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Abstract
A variety of representation learning approaches have
been investigated for reinforcement learning; much
less attention, however, has been given to investigat-
ing the utility of sparse coding. Outside of reinforce-
ment learning, sparse coding representations have
been widely used, with non-convex objectives that
result in discriminative representations. In this work,
we develop a supervised sparse coding objective for
policy evaluation. Despite the non-convexity of this
objective, we prove that all local minima are global
minima, making the approach amenable to simple
optimization strategies. We empirically show that it
is key to use a supervised objective, rather than the
more straightforward unsupervised sparse coding
approach. We compare the learned representations
to a canonical fixed sparse representation, called
tile-coding, demonstrating that the sparse coding
representation outperforms a wide variety of tile-
coding representations.

1 Introduction
For tasks with large state or action spaces, where tabular repre-
sentations are not feasible, reinforcement learning algorithms
typically rely on function approximation. Whether they are
learning the value function, policy or models, the success of
function approximation techniques hinges on the quality of
the representation. Typically, representations are hand-crafted,
with some common representations including tile-coding, ra-
dial basis functions, polynomial basis functions and Fourier
basis functions [Sutton, 1996; Konidaris et al., 2011]. Au-
tomating feature discovery, however, alleviates this burden
and has the potential to significantly improve learning.

Representation learning techniques in reinforcement learn-
ing have typically drawn on the large literature in unsuper-
vised and supervised learning. Common approaches include
feature selection, including `1 regularization on the value
function parameters [Loth et al., 2007; Kolter and Ng, 2009;
Nguyen et al., 2013] and matching pursuit [Parr et al., 2008;
Painter-Wakefield and Parr, 2012]; basis-function adaptation
approaches [Menache et al., 2005; Whiteson et al., 2007];
∗These authors contributed equally.

instance-based approaches, such as locally weighted regres-
sion [Atkeson and Morimoto, 2003], sparse distributed mem-
ories [Ratitch and Precup, 2004], proto-value functions [Ma-
hadevan and Maggioni, 2007] and manifold learning tech-
niques [Mahadevan, 2009]; and neural network approaches, in-
cluding more standard feedforward neural networks [Coulom,
2002; Riedmiller, 2005; Mnih et al., 2015] as well as random
representations [Sutton and Whitehead, 1993], linear thresh-
old unit search [Sutton and Barto, 2013], and evolutionary
algorithms like NEAT [Stanley and Miikkulainen, 2002].

Surprisingly, however, there has been little investigation
into using sparse coding for reinforcement learning. Sparse
coding approaches have been developed to learn MDP models
for transfer learning [Ammar et al., 2012]; outside this work,
however, little has been explored. Nonetheless, such sparse
coding representations have several advantages, including that
they naturally enable local models, are computationally effi-
cient to use, are much simpler to train than more complicated
models such as neural networks and are biologically moti-
vated by the observed representation in the mammalian cortex
[Olshausen and Field, 1997].

In this work, we develop a principled sparse coding objec-
tive for policy evaluation. In particular, we formulate a joint
optimization over the basis and the value function parameters,
to provide a supervised sparse coding objective where the ba-
sis is informed by its utility for prediction. We highlight the
importance of using the Bellman error or mean-squared return
error for this objective, and discuss how the projected Bellman
error is not suitable. We then show that, despite being a non-
convex objective, all local minima are global minima, under
minimal conditions. We avoid the need for careful initializa-
tion strategies needed for previous optimality results for sparse
coding [Agarwal et al., 2014; Arora et al., 2015], using recent
results for more general dictionary learning settings [Haef-
fele and Vidal, 2015; Le and White, 2017], particularly by
extending beyond smooth regularizers using Γ-convergence.
Using this insight, we provide a simple alternating proximal
gradient algorithm and demonstrate the utility of learning su-
pervised sparse coding representations versus unsupervised
sparse coding and a variety of tile-coding representations.

2 Background
In reinforcement learning, an agent interacts with its environ-
ment, receiving observations and selecting actions to maxi-
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mize a scalar reward signal provided by the environment. This
interaction is usually modeled by a Markov decision process
(MDP). An MDP consists of (S,A, P,R) where S is the set
of states; A is a finite set of actions; P : S ×A× S → [0, 1],
the transition function, which describes the probability of
reaching a state s′ from a given state and action (s, a); and
finally the reward function R : S × A × S → R, which re-
turns a scalar value for transitioning from state-action (s, a)
to state s′. The state of the environment is said to be Markov
if Pr(st+1|st, at) = Pr(st+1|st, at, . . . , s0, a0).

One important goal in reinforcement learning is policy eval-
uation: learning the value function for a policy. A value func-
tion Vπ : S → R approximates the expected return. The re-
turnGt from a state st is the total discounted future reward, dis-
counted by γ ∈ [0, 1), for following policy π : S×A → [0, 1]

Gt =

∞∑
i=0

γiRt+1+i = Rt+1 + γGt+1

where Vπ(st) is the expectation of this return from state st.
This value function can also be thought of as a vector of values
Vπ ∈ R|S| satisfying the Bellman equation

Vπ = rπ + γPπVπ (1)

where Pπ(s, s′) =
∑
a∈A

π(s, a)P (s, a, s′)

rπ(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)R(s, a, s′)

Given the reward function and transition probabilities, the
solution can be analytically obtained: Vπ = (I− γPπ)−1rπ .

In practice, however, we likely have a prohibitively large
state space. The typical strategy in this setting is to use func-
tion approximation to learn Vπ(s) from a trajectory of sam-
ples: a sequence of states, actions, and rewards s0, a0, r0, s1,
a1, r1, s2, r2, a2 . . ., where s0 is drawn from the start-state
distribution, st+1 ∼ P (·|st, at) and at ∼ π(·|st). Commonly,
a linear function is assumed, Vπ(s) ≈ φ(s)>w for w ∈ Rk
a parameter vector and φ : S → Rk a feature function de-
scribing states. With this approximation, however, typically
we can no longer satisfy the Bellman equation in (1), because
there may not exist a w such that Φw equals rπ + γPπΦw
for Φ ∈ R|S|×k. Instead, we focus on minimizing the error to
the true value function.

Reinforcement learning algorithms, such as temporal differ-
ence learning and residual gradient, therefore focus on finding
an approximate solution to the Bellman equation, despite this
representation issue. The quality of the representation is criti-
cal to accurately approximating Vπ with Φw, but also balanc-
ing compactness of the representation and speed of learning.
Sparse coding, and sparse representations, have proven suc-
cessful in machine learning and in reinforcement learning,
particularly as fixed bases, such as tile coding, radial basis
functions and other kernel representations. A natural goal,
therefore, and the one we explore in this work, is to investigate
learning these sparse representations automatically.

3 Sparse Coding for Reinforcement Learning
In this section, we formalize sparse coding for reinforcement
learning as a joint optimization over the value function param-

eters and the representation. We introduce the true objective
over all states, and then move to the sampled objective for the
algorithm in the next section.

We begin by formalizing the representation learning compo-
nent. Many unsupervised representation learning approaches
consist of factorizing input observations1 X∈R|S|×d into a ba-
sis dictionary B∈Rk×d and new representation Φ ∈ R|S|×k.
The rows of B form a set of bases, with columns in Φ weight-
ing amongst those bases for each observation (column) in X.
Though simple, this approach encompasses a broad range of
models, including PCA, CCA, ISOMAP, locally linear em-
beddings and sparse coding [Singh and Gordon, 2008; Le and
White, 2017]. The (unsupervised) sparse coding objective is
[Aharon et al., 2006]

min
Φ∈R|S|×k,B∈Rk×d

‖ΦB−X‖2D + βB‖B‖2F + βφ‖Φ‖D,1

where ‖Y‖2F =
∑
ij Y2

ij is the squared Frobenius norm; B ∈
Rk×d is a learned basis dictionary; βB , βφ > 0 determine the
magnitudes of the regularizers; D ∈ [0, 1]|S|×|S| is a diagonal
matrix giving a distribution over states, corresponding to the
stationary distribution of the policy dπ : S → [0, 1]; and
||z||2D = z>Dz is a weighted norm. The reconstruction error

‖ΦB−X‖2D =
∑
s∈S

dπ(s)‖Φ(s, :)B−X(s, :)‖22

is weighted by the stationary distribution dπ because states are
observed with frequency indicated by dπ . The weighted `1

‖Φ‖D,1 =
∑
s∈S

dπ(s)

k∑
j=1

|Φ(s, j)|

promotes sparsity on the entries of Φ, preferring entries in Φ
to be entirely pushed to zero rather than spreading magnitude
across all of Φ. The Frobenius norm regularizer on B ensures
that B does not become too large. Without this regularizer,
all magnitude can be shifted to B, producing the same ΦB,
but pushing ‖Φ‖D,1 to zero and nullifying the utility of its
regularizer. Optimizing this sparse coding objective would
select a sparse representation φ for each observation x such
that φB approximately reconstructs x.

Further, however, we would like to learn a new representa-
tion that is also optimized towards approximating the value
function. Towards this aim, we need to jointly learn Φ and
w, where Φw provides the approximate value function. In
this way, the optimization must balance between accurately
recreating X and approximating the value function Φw. For
this, we must choose an objective for learning w.

We consider two types of objectives: fixed-point objectives
and squared-error objectives. Two common fixed-point objec-
tives are the mean-squared Bellman error (MSBE), also called
the Bellman residual [Baird, 1995]

‖Φw − (rπ + γPπΦw)‖2D
and mean-squared projected BE (MSPBE) [Sutton et al., 2009]

‖Φw −Π(rπ + γPπΦw)‖2D
1This variable X can also be a base set of features, on which the

agent can improve or which the agent can sparsify.



where D ∈ [0, 1]|S|×|S| is a diagonal matrix giving a dis-
tribution over states, corresponding to the stationary distri-
bution of the policy; ||z||2D = z>Dz is a weighted norm;
and the projection matrix for linear value functions is Π =
Φ(Φ>DΦ)−1Φ>D. The family of TD algorithms converge
to the minimum of the MSPBE, whereas residual gradient
algorithms typically use the MSBE (see [Sun and Bagnell,
2015] for an overview). Both have useful properties [Scherrer,
2010], though arguably the MSPBE is more widely used.

There are also two alternative squared-error objectives, that
do not correspond to fixed-point equations: the mean-squared
return error (MSRE) and the Bellman error (BE). For a trajec-
tory of samples {(xi, ri+1,xi+1)}t−1

i=0 , BE is defined as
t−1∑
i=0

‖ri+1 + γφ>i+1w − φ>i w‖22

and the MSRE as t−1∑
i=0

‖gi+1 − φ>i w‖22

where gi+1 =
∑t−1
j=i γ

j−irj+1 is a sample return. In expecta-
tion, these objectives are, respectively∑
s∈S

dπ(s)E
[(
r(St, At, St+1)+γφ(St+1)>w − φ(St)

>w
)2
|St=s

]
∑
s∈S

dπ(s)E

[(
∞∑
i=0

γir(St+i, At+i, St+1+i)− φ(s)>w

)2

|St=s

]
where the expectation is w.r.t. the transition probabilities and
taking actions according to policy π.

These differ from the fixed-point objectives because of the
placement of the expectation. To see why, consider the MSBE
and BE. The expected value of the BE is the expected squared
error between the prediction from this state and the reward plus
the value from a possible next state. The MSBE, on the other
hand, is the squared error between the prediction from this
state and the expected reward plus the expected value for the
next state. Though the MSPBE and MSBE constitute the most
common objectives chosen for reinforcement learning, these
squared-error objectives have also been shown to be useful
particularly for learning online [Sun and Bagnell, 2015].

For sparse coding, however, the MSPBE is not a suitable
choice—compared to the MSBE, BE and MSRE—for two
reasons. First, the MSBE, BE and MSRE are all convex in Φ,
whereas the MSPBE is not. Second, because of the projection
onto the space spanned by the features, the MSPBE can be
solved with zero error for any features Φ. Therefore, because
it does not inform the choice of Φ, the MSPBE produces a
two stage approach2, where features are learned in a com-
pletely unsupervised way and prediction performance does
not influence Φ.

2This problem seems to have been overlooked in two approaches
for basis adaptation based on the MSPBE: adaptive bases algorithm
for the projected Bellman error (ABPBE) [Di Castro and Mannor,
2010, Algorithm 9] and mirror descent Q(λ) with basis adaptation
[Mahadevan et al., 2013]. For example, for ABPBE, it is not im-
mediately obvious this would be a problem, because a stochastic
approximation approach is taken. However, if written as a minimiza-
tion over the basis parameters and the weights, one would obtain a

The final objective for loss L(Φ,w) set to either MSBE,
BE or MSRE is

min
w∈Rk,Φ∈R|S|×k,B∈Rk×d

L(Φ,w) + ‖ΦB−X‖2D (2)

+ βw‖w‖22 + βB‖B‖2F + βφ‖Φ‖D,1

4 Algorithm for Sparse Coding
We now derive the algorithm for sparse coding for policy
evaluation: SCoPE. We generically consider either the BE or
MSRE. For a trajectory of samples {(xi, ri+1,xi+1)}t−1

i=0 , the
objective is

min
w∈Rk,Φ∈Rt+1×k,B∈Rk×d

1

t

t−1∑
i=0

(yi + γ̄φ>i+1w − φ>i w)2

(3)

+
1

t

t∑
i=0

‖φiB− xi‖22 +βB‖B‖2F +βw‖w‖22+
βφ
t

t∑
i=0

‖φi‖
p
1.

for BE, yi = ri+1 and γ̄ = γ and for MSRE, yi =∑t
j=i γ

j−irj+1 and γ̄ = 0. We consider two possible pow-
ers for the `1 norm p = 1 or 2, where the theory relies on
using p = 2, but in practice we find they perform equivalently
and p = 1 provides a slightly simpler optimization. The loss
is averaged by t, to obtain a sample average, which in the
limit converges to the expected value under dπ . This averaged
loss is also more scale-invariant—in terms of the numbers of
samples—to the choice of regularization parameters.

SCoPE consists of alternating amongst these three variables,
B,w and Φ, with a proximal gradient update for the non-
differentiable `1 norm. The loss in terms of B and w is
differentiable; to solve for B (or w) with the other variables
fixed, we can simply used gradient descent. To solve for Φ
with the B and w fixed, however, we cannot use a standard
gradient descent update because the `1 regularizer is non-
differentiable. The proximal update consists of stepping in
the direction of the gradient for the smooth component of
the objective—which is differentiable—and then projecting
back to a sparse solution using the proximal operator: a soft
thresholding operator. The convergence of this alternating
minimization follows from results on block coordinate descent
for non-smooth regularizers [Xu and Yin, 2013].

To apply the standard proximal operator for the `1 reg-
ularizer, we need to compute an upper bound on the Lip-
schitz constant for this objective. The upper bound is
2(1+ γ̄2)‖w‖22 +2‖B‖2sp, computed by finding the maximum

minimum error solution (i.e., error zero) immediately for any basis
parameters. The basis parameters are considered to change on a slow
timescale, and the weights on a fast timescale, which is a reflection
of this type of separate minimization. Menache et al. [2005] avoided
this problem by explicitly using a two-stage approach, using MSPBE
approaches for learning the parameters and using other score func-
tion, such as the squared Bellman error, to update the bases. This
basis learning approach, however, is unsupervised.
Representation learning strategies for the MSPBE have been devel-
oped, by using local projections [Yu and Bertsekas, 2009; Bhatnagar
et al., 2009]. These strategies, however, do not incorporate sparse
coding.



singular value of the Hessian of the objective w.r.t. φi for each
i. We will provide additional details for this calculation, and
implementation details, in a supplement.

4.1 Local Minima Are Global Minima
In this section, we show that despite nonconvexity, the objec-
tive for SCoPE has the nice property that all local minima
are in fact global minima. Consequently, though there may
be many different local minima, they are in fact equivalent in
terms of the objective. This result justifies a simple alternating
minimization scheme, where convergence to local minima
ensures an optimal solution is obtained.

We need the following technical assumption. It is guaran-
teed to be true for a sufficiently large k ≤ t (see Haeffele and
Vidal [2015]; Le and White [2017]).
Assumption 1 For the given k ≥ d, the following function is
convex in Z ∈ Rt+1×d+1

min
Φ,B,w,Z=Φ[B w ]

βB‖B‖2F + βw‖w‖22 +
βφ
t

t∑
i=0

‖φi‖21

Theorem 1 (Landscape of the SCoPE objective). For the
objective in equation (3) with p = 2,
1. under Assumption 1, all full-rank local minima are global
minima; and
2. if a local minimum (Φ,B,w) has Φ:i = 0 (i.e., a zero
column) and wi = 0, Bi: = 0 (i.e., a zero row) for some
1 ≤ i ≤ k, then it is a global minimum.

Proof. For the first statement, we construct a limit of twice-
differentiable functions fn that Γ-converge to the SCoPE ob-
jective f . With this, we can then show that all minimizers
of the sequence converge to minimizers of f , and vice-versa
[Braides, 2013]. Because all local minimizers of the twice-
differentiable functions fn are global minimizers from [Le
and White, 2017, Theorem 10], we can conclude that all cor-
responding minimizers of f are global minimizers.

We use the pseudo-Huber loss [Fountoulakis and Gondzio,
2013], which is twice-differentiable approximation to the ab-
solute value: |x|µ =

√
µ2 + x2−µ. Let θ = (Φ,B,w). The

sequence of functions fn are defined with µn = 1/n, as

fn(θ) = L(θ) +
βφ
t

∑
ij

√
µ2
n + Φ2

ij − µn

where L(θ) equals the equation in (3), but without the `21
regularizer on Φ.
Part 1: All local minima of fn for all n are global minima.
To show this, we show each fn satisfies the conditions of [Le
and White, 2017, Theorem 10 and Proposition 11].
Part 1.1 We can rewrite the loss in terms of Φ[B w ]

1

t

t−1∑
i=0

‖yi + γ̄φ>i+1w − φ>i w‖22 +
1

t

t∑
i=0

‖φiB− xi‖22

=
1

t
‖X−ΦB‖22+

1

t
‖y − (I0:t−1−γ̄I1:t) Φw‖22 (4)

where I1:t ∈ Rt×t+1 a diagonal matrix of all ones with the first
diagonal entry set to zero, and I0:t−1 with the last diagonal
entry set to zero. This loss is convex in the joint variable
Φ[B w ] because equation (4) is the composition of a convex

function (squared norm) and an affine function (multiplication
by γ̄I1:t − I0:t−1 and addition of y).
Part 1.2 The regularizer on [B w ] must be a weighted Frobe-
nius norm, with weightings on each column; here, we have
weighting using regularization parameters βB for the first d
columns (corresponding to B) and regularization parameter
βw for the last column (corresponding to w).
Part 1.3 The inner dimension k > d, which is true by assump-
tion and the common setting for sparse coding.
Part 1.4 The pseudo-Huber loss, on the columns of Φ, is
convex, centered and twice-differentiable.

Part 2: The sequence fn converges uniformly to f . To see
why, recall the definition of uniform convergence. A sequence
of functions {fn} is uniformly convergent with limit f if for
every ε > 0, there exists N ∈ N such that for all θ ∈ Θ
all n ≥ N , |fn(θ) − f(θ)| < ε. Further recall that for any
complete metric space, if fn is uniformly Cauchy, then it is
uniformly convergent. The sequence is uniformly Cauchy if
for all n,m ≥ N , |fn(θ)− fm(θ)| < ε. Take any ε > 0 and
let N = d 4k(t+1)βφ

tε e. Then

|fn(θ)− fm(θ)|

=
βφ
t

∣∣∣∣∣∣
∑
ij

√
µ2
n + Φ2

ij − µn

−
∑
ij

√
µ2
m + Φ2

ij − µm

∣∣∣∣∣∣
≤ βφ

t

∑
ij

(∣∣∣∣√µ2
n + Φ2

ij −
√
µ2
m + Φ2

ij

∣∣∣∣+ |µn − µm|
)

The upper bound of the first component is maximized when
Φij = 0, and so we get

|fn(θ)−fm(θ)|≤ 2k(t+1)βφ
t |µn−µm|≤ 2k(t+1)βφ

t

∣∣ 1
n−

1
m

∣∣
≤ 4k(t+1)βφ

tN ≤ ε.

Part 3: Asymptotic equivalence of minimizers of fn and f .
Because f is continuous, and so lower semi-continuous, and
fn uniformly converges to f , we know that fn Γ-converges to
f : fn

Γ→ f Braides [2013].
By the fundamental theorem of Γ-convergence, if the {fn}

is an equi-coercive family of functions, then the minimizers
of fn converge to minimizers of f . A sequence of functions
{fn} is equi-coercive iff there exists a lower semi-continuous
coercive function ψ : Θ→ R ∪ {−∞,∞} such that fn ≥ ψ
on Θ for every n ∈ N [Dal Maso, 2012, Proposition 7.7]. A
function is coercive if ψ(θ)→∞ as ‖θ‖ → ∞. For ψ(θ) =
L(θ), it is clear that ψ is coercive, as well as lower semi-
continuous (since it is continuous). Further, fn(θ) ≥ L(θ) =
ψ(θ), because the regularizer on Φ is non-negative. Therefore,
the family {fn} is equi-coercive, and so the minimizers of fn
converge to minimizers of f .

For the other direction, if a local minimum θ of f is an
isolated local minimum, then there exists a sequence θn → θ
with θn a local minimizer of fn for µn sufficiently small
[Braides, 2013, Theorem 5.1]. Because we have Frobenius
norm regularizers on B,w, which are strongly convex, the
objective is strictly convex with respect to B,w. Further, be-
cause X is full rank, ‖ΦB−X‖2F is a strictly convex function
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Figure 1: Learning curves for SCoPE versus a variety of tile coding representations in three domains. The graphs depict early learning; the
numbers in brackets correspond to final error, after 5000 samples. Because errors are sampled every 50 samples, and because MSRE is used for
optimization, the lines have an irregular pattern. The differences are nonetheless statistically significant, with an average over 50 runs, and so
the small standard error bars are omitted. SCoPE outperforms the best of the TC representations in Mountain Car and Acrobot using a more
compact sparse representation; in Puddle World, it performs more poorly, which we discuss further in the text. The larger TC representations
likely perform poorly due to hashing.

with respect to Φ. Therefore, locally the objective is strictly
convex with respect to θ. We therefore know that local min-
ima of f are isolated, and so there exists an N such that for
all n > N , θn are local minimizers of fn. Since these local
minimizers are global minimizers, and they converge to θ, this
means θ is a global minimum of f .

For the second statement, we use [Haeffele and Vidal,
2015, Theorem 15]. Because we already showed above that
our loss can be cast as factorization, it is clear our loss and
regularizers are positively homogenous, of order 2. A mini-
mum is guaranteed to exist for our objective, because the loss
function is continuous, bounded below (by zero) and goes to
infinity as the parameters go to ±∞.

5 Experimental Results
We aim to address the question: can we learn useful representa-
tions using SCoPE? We therefore tackle the setting where the
representation is first learned, and then used, to avoid conflat-
ing incremental estimation and the utility of the representation.
We particularly aim to evaluate estimation accuracy, as well as
qualitatively understanding the types of sparse representations
learned by SCoPE.
Domains. We conducted experiments in three benchmark RL
domains - Mountain Car, Puddle World and Acrobot [Sutton,
1996]. All domains are episodic, with discount set to 1 until
termination. The data in Mountain Car is generated using the
standard energy-pumping policy policy with 10% randomness.
The data in Puddle World is generated by a policy that chooses
to go North with 50% probability, and East with 50% proba-
bility on each step, with the starting position in the lower-left
corner of the grid, and the goal in the top-right corner. The
data in Acrobot is generated by a near-optimal policy.
Evaluation. We measure value function estimation accuracy
using mean absolute percentage value error (MAPVE), with
rollouts to compute the true value estimates. MAPVE =

1
ttest

∑
s∈Xtest

|V̂ (s)−V ∗(s)|
|V ∗(s)| , where Xtest is the set of test

states, ttest = 5000 is the number of samples in the test set,

V̂ (s) is the estimated value of state s and V ∗(s) is the true
value of state s computed using extensive rollouts. Errors are
averaged over 50 runs.

Algorithms. We compare to using several fixed tile-coding
(TC) representations. TC uses overlapping grids on the obser-
vation space. It is a sparse representation that is well known
to perform well for Mountain Car, Puddle World, and Ac-
robot. We varied the granularity of the grid-size N and num-
ber of tilings D, where D is the number of active features
for each observation. The grid is either N×N for Mountain
Car and Puddle World or N4 for Acrobot. We explore (D=4,
N=4), (D=4,N=8), (D=16,N=4), (D=16,N=8), (D=32,N=4),
(D=32,N=8); a grid size of 16 performed poorly, and so is
omitted. For Mountain Car and Puddle World the number
of features respectively are 64, 256, 256, 1024, 512, 2048,
then hashed to 1024 dimensions; for Acrobot, the number of
features are 1024, 16384, 4096, 65536, 8192, 131072, then
hashed to 4096. Both of these hashed sizes are much larger
than our chosen k = 100.

For consistency, once the SCoPE representation is learned,
we use the same batch gradient descent update on the MSRE
for all the algorithms, with line search to select step-sizes. The
regularization weights βB are chosen from {1−5, . . . , 1−1, 0},
based on lowest cumulative error. For convenience, βw is
fixed to be the same as βB . For learning the SCoPE represen-
tations, regularization parameters were chosen using 5-fold
cross-validation on 5000 training samples, with βφ = 0.1
fixed to give a reasonable level of sparsity. This data is only
used to learn the representation; for the learning curves, the
weights are learned from scratch in the same way they are
learned for TC. The dimension k = 100 is set to be smaller
than for tile coding, to investigate if SCoPE can learn a more
compact sparse representation. We tested unsupervised sparse
coding, but the error was poor (approximately 10× worse).
We discuss the differences between the representations learned
by supervised and unsupervised sparse coding below.

Learning curves. We first demonstrate learning with increas-
ing number of samples, in Figure 1. The weights are recom-
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Figure 2: Learned representations Φ for 5000 samples and k = 100, respectively for SCoPE, unsupervised sparse coding, and non-negative
unsupervised sparse coding, in Puddle World. The representations learned for Mountain Car and Acrobot have similar structure. The
non-negative sparse coding has the additional constraint that each entry in Φ is non-negative. The goal for this addition was to determine
if further constraints could improve prediction accuracy for unsupervised sparse coding; though the representation qualitatively looks more
reasonable, prediction performance remained poor.

puted using the entire batch up to the given number of samples.
Across domains, SCoPE results in faster learning and, in

Mountain Car and Acrobot, obtains lowest final error. Match-
ing the performance of TC is meaningful, as TC is well-
understood and optimized for these domains. For Acrobot,
it’s clear a larger TC is needed resulting in relatively poor
performance, whereas SCoPE can still perform well with a
compact, learned sparse representation. These learning curves
provide some insight that we can learn effective sparse repre-
sentations with SCoPE, but also raise some questions. One
issue is that SCoPE is not as effective in Puddle World as some
of the TC representations, namely 4-4 and 16-4. The reason
for this appears to be that we optimize MSRE to obtain the
representation, which is a surrogate for the MAPVE. When
measuring MSRE instead of MAPVE on the test data, SCoPE
consistently outperforms TC. Optimizing both the represen-
tation and weights according to MSRE may have overfitting
issues; extensions to MSBE or BE, or improvements in select-
ing regularization parameters, may alleviate this issue.

Learned representations. We also examine the learned rep-
resentations, both for unsupervised sparse coding and SCoPE,
shown in Figure 2. We draw two conclusions from these re-
sults: the structure in the observations is not sufficient for un-
supervised sparse coding, and the combination of supervised
and unsupervised losses sufficiently constrain the space to ob-
tain discriminative representations. For these two-dimensional
and four-dimensional observations, it is relatively easy to re-
construct the observations by using only a small subset of
dictionary atoms (row vectors of B in equation (2)). The unsu-
pervised representations, even with additional non-negativity
constraints to narrow the search space, are less distributed,
with darker and thicker blocks, and more frequently pick less
features. For the supervised sparse coding representation,
however, the sparsity pattern is smoother and more distributed:
more features are selected by at least one sample, but the level
of sparsity is similar. We further verified the utility of super-
vised sparse coding, by only optimizing the supervised loss
(MSRE), without including the unsupervised loss; the result-
ing representations looked similar to the purely unsupervised
representations. The combination of the two losses, therefore,
much more effectively constrains or regularizes the space of

feasible representations and improves discriminative power.
The learning demonstrated for SCoPE here is under ideal

conditions. This was intentionally chosen to focus on the
question: can we learn effective sparse representations using
the SCoPE objective? With the promising results here, future
work needs to investigate the utility of jointly estimating the
representation and learning the value function, as well as pro-
viding incremental algorithms for learning the representations
and setting the regularization parameters.

6 Conclusion
In this work, we investigated sparse coding for policy evalu-
ation in reinforcement learning. We proposed a supervised
sparse coding objective, for joint estimation of the dictionary,
sparse representation and value function weights. We pro-
vided a simple algorithm that uses alternating minimization
on these variables, and proved that this simple and easy-to-
use approach is principled. We finally demonstrate results on
three benchmark domains, Mountain Car, Puddle World and
Acrobot, against a variety of configurations for tile coding.

This paper provides a new view of using dictionary learning
techniques from machine learning in reinforcement learning.
It lays a theoretical and empirical foundation for further in-
vestigating sparse coding, and other dictionary learning ap-
proaches, for policy evaluation and suggests that they show
some promise. Formalizing representation learning as a dictio-
nary learning problem facilitates extending recent and upcom-
ing advances in unsupervised learning to the reinforcement
learning setting. For example, though we considered a batch
gradient descent approach for this first investigation, the sparse
coding objective is amenable to incremental estimation, with
several works investigating effective stochastic gradient de-
scent algorithms [Mairal et al., 2009, 2010; Le and White,
2017]. The generality of the approach and easy to understand
optimization make it a promising direction for representation
learning in reinforcement learning.
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