A Comparison of Sentiment Analysis Techniques: Polarizing Movie Blogs

With the ever-growing popularity of online media such as blogs and social networking sites, the Internet is a valuable source of information for product and service reviews. Attempting to classify a subset of these documents using polarity metrics can be a daunting task. After a survey of previous research on sentiment polarity, we propose a novel approach based on Support Vector Machines. We compare our method to previously proposed lexical-based and machine learning (ML) approaches by applying it to a publicly available set of movie reviews. Our algorithm will be integrated within a blog visualization tool.