques suffer from the noisy training
data in several domains. In the webkb domain, refining the transferred knowl-
edge (LTL Ref) actually reduces the performance and in several other domains
(imdb, NELL) there is little difference between simple transfer learning and
automatically refining the rules.

The LAST algorithm has two advantages over the transfer learning baselines
that allows it to effectively deal with the noisy training data. Both of these
advantages directly relate to having a human-in-the-loop. Firstly, the automatic
refinement (function Improve from algorithm 1) allows for improvement of rules
that resemble the correct knowledge, but that have been altered by the noise.
Secondly, the preference labeling (function Query from algorithm 1) allows
the expert to control the direction of the knowledge. If noise has reversed the
meaning of the knowledge, the expert can effectively correct it. Figure 2 shows
the difference in performance with and without the improve step of LAST. Blue
bars represent the increase in performance with expert improvement. Increase
in performance is seen in 3 of the 5 domains. These results show the impact of
the expert, i.e., the expert is important (Q2).

In our experiments, we restrict the expert to manipulating a single piece of
advice for each learned model. This effectively shows if we can get reasonable
performance with minimal expert time while creating the system that can gen-
erate bias that mimics the expert. Therefore, the effort required by the expert
to generate the advice is inherently low. It clearly follows that generating the
advice from scratch would require more effort from the expert. Consequently,
(Q3) can be answered affirmatively. In the future, we plan to quantify the value
of transferred knowledge to the expert.



Quality of the Advice: We present sample advice for two of the domains in
Table 2. Each advice includes its provenance, the rule that generated it (S), the
transferred rule (T), and the final advice (A). The english interpretation of each
advice rule is also provided. Note that each rule becomes two pieces of advice
(and the advice is given over all possible examples in the domain). Investigating
the advice in each domain, all the rules generated appear to make sense - i.e.,
these are rules that would possibly be naturally specified by the expert if he/she
had to do without a transfer system. For example, take the advice generated
for NELL which states “if a team A plays team B and team B plays a sport,
then team A must also play that sport”. It is clear that we are able to generate
reasonable rules in all domains (Q4).

6 Conclusion

We presented a novel transfer-based human-in-the-loop framework for advice-
giving in probabilistic logic models. Our goal was to develop a system that could
provide human-like advice to a learning system based on transferring knowledge
from a seemingly unrelated domain. The expert can then refine the knowledge
generated by our LAST algorithm as needed. We demonstrated empirically the
effectiveness of LAST in the presence of noisy training data. It showed the value
of using transferred knowledge as “advice” instead of merely treating them as
predictive rules in the target domain.

Our next step is to develop better heuristics to select the top rules that can
be refined by the expert. Also, we aim to employ human guidance not only in the
process of refinement of rules but also in the transfer process itself. More pre-
cisely, we aim to use humans to provide a bias during the search of the mapping
between the two domains. Also, recall that this paper aims to discriminatively
learn rules for predicting individual relations. Learning a generative model that
can transfer across domains and provide an useful inductive bias in the target do-
main remains an interesting direction. Finally, extending this work to sequential
decision making tasks can lead to development of human-like thinking machines.

References

1. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: ACM SIGKDD (2003)

2. Blockeel, H.: Top-down induction of first order logical decision trees. AI Commu-
nications 12(1-2) (1999)

3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr, E., Mitchell, T.:
Toward an architecture for never-ending language learning. In: AAAI. vol. 5, p. 3
(2010)

4. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
Slattery, S.: Learning to extract symbolic knowledge from the world wide web. In:
AAAI. pp. 509–516 (1998)

5. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Probabilistic inductive
logic programming. Springer (2008)



6. Friedman, J.: Greedy function approximation: A gradient boosting machine. In:
Annals of Statistics (2001)

7. Fung, G.M., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based support vector
machine classifiers. In: NIPS. pp. 521–528 (2002)

8. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press
(2007)

9. Gros, H., Thibaut, J.P., Sander, E.: Robustness of semantic encoding effects in a
transfer task for multiple-strategy arithmetic problems. In: CogSci (2015)

10. Haaren, J., Kolobov, A., Davis, J.: Todtler: Two-order-deep transfer learning. In:
AAAI (2015)

11. Jones, W., Moss, J.: Interruption-recovery training transfers to novel tasks. In:
CogSci (2015)

12. Kumaraswamy, R., Odom, P., Kersting, K., Leake, D., Natarajan, S.: Transfer
learning via relational type matching. In: ICDM (2015)

13. Kunapuli, G., Odom, P., Shavlik, J.W., Natarajan, S.: Guiding autonomous agents
to better behaviors through human advice. In: ICDM. pp. 409–418 (2013)

14. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising markov logic net-
works for transfer learning. In: AAAI. vol. 7, pp. 608–614 (2007)

15. Mihalkova, L., Mooney, R.: Bottom-up learning of markov logic network structure.
In: ICML. pp. 625–632 (2007)

16. Natarajan, S., Kersting, K., Khot, T., Shavlik, J.: Boosted Statistical Relational
Learners: From Benchmarks to Data-Driven Medicine. Springer (2015)

17. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning 86, 25–56 (2012)

18. Odom, P., Khot, T., Porter, R., Natarajan, S.: Knowledge-based probabilistic logic
learning. In: AAAI (2015)

19. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22(10), 1345–1359 (Oct 2010)

20. Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2),
107–136 (2006)

21. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif.
Intell. (1994)

22. Yang, S., Khot, T., Kersting, K., Kunapuli, G., Hauser, K., Natarajan, S.: Learning
from imbalanced data in relational domains: A soft margin approach. In: ICDM
(2014)


